用户名: 密码: 验证码:
表皮葡萄球菌脂肽抑制伤口病原微生物感染和调节炎症应答的分子免疫学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为机体的第一道屏障,皮肤表面生存着多种微生物。这些微生物大部分是无害的,在一定条件还可以调节机体免疫应答有益于宿主,因此研究皮肤微生物与宿主之间的关系具有重要的意义。表皮葡萄球菌是寄居在皮肤表面的主要共生菌,我们实验室前期研究表明表皮葡萄球菌在增强皮肤免疫防御和调节炎症中具有重要功能,但是对表皮葡萄球菌调节宿主免疫应答的具体活性物质及相应的分子调节机制还不清楚。本文在表皮葡萄球菌发酵液中提取到一种脂肽,其多肽序列为DⅡSTIGDLVKWⅡDTVⅡD ATE,脂肪酸序列为C20H40COOH,脂肪酸结合在多肽的LysⅡ(LP01)或Asp1(LP78)上,这两种脂肽在调节机体先天免疫中具有重要功能。
     体外实验证明LP01显著地诱导角质形成细胞中β-防御素的表达,经LP01刺激的角质形成细胞裂解液能够特异性抑制金黄色葡萄球菌的生长;而体内实验进一步证明LP01诱导小鼠β-防御素的表达进而抑制金黄色葡萄球菌对小鼠皮肤的感染,同时小鼠肝脏内金黄色葡萄球菌的数目显著减少,但是脾脏内细菌数目没有改变。本研究进一步探究了LP01诱导p-防御素表达的机制。实验结果显示:TLR2基因被沉默或敲除后,LP01不能诱导β-防御素的表达,也不能抑制金黄色葡萄球菌的生长;CD36基因被沉默后,LP01对p-防御素的诱导作用明显降低;p38MAPK抑制剂SB202190能够显著抑制LP01诱导的β-防御素的表达,因此LP01通过激活TLR2/CD36-p38MAPK信号通路诱导β-防御素的表达。
     脂肽除了增强机体免疫防御外还可以调节炎症反应,本研究检测了LP01及其同分异构体LP78对炎症反应的影响,发现LP78抑制poly(I:C)秀导的炎症反应,而LP01本身不能抑制炎症因子的表达。poly(I:C)诱导p65的磷酸化进而促使其入核,p65与PPARγ相结合共同起始炎症反应。LP78能够诱导β-catenin的磷酸化,促使其稳定性和在细胞核内的聚集,β-catenin与p65竞争性地结合PPARγ进而抑制poly(I:C)诱导炎症反应。而LP78调节β-catenin与p65竞争性地结合PPARy是通过激活TLR2/CD14/CD36-PKA信号通路,因为不管是抑制或敲除TLR2,还是将TLR2的辅助受体CD14和CD36基因沉默或PKA活性被抑制后,LP78均不能诱导β-catenin的磷酸化和β-catenin在细胞核内的聚集,从而不能抑制poly(I:C)诱导的炎症反应。而脂肽LP78的生理功能体现在抑制糖尿病小鼠伤口过度的炎症因子的表达从而促进伤口愈合。
     总之,表皮葡萄球菌与宿主之间存在着有益的关系,表皮葡萄球菌分泌的脂肽一方面通过激活TLR2/CD36-p38MAPK信号通路诱导防御素的表达抵制病原菌对机体的感染,另一方面通过TLR2/CD14/36-PKA-β-catenin信号通路调节伤口炎症应答进而促进伤口愈合。
As the first barrier of the host, skin is colonized by a diverse collection of microbia. Most of these microbia have benigh relationship with hosts and in some cases provide vital functions that are not evolved by human genome.Therefore, it's important to investigate how skin commensals benefit the host.Our previous work shows that skin commensal bacterium Staphylococcus epidermidis, a gram-positive bacteria, has important roles in enhancing innate immune defense and regulating inflammatory responses. However, the identity of the molecule from S.epidermidis to rugulate skin immunity and the corresponding molecular mechanisms remain unknown. Here I isolated lipopeptides from S.epidermidis cell culture media and these peptides have a unique structure with heneicosanoic acid (C20H41COOH) binding to Lysine11(LP01) or Asp1(LP78) of a peptide chain(DIISTIGDLVKWIIDTVIIDATE). We further showed that these lipopeptides play important roles in the regulation of innate immunity.
     Our data show that in vitro LP01(DIISTlGDLVKWIIDTVIIDATE) increased the expression of β-defensin2(hBD2) and hBD3in neonatal human epidermal keratinocytes (NHEKs), leading to increased capacity of cell lysates to inhibit the growth of S.aureus. In vivo LP01induced the expression of mouse β-defensin4(mBD4) to decrease the survival of local S.aureus in skin and systemic S.aureus survival in liver. The induction of beta-defensins by LP01was dependent on TLR2as Tlr2-deficient mice had decreased mBD4. Furthermore, knockdown of CD36decreased the expression of hBD2and hBD3, and p38MAPK inhibitor significantly inhibited the expression of hBDs and p38phosphorylation induced by LP01. We also found that one isomer named LP78) of LP01inhibited poly(I:C)-induced inflammation in vitro and in vivo. poly(I:C) induced p65nuclear translocation to interact with PPARy, thus initiating inflammatory response. LP78induced β-catenin translocation into nucleus to compete with poly(I:C)-induced p65to interact with PPARy, thus inhibiting inflammatory response. The anti-inflammatory effects of LP78was depended on TLR2-CD14/CD36-PKA as LP78did not inhibit inflammation in Tlr2-deficient mice,or lost its capacity to inhibit inflammatory respose after CD14/CD36was knocked down. Furthermore, PKA inhibitor blocked the inhibitory effect of LP78on TLR3-dependent inflammation. The physilogical relevance of LP78in vivo was that LP78reduced excessive inflammatory responses in ulcer wounds, thus promoting wound healing in diabetic mice.
     In conclution, these findings demonstrate that S.epidermidis has a benign relationship with the host. In one hand S.epidermidis produces lipopeptide to enhance antibacterial defense against bacterial infection via the activation of TLR2/CD36-p38MAPK. On the other hand, the lipopeptide activates TLR2-CD14/36-PKA-β-catenin signal pathway to regulate inflammatory responses, thus promoting wound healing.
引文
1. Bikle DD, Xie Z, Tu CL.(2012) Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 7:461-472.
    2. Karvonen SL, Korkiamaki T, Yla-Outinen H, Nissinen M, Teerikangas H, et al. (2000) Psoriasis and altered calcium metabolism:downregulated capacitative calcium influx and defective calcium-mediated cell signaling in cultured psoriatic keratinocytes. J Invest Dermatol 114: 693-700.
    3. Bowcock AM, Cookson WO (2004) The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Hum Mol Genet 13 Spec No 1:R43-55.
    4. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679-691.
    5. Wikipedia (2006) Diagram of the layers of the epithelial skin layer:the epidermis. http://en.wikipedia.org/wiki/Image:Gray941.png.
    6. Charles A Janeway, Travers JP, Walport M, Shlomchik MJ (2001) Immunobiology,5th edition: The Immune System in Health and Disease.New York.Garland Science.ISBN 0-8153-4101-6.
    7. Takeuchi O, Akira S.(2010) Pattern recognition receptors and inflammation. Cell 140:805-820.
    8. Chen GY, Nunez G.(2010) Sterile inflammation:sensing and reacting to damage. Nat Rev Immunol 10:826-837.
    9. Miggin SM, O'Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80:220-226.
    10. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, et al. (2008) Sequential control of Toll-like receptor-dependent responses by IRAKI and IRAK2. Nat Immunol 9:684-691.
    11. Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y.(2008) TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One 3:e4064.
    12. Harder J, Bartels J, Christophers E, Schroder JM. (1997) A peptide antibiotic from human skin. Nature 387:861.
    13. Harder J, Bartels J, Christophers E, Schroder JM. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276: 5707-5713.
    14. Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, et al. (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120:379-389.
    15. Kanda N, Hau CS, Tada Y, Sato S, Watanabe S.(2012) Decreased serum LL-37 and vitamin D3 levels in atopic dermatitis:relationship between IL-31 and oncostatin M. Allergy 67:804-812.
    16. Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, et al. (2007) Human keratinocytes express functional Toll-like receptor 3,4,5, and 9. J Invest Dermatol 127: 331-341.
    17. Gariboldi S. Palazzo M, Zanobbio L, Selleri S, Sommariva M, et al. (2008) Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol 181:2103-2110.
    18. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770-1773.
    19. Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, et al. (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117:803-811.
    20. Komine M, Freedberg IM, Blumenberg M. (1994) Interleukin-1 alpha is released during transfection of keratinocytes. J Invest Dermatol 103:580-582.
    21. Kupper TS, Lee F, Birchall N, Clark S, Dower S. (1988) Interleukin 1 binds to specific receptors on human keratinocytes and induces granulocyte macrophage colony-stimulating factor mRNA and protein. A potential autocrine role for interleukin 1 in epidermis. J Clin Invest 82: 1787-1792.
    22. Tsakiri N, Kimber I, Rothwell NJ, Pinteaux E. (2008) Interleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol 153:775-783.
    23. van de Laar L, Coffer PJ, Woltman AM.(2012) Regulation of dendritic cell development by GM-CSF:molecular control and implications for immune homeostasis and therapy. Blood 119: 3383-3393.
    24. Braunstein S, Kaplan G, Gottlieb AB, Schwartz M, Walsh G, et al. (1994) GM-CSF activates regenerative epidermal growth and stimulates keratinocyte proliferation in human skin in vivo. J Invest Dermatol 103:601-604.
    25. Hernandez-Quintero M, Kuri-Harcuch W, Gonzalez Robles A, Castro-Munozledo F. (2006) Interleukin-6 promotes human epidermal keratinocyte proliferation and keratin cytoskeleton reorganization in culture. Cell Tissue Res 325:77-90.
    26. Wittmann M, Purwar R, Hartmann C, Gutzmer R, Werfel T. (2005) Human keratinocytes respond to interleukin-18:implication for the course of chronic inflammatory skin diseases. J Invest Dermatol 124:1225-1233.
    27. Li J, Ireland GW, Farthing PM, Thornhill MH. (1996) Epidermal and oral keratinocytes are induced to produce RANTES and IL-8 by cytokine stimulation. J Invest Dermatol 106:661-666.
    28. Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T. (2003) Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 28:648-654.
    29. Andoh A, Fujino S, Bamba S, Araki Y, Okuno T, et al. (2002) IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J Immunol 169:1683-1687.
    30. Kanda N, Watanabe S. (2003) 17beta-estradiol inhibits the production of RANTES in human keratinocytes. J Invest Dermatol 120:420-427.
    31. Frink M, Hsieh YC, Hsieh CH, Pape HC, Choudhry MA, et al. (2007) Keratinocyte-derived chemokine plays a critical role in the induction of systemic inflammation and tissue damage after trauma-hemorrhage. Shock 28:576-581.
    32. Tuzun Y, Antonov M, Dolar N, Wolf R. (2007) Keratinocyte cytokine and chemokine receptors. Dermatol Clin 25:467-476, vii.
    33. Valdimarsson H, Baker BS, Jonsdottir I, L. F. (1986) Psoriasis:a disease of abnormal Keratinocyte proliferation induced by T lymphocytes. Immunology Today 7:256-259.
    34. Arican O, Aral M, Sasmaz S, Ciragil P. (2005) Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005:273-279.
    35. Raychaudhuri SP.(2012) Role of IL-17 in Psoriasis and Psoriatic Arthritis. Clin Rev Allergy Immunol.
    36. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, et al. (2007) lnterleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445: 648-651.
    37. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, et al. (2009) Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol 129:79-88.
    38. Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, et al. (2007) Alphalbetal integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 13: 836-842.
    39. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821-852.
    40. Huber M, Brustle A, Reinhard K, Guralnik A, Walter G, et al. (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Thl7 phenotype. Proc Natl Acad Sci U S A 105:20846-20851.
    41. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, et al. (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271-2279.
    42. Lai Y, Li D, Li C, Muehleisen B, Radek KA, et al.(2012) The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37:74-84.
    43. De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA (2009) Atopic dermatitis:a disease caused by innate immune defects? J Invest Dermatol 129:14-30.
    44. Liu FT, Goodarzi H, Chen HY.(2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 41:298-310.
    45. Runge MS (2006) In:Patterson C, editor. Principles of Molecular Medicine chaper 97:atopic dermatitis, pp.949-951.
    46. Pastore S, Fanales-Belasio E, Albanesi C, Chinni LM, Giannetti A, et al. (1997) Granulocyte macrophage colony-stimulating factor is overproduced by keratinocytes in atopic dermatitis. Implications for sustained dendritic cell activation in the skin. J Clin Invest 99:3009-3017.
    47. Albanesi C, Cavani A, Girolomoni G (1999) IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes:synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 162: 494-502.
    48. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, et al. (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190-1192.
    49. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, et al.(2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346-349.
    50. Fitzgerald RJ, Morhart RE, Marquez C, Adams BO (1986) Inhibition of caries in hamsters treated with staphylococcin 1580. Infect Immun 54:288-290.
    51. Nakamura T, Hirai K, Shibata Y, Fujimura S (1998) Purification and properties of a bacteriocin of Staphylococcus epidermidis isolated from dental plaque. Oral Microbiol Immunol 13: 387-389.
    52. Sugimoto S, Iwamoto T, Takada K, Okuda KI, Tajima A, et al. (2013)Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction. J Bacteriol.195:1645-55
    53. Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, et al. (2009)Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol 130:192-200.
    54. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, et al. (2012)Compartmentalized control of skin immunity by resident commensals. Science 337:1115-1119.
    55. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, et al. (2010)Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130:2211-2221.
    56. Ivanov, II, Honda K.(2012) Intestinal commensal microbes as immune modulators. Cell Host Microbe 12:496-508.
    57. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, et al. (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15:1377-1382.
    58. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, et al. (2012)Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538-546.
    59. 刘向阳,杨世忠,牟伯中(2005)微生物脂肽的结构.生物技术通报4:18-26.
    60. Ongena M, Jacques P (2008) Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol 16:115-125.
    61. Kaya K, Mahakhant A, Keovara L, Sano T, Kubo T, et al. (2002) Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. J Nat Prod 65:920-921.
    62. Nishi K, Horiguchi T, Kawashima F, Tanida S (1996) Direct and indirect stimulation of megakaryocytopoiesis by TAN-1511 A, amicrobial lipopeptide. Anticancer Res 16:3695-3703.
    63. 杨福廷(2006)脂肽类生物表面活性剂研究进展.精细化工23:121-125.
    64. Woodworth JR, Nyhart EH, Jr., Brier GL, Wolny JD, Black HR (1992) Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother 36:318-325.
    65. Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin:a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 55:283-288.
    66. Rodrigues L, Banat 1M, Teixeira J, Oliveira R (2006) Biosurfactants:potential applications in medicine. J Antimicrob Chemother 57:609-618.
    67. He HY SB, Joseph Korshalla, Guy T Carter (2001) Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154. Tetrahedron 57:1189-1195.
    68. Wang CL, Ng TB, Yuan F, Liu ZK, Liu F (2007) Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28:1344-1350.
    69. Xie JJ, Zhou F, Li EM, Jiang H, Du ZP, et al. (2011)FW523-3, a novel lipopeptide compound, induces apoptosis in cancer cells. Mol Med Report 4:759-763.
    70. Sivapathasekaran C DP, Mukherjee Soumen, Saravanakumar J, Mandal Mahitosh,Sen Ramkrishna. (2010) Marine Bacterium Derived Lipopeptides:Characterization and Cytotoxic Activity Against Cancer Cell Lines. International Journal of Peptide Research and Therapeutics 16:215-222.
    71. Kim SY, Kim JY, Kim SH, Bae HJ. Yi H. et al. (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865-871.
    72. Hwang MH, Chang ZQ, Kang EH, Lim JH, Yun HI, et al. (2008) Surfactin C inhibits Mycoplasma hyopneumoniae-induced transcription of proinflammatory cytokines and nitric oxide production in murine RAW 264.7 cells. Biotechnol Lett 30:229-233.
    73. Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, et al. (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot (Tokyo) 59:35-43.
    74. Kim K, Jung SY, Lee DK, Jung JK, Park JK, et al. (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55:975-985.
    1. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, et al. (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15:1377-1382.
    2. Fitzgerald RJ, Morhart RE, Marquez C, Adams BO (1986) Inhibition of caries in hamsters treated with staphylococcin 1580. Infect Immun 54:288-290.
    3. Sahl HG, Ersfeld-Dressen H, Bierbaum G, Josten M, Kordel M, et al. (1987) Different mechanisms of insensitivity to the staphylococcin-like peptide Pep 5. Zentralbl Bakteriol Mikrobiol Hyg A 267:173-185.
    4. Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, et al. (2009)Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol 130:192-200.
    5. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, et al. (2009)Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130:2211-2221.
    6. Tally FP, DeBruin MF (2000) Development of daptomycin for gram-positive infections. J Antimicrob Chemother 46:523-526.
    7. Klich MA, Arthur KS, Lax AR, Bland JM (1994) Iturin A:a potential new fungicide for stored grains. Mycopathologia 127:123-127.
    8. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo) 39:888-901.
    9. Dixon RA, Chopra I (1986) Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli. J Antimicrob Chemother 18:557-563.
    10. Li J, Jensen SE (2008) Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chem Biol 15:118-127.
    11. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, et al. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071-1082.
    12. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, et al. (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:873-884.
    13. Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, et al. (2010) Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 41:898-904.
    14. Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N, et al. (2005) Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol 35: 911-921.
    15. Arbibe L, Mira JP, Teusch N, Kline L, Guha M, et al. (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Racl-dependent pathway. Nat Immunol 1:533-540.
    16. Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, et al. (2007) The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol 210:667-675.
    17. Kanda N, Watanabe S (2008) Leptin enhances human beta-defensin-2 production in human keratinocytes. Endocrinology 149:5189-5198.
    18. Lan CC, Wu CS, Huang SM, Kuo HY, Wu IH, et al. (2011) High-Glucose Environment Inhibits p38MAPK Signaling and Reduces Human beta-Defensin-3 Expression [corrected] in Keratinocytes. Mol Med 17:771-779.
    19. Evans CA, Smith WM, Johnston EA, Giblett ER (1950) Bacterial flora of the normal human skin. J Invest Dermatol 15:305-324.
    20. Marples MJ (1969) The normal flora of the human skin. Br J Dermatol 81:Suppl 1:2-13.
    21. Okada H, Kuhn C, Feillet H, Bach JF.(2010)The 'hygiene hypothesis' for autoimmune and allergic diseases:an update. Clin Exp Immunol 160:1-9.
    22. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694-1697.
    23. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65.
    24. Hormannsperger G, Clavel T, Haller D.(2012) Gut matters:microbe-host interactions in allergic diseases. J Allergy Clin Immunol 129:1452-1459.
    25. Wanke I, Steffen H, Christ C, Krismer B, Gotz F, et al. (2010) Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol 131:382-390.
    26. Guo Y, Huang E, Yuan C, Zhang L, Yousef AE.(2012) Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl Environ Microbiol 78: 3156-3165.
    27. Kim PI, Bai H, Bai D, Chae H, Chung S, et al. (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942-949.
    28. Li D, Lei H, Li Z, Li H, Wang Y, et al.(2013) A Novel Lipopeptide from Skin Commensal Activates TLR2/CD36-p38 MAPK Signaling to Increase Antibacterial Defense against Bacterial Infection. PLoS One 8:e58288.
    29. Takeda K, Takeuchi O, Akira S (2002) Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res 8:459-463.
    30. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, et al. (2005) CD36 is a sensor of diacylglycerides. Nature 433:523-527.
    31. Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, et al. (2005) Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 170:477-485.
    32. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD 14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29: 11982-11992.
    33. Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, et al. (2008) Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling:role of CD14 and CD36. J Leukoc Biol 84:280-291.
    34. Ogushi K, Wada A, Niidome T, Mori N, Oishi K, et al. (2001) Salmonella enteritidis FliC (flagella filament protein) induces human beta-defensin-2 mRNA production by Caco-2 cells. J Biol Chem 276:30521-30526.
    35. Wada A, Ogushi K, Kimura T, Hojo H, Mori N, et al. (2001) Helicobacter pylori-mediated transcriptional regulation of the human beta-defensin 2 gene requires NF-kappaB. Cell Microbiol 3:115-123.
    36. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 74:589-607.
    37. Nakamura S, Saitoh M, Yamazaki M, Nishimura M, Kurashige Y, et al. (2011) Nicotine induces upregulated expression of beta defensin-2 via the p38MAPK pathway in the HaCaT human keratinocyte cell line. Med Mol Morphol 43:204-210.
    38. Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H (2005) The human beta-defensins (-1,-2,-3,-4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol 175:1776-1784.
    39. Wang X, Zhang Z, Louboutin JP, Moser C, Weiner DJ, et al. (2003) Airway epithelia regulate expression of human beta-defensin 2 through Toll-like receptor 2. FASEB J 17:1727-1729.
    40. Shin JS, Kim CW, Kwon YS, Kim JC (2004) Human beta-defensin 2 is induced by interleukin-1beta in the corneal epithelial cells. Exp Mol Med 36:204-210.
    41. Tsutsumi-Ishii Y, Nagaoka I (2002) NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukoc Biol 71:154-162.
    42. Mineshiba J, Myokai F, Mineshiba F, Matsuura K, Nishimura F, et al. (2005) Transcriptional regulation of beta-defensin-2 by lipopolysaccharide in cultured human cervical carcinoma (HeLa) cells. FEMS Immunol Med Microbiol 45:37-44.
    43. Chung WO, Dommisch H, Yin L, Dale BA (2007) Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des 13:3073-3083.
    44. Chung WO, Dale BA (2004) Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 72: 352-358.
    45. Krisanaprakornkit S, Kimball JR, Dale BA (2002) Regulation of human beta-defensin-2 in gingival epithelial cells:the involvement of mitogen-activated protein kinase pathways, but not the NF-kappaB transcription factor family. J Immunol 168:316-324.
    46. Lewis JP, Macrina FL (1998) IS 195, an insertion sequence-like element associated with protease genes in Porphyromonas gingivalis. Infect Immun 66:3035-3042.
    1. Majno GJ,1 (2004) Cells, Tissues and Disease((Oxford Univ. Press).
    2. Kampfer H, Schmidt R, Geisslinger G, Pfeilschifter J, Frank S (2005) Wound inflammation in diabetic ob/ob mice:functional coupling of prostaglandin biosynthesis to cyclooxygenase-1 activity in diabetes-impaired wound healing. Diabetes 54:1543-1551.
    3. Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A (2009) Inflammation and neuropeptides:the connection in diabetic wound healing. Expert Rev Mol Med 11:e2.
    4. Hwang MH, Chang ZQ, Kang EH, Lim JH, Yun HI, et al. (2008) Surfactin C inhibits Mycoplasma hyopneumoniae-induced transcription of proinflammatory cytokines and nitric oxide production in murine RAW 264.7 cells. Biotechnol Lett 30:229-233.
    5. Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, et al. (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot (Tokyo) 59:35-43.
    6. Deiters U, Muhlradt PF (1999) Mycoplasmal lipopeptide MALP-2 induces the chemoattractant proteins macrophage inflammatory protein lalpha (MIP-1 alpha), monocyte chemoattractant protein 1, and MIP-2 and promotes leukocyte infiltration in mice. Infect Immun 67:3390-3398.
    7. Vu AT, Baba T, Chen X, Le TA, Kinoshita H, et al.(2010) Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. J Allergy Clin Immunol 126:985-993,993 e981-983.
    8. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, et al. (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15:1377-1382.
    9. Tak PP, Firestein GS (2001) NF-kappaB:a key role in inflammatory diseases. J Clin Invest 107: 7-11.
    10. Liu SF, Ye X, Malik AB (1999) Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation 100: 1330-1337.
    11. Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, et al. (1997) Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272:21096-21103.
    12. Dai C, Wen X, He W, Liu Y.(2010) Inhibition of proinflammatory RANTES expression by TGF-betal is mediated by glycogen synthase kinase-3beta-dependent beta-catenin signaling. J Biol Chem 286:7052-7059.
    13. Jun Sun MEH, Yingli Duan, Anjali S. Rao, Tong-Chuan He, Eugene B. Chang, and James L. Madara (2004) Crosstalk between NF-κB and β-catenin pathways in bacterial-colonized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 289:G129-G137.
    14. Yang Y, Yang J, Liu R, Li H, Luo X, et al.(2010) Accumulation of beta-catenin by lithium chloride in porcine myoblast cultures accelerates cell differentiation. Mol Biol Rep 38:2043-2049.
    15. Hajishengallis G, Lambris JD Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 11:187-200.
    16. Hino S, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25:9063-9072.
    17. Stowell NC, Seideman J, Raymond HA, Smalley KA, Lamb RJ, et al. (2009) Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respir Res 10:43.
    18. Miodovnik M, Koren R, Ziv E, Ravid A.(2011) The inflammatory response of keratinocytes and its modulation by vitamin D:the role of MAPK signaling pathways. J Cell Physiol 227:2175-2183.
    19. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640-643.
    20. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1-20.
    21. Ricote M, Huang JT, Welch JS, Glass CK (1999) The peroxisome proliferator-activated receptor(PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol 66: 733-739.
    22. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49: 497-505.
    23. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79-82.
    24. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82-86.
    25. Thieringer R, Fenyk-Melody JE, Le Grand CB, Shelton BA, Detmers PA, et al. (2000) Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 164:1046-1054.
    26. Wen X, Li Y, Liu Y.(2010) Opposite action of peroxisome proliferator-activated receptor-gamma in regulating renal inflammation:functional switch by its ligand. J Biol Chem 285:29981-29988.
    27. Ivanov, II, Honda K.(2012) Intestinal commensal microbes as immune modulators. Cell Host Microbe 12:496-508.
    28. Long EM, Klimowicz AC, Paula-Neto HA, Millen B, McCafferty DM, et al. (2011) A subclass of acylated anti-inflammatory mediators usurp Toll-like receptor 2 to inhibit neutrophil recruitment through peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 108: 16357-16362.
    29. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, et al.(2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115-1119.
    30. Shimizu T, Kida Y, Kuwano K (2008) Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect Immun 76:270-277.
    31. Findlay B, Mookherjee N, Schweizer F. (2013) Ultrashort cationic lipopeptides and lipopeptoids selectively induce cytokine production in macrophages. PLoS One 8:e54280.
    32. Hollingsworth JW, Whitehead GS, Lin KL, Nakano H, Gunn MD, et al. (2006) TLR4 signaling attenuates ongoing allergic inflammation. J Immunol 176:5856-5862.
    33. Patel M, Xu D, Kewin P, Choo-Kang B, McSharry C, et al. (2005) TLR2 agonist ameliorates established allergic airway inflammation by promoting Th 1 response and not via regulatory T cells. J Immunol 174:7558-7563.
    34. Akdis CA, Kussebi F, Pulendran B, Akdis M, Lauener RP, et al. (2003) Inhibition of T helper 2-type responses, IgE production and eosinophilia by synthetic lipopeptides. Eur J Immunol 33: 2717-2726.
    35. McKimmie CS, Moore M, Fraser AR, Jamieson T, Xu D, et al. (2009) A TLR2 ligand suppresses inflammation by modulation of chemokine receptors and redirection of leukocyte migration. Blood 113:4224-4231.
    36. Fukushima A, Yamaguchi T, Ishida W, Fukata K, Ueno H (2006) TLR2 agonist ameliorates murine experimental allergic conjunctivitis by inducing CD4 positive T-cell apoptosis rather than by affecting the Thl/Th2 balance. Biochem Biophys Res Commun 339:1048-1055.
    37. Poole JA, Wyatt TA, Kielian T, Oldenburg P, Gleason AM, et al. (2011) Toll-like receptor 2 regulates organic dust-induced airway inflammation. Am J Respir Cell Mol Biol 45:711-719.
    38. Yaguchi T, Goto Y, Kido K, Mochimaru H, Sakurai T, et al.(2012) Immune suppression and resistance mediated by constitutive activation of Wnt/beta-catenin signaling in human melanoma cells. J Immunol 189:2110-2117.
    39. Duan Y, Liao AP, Kuppireddi S, Ye Z, Ciancio MJ, et al. (2007) beta-Catenin activity negatively regulates bacteria-induced inflammation. Lab Invest 87:613-624.
    40. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6:777-784.
    41. Zeng G, Apte U, Micsenyi A, Bell A, Monga SP (2006) Tyrosine residues 654 and 670 in beta-catenin are crucial in regulation of Met-beta-catenin interactions. Exp Cell Res 312: 3620-3630.
    42. Du Q, Zhang X, Cardinal J, Cao Z, Guo Z, et al. (2009) Wnt/beta-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-kappaB activation in cancer cells. Cancer Res 69:3764-3771.
    43. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219-1222.
    44. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo 23:245-258.
    45. Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman HJ.(2012)The streptozotocin-induced diabetic nude mouse model:differences between animals from different sources. Comp Med 61:356-360.
    46. Clark RA (2001) Fibrin and wound healing. Ann N Y Acad Sci 936:355-367.
    47. Graves D DM (2011) Inflammation Impairs Wound Healing in Diabetic Mice. Advances in Wound Care 2:82-88.
    48. Siqueira MF LJ, Chehab L, Desta T, Chino T, Krothpali N, Behl Y, Alikhani M, Yang J, Braasch C, Graves DT. (2010) Impaired wound healing in mouse models of diabetes is mediated by TNF-alpha dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1). Diabetologia 53:378-388.
    49. Landis RC, Evans BJ, Chaturvedi N, Haskard DO.(2010) Persistence of TNFalpha in diabetic wounds. Diabetologia 53:1537-1538.
    50. Drugline http://drugline.org/img/term/intradermal-8019_3.jpg.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700