用户名: 密码: 验证码:
miR-137对卒中后抑郁大鼠模型的治疗作用及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卒中后抑郁(post-stroke depression, PSD)是脑卒中后最常见的心理行为障碍并发症,在卒中患者中的发病率约为25%-79%。PSD具体发病机制尚未完全清楚,给治疗带来极大的困难。最新研究表明,miRNA可能在抑郁症的发生、发展中扮演着重要的角色,可以作为抑郁症临床治疗的潜在靶点。作为抑郁症中的特殊一种,PSD的发病是否也与miRNA相关呢?脑卒中患者外周血检测发现,有多种miRNA在急性期出现上调或下降,随后在鼠类缺血模型中的研究证实了脑内也出现了相应的miRNA变化。令人感兴趣的是,在脑缺血后下调的miRNA和抑郁症患者下调的miRNA有着部分的重叠,但这些重叠的miRNA在PSD的发生发展中发挥的作用尚无人研究。因此,本实验选取miR-137为对象,研究其对PSD大鼠模型行为学的影响,旨在为PSD发病机制和治疗药物的研究提供新的思路。
     第一部分大脑中动脉阻塞法结合慢性温和刺激建立卒中后抑郁大鼠模型
     目的:建立卒中后抑郁大鼠模型,为疾病的研究提供实验基础。
     方法:筛选体重180~210g的清洁级健康SD大鼠,雌雄各半,正常饲养1周适应环境,监测并记录大鼠体重、蔗糖水消耗量、水平活动得分及垂直运动得分。平均分为3组:对照组、卒中组与PSD(缺血加应激)组,采用大脑中动脉阻塞法(middle cerebral artery occlusion, MCAO)制作脑缺血再灌注模型,模型成功后选取Longa评分≥1并<4的大鼠,通过慢性温和刺激(chronic mild stress, CMS)建立PSD模型。分别采用糖水消耗试验、旷野试验(open-field test, OFT)评估大鼠快感缺失、活动减少、行为绝望等行为。
     结果:与对照组相比,PSD组大鼠体重的增长明显滞缓,于7d时PSD组大鼠体重开始低于对照组(P<0.05),于14d时体重低于卒中组(P<0.05)。随着时间变化,PSD组大鼠蔗糖水消耗比例逐渐下降。与对照组相比,14d和21d时PSD组大鼠蔗糖水消耗量明显降低(P<0.05),并且在21d时PSD组大鼠蔗糖水消耗比例低于卒中组(P<0.05)。随时间变化,PSD组大鼠水平得分逐渐下降,至21d时仍呈下降趋势,各时间段水平得分均小于对照组(P<0.05)。21d时,PSD组大鼠脑组织中NE、DA和5-HT含量均明显低于对照组(P<0.05)。
     结论:PSD模型大鼠较充分而持续表现快感缺乏、活动减少等“抑郁”核心症状,可操作性和重复性较好,是研究PSD较为理想的大鼠模型。
     第二部分miR-137在PSD大鼠脑内的表达及其治疗作用
     目的:观察microRNA在PSD大鼠脑内的表达及其对PSD大鼠的治疗作用。
     方法:①取正常大鼠、MCAO大鼠和PSD大鼠处死取脑,microarray检测差异microRNA表达,并对表达差异的microRNA进行qRT-PCR检测验证;②并选取24只SD大鼠入组:6只大鼠不作任何处理(control组)、6只大鼠经MCAO+CMS制作PSD模型(PSD组)、6只大鼠经MCAO+脑室注射agomir-137+CMS (agomir-137组)、6只大鼠经MCAO+脑室注射agomir-NC+CMS (agomir-NC组),对各组大鼠进行行为学检测。
     结果:①microarray检测结果显示,与正常大鼠相比,PSD大鼠脑内多种microRNA表达上调或下调,如miR-137, miR-124, miR-181和miR-145等。qRT-PCR验证结果与microarray结果相符。PSD大鼠脑内和外周血中miR-137表达水平均明显低于正常大鼠(p<0.05)。②旷野实验结果显示,在脑缺血第3w,经脑室注射agomir-137的PSD大鼠垂直得分以及水平得分均显著高于agomir-NC组大鼠以及普通PSD大鼠(p<0.05)。糖水消耗实验结果显示,在脑缺血后第2w末起,agomir-137组大鼠糖水消耗百分比即显著高于agomir-NC组大鼠以及普通PSD大鼠(p<0.05)。
     结论:①多种microRNA可能参与PSD的病理生理过程,其中以miR-137作用比较明显;②人为增强内源性miR-137表达可以发挥抗PSD的作用。
     第三部分miR-137通过抑制Grin2A表达发挥对卒中后抑郁大鼠模型的治疗作用
     目的:寻找miR-137治疗PSD的作用靶点。
     方法:①为揭示miR-137对卒中后抑郁大鼠模型的治疗作用机制,我们通过pictar、 microbase和targetscan三个数据库寻找miR-137的作用靶点,结果发现Grin2A基因的3'UTR端包含一个7mer大小的序列与miR-137相匹配;②为验证miR-137影响Grin2A的蛋白表达,我们将agomir-137及其阴性对照agomir-NC、antagomir-137及其阴性对照antagomir-NC转染至PC12细胞中,western blot检测Grin2A水平差异。③为确定Grin2A基因的3'UTR端包含的7mer大小的序列与miR-137结合后可下调Grin2AmRNA的翻译,我们将含此位点的Grin2AmRNA3'UTR构建入luciferase报告系统(Grin2A-3'UTR-wt),同时将突变后的Grin2AmRNA3'UTR也插入luciferase报告系统中(Grin2A-3'UTR-mut)。然后将miR-137与luciferase空质粒(empty vector)或Grin2A-3'UTR-wt质粒或Grin2A-3'UTR-mut质粒共同转染至HEK-293细胞中,检测各组细胞中的荧光强度。④为检测Grin2A是否参与miR-137抗PSD作用,12只大鼠被添加入组:6只大鼠经MCAO+脑室注射AAV9-CMV-Grin2A质粒和agomir-137+CMS (agomir-137+Grin2A),6只大鼠经MCAO+脑室注射空质粒和agomir-137+CMS (agomir-137+vector),并对所有组大鼠进行行为学检测。
     结果:(DmiR-137mimic可显著降低PC12细胞中Grin2A水平(p<0.05),而miR-137inhibitor可显著升高PC12细胞中Grin2A水平(p<0.05)。②Grin2A-3'UTR-wt组荧光强度明显低于其阴性对照组(miR-con),而Grin2A-3'UTR-mut组或空质粒组荧光强度与其阴性对照无明显差异。③Grin2A过表达组(agomir-137+Grin2A)的大鼠垂直得分以及水平得分均明显低于其阴性对照(agomir-137+vector)和agomir-137组(p<0.05)。并且Grin2A过表达组蔗糖水消耗百分比明显低于其阴性对照和agomir-137组(p<0.05)。
     结论:miR-137可以通过与Grin2A mRNA3'UTR端结合而调节其蛋白表达水平,过表达Grin2A可阻断miR-137对PSD大鼠行为学的影响,证明其参与了miR-137对PSD大鼠的治疗作用。
     全文结论:
     1.PSD模型大鼠较充分而持续表现快感缺乏、活动减少等“抑郁”核心症状,可操作性和重复性较好,是研究PSD较为理想的大鼠模型。
     2.卒中后抑郁大鼠模型脑内和外周血中的miR-137水平明显下降,上调脑内miR-137水平后可显著改善PSD模型的行为学变化。
     3.miR-137可以与Grin2A的3'UTR端结合,抑制Grin2A mRNA的翻译从而下调其蛋白的表达,而在卒中后抑郁大鼠模型的脑内过表达Grin2A基因后,miR-137抗卒中后抑郁的作用被显著减弱,表明阻断Grin2A基因表达是miR-137治疗PSD的作用途径之一。
Post-stroke depression (PSD) is one of the most common psychological behavior disorders complications after stroke. The incidence of PSD is about25%to79%of stroke patients. The specific mechanism of PSD is not entirely clear, causing great difficulties in disease remedy. Recent research has suggested that miRNAs likely play an important role in the occurrence and development of depression, and show potential as targets for treatment of clinical depression. However, it is not yet known if miRNAs are associated with post-stroke depression. Recently, Scholars showed altered expression of various miRNAs in pe-ripheral blood, from acute stage stroke patients. A further study confirmed corresponding miRNA changes in the brain, in a mouse ischemia model. Interestingly, there are small overlaps between downregulated miRNA expression after cerebral ischemia, and in depression patients. Nevertheless, the effects of these overlapping miRNAs on the occurrence and development of post-stroke de-pression remains unclear. Therefore, in this study, we used a rat model of post-stroke depression to investigate the effects of miR-137on behavior.
     Part1:The establishment of post-stroke depression rats model
     Objective:To establish rats model of post-stroke depression for providing experimental basis of disease research.
     Methods:SD rats were randomly divided into three groups:control group, stroke group and PSD. Cerebral ischemia reperfusion model was produced using the brain artery occlusion method (middle cerebral artery occlusion, MCAO). And MCAO models of Longa grade1-4were choosed to establish PSD model by chronic mild stimulation (chronic mild stress, CMS). Sugar water consumption test, the wilderness test (open-field test, OFT) and forced swimming were used respectively to assess the sensation loss, decreased activityand behavioral despair of rats. And all of the rats were sacrificed to detect the neurotransmitters levels in the hypothalamus.
     Results:Compared with control group, the growth of body weight of rats were obviously lagging in PSD group. At7d, PSD group rats weight were lower than the control group (P<0.05) and lower than the stroke group in14d (P<0.05). As time changes, the sucrose water consumption proportion of PSD group rats gradually declined. Compared with control group in14d and21d, sucrose water consumption of rats in PSD group was decreased obviously (P<0.05), and in21d sucrose water consumption ratio of PSD rat was lower than the stroke group (P<0.05). Change over time, the PSD group rats score level gradually decline, to21d was still declining, and scores are less than the control group at each time (P<0.05). In the21d, NE, DA and5-HT levels of the PSD group rats were significantly lower than the control group (P<0.05).
     Conclusion:PSD rat model could fully performant core symptoms of PSD such as lacking of sensation, decreased activity and etc. The maneuverability and repeatability of rat model is good and the rat model is an ideal model for investigation of PSD.
     Part2:miR-137in PSD expression in rats and its therapeutic effect
     Objective:To observe the expression of miRNAs in PSD rat and its effect on the treatment of PSD rat.
     Methods:①MCAO rats, PSD rats and normal rats were used to investigate microRNA expression in the brain via microarray detection, and the results were verificated by qRT-PCR.②Subsequently,24SD rats were divided into4groups, specifically, model, stroke, agomir-137, agomir-NC (negative control). The lasttwo groups were received an injection of agomir-137or agomir-NC into the left lateral ventricle48hours before model induction.21days later, behavioral tests of each group rats were examined.
     Results:①Microarray detection results showed that compared with normal rats, the levels of a variety of miRNAs expressed in brain of PSD rat increased or decreased, such as miR-137, miR-124, miR-181, miR-145, and etc. QRT-PCR verification results were consistent with the microarray results. The expression level of miR-137in the peripheral blood and brain of PSD rat were significantly lower than normal rats (p<0.05).②Wilderness, according to the results of experiment on cerebral ischemia3w, the PSD rat ventricle injection agomir-137vertical and horizontal score score were significantly higher than that of agomir-NC group of rats and normal PSD rats (p <0.05). The experimental results showed that the sugar water consumption after cerebral ischemia, at the end of the2w agomir-137percentage group rats sugar water consumption is significantly higher than agomir-NC group of rats and normal PSD rats (p<0.05).
     Conclusion:①Many miRNAs may participate in the pathological processes of PSD and the effect of miR-137was more noticeable.②Artificially enhanced the expression of endogenous miR-137could play a role of resistance to the PSD.
     Part3:miR-137by inhibiting Grin2A expression of play in the treatment of post-stroke depression model rats
     Objective:In order to search the targets of miR-137involving in the treatment of PSD.
     Methods:①To investigate the mechanism underlying miR-137behavioral improvements in rats with post-stroke depression, potential miR-137targets were identified using the databases, pictar, microbase and targetscan.②To determine if Grin2A participates in miR-137-induced behavioral improvements in post-stroke depression rats, we injected a plasmid containing the Grin2A gene into the brain of post-stroke depression rats, via the brain ventricles.③To determine if the identified sequence downregulates Grin2A mRNA translation following miR-137binding, Grin2A3'UTRs containing the target site (Grin2A-3'UTR-wt) or a mutated site (Grin2A-3'UTR-mut), were constructed in a luciferase reporter system. Subsequently, miR-137and either luciferase empty vector or Grin2A-3'UTR-wt or Grin2A-3'UTR-mut plasmids were co-transfected into HEK-293cells. HEK-293cells were incubated in RPMI1640medium containing10%fetal bovine serum at37℃in an incubator containing5%CO2. Full-length Grin2A3'UTR containing the miR-137binding site, was PCR amplified and cloned into HindⅢ and SacⅠ sites of the pMIR-REPORT miRNA expression reporter vector. The resulting vector was named Grin2A-3'UTR-wt. A point mutation of Grin2A-3'UTR-wt was identified using the Easy Mutagenesis System and subcloned also, with the resulting vector named Grin2A-3'UTR-mut. HEK293T cells were seeded into24-well plates and divided into three groups. Empty vector (400ng) was added to the control group, Grin2A-3'UTR-wt plasmid (400ng) to the wild-type group, and Grin2A-3'UTR-mut plasmid (400ng) to the mutation group. Plasmids and miR-137were transfected using Lipofectamine2000, and20ng pRL-TK was added as an internal reference. Within each group, parallel wells were used for the addition of mimic-NC, a negative control for miR-137mimic (miR-con). After36hours of transfection, the fluorescence intensity of cells was measured using the Dual-Luciferase Reporter Assay System.④24rats were randomly assigned to4groups, specifically, agomir-137, agomir-NC (negative control), agomir-137+Grin2A and agomir-137+vector groups. The four agomir groups received an injection of agomir-137, a miR-137antagonist into the left lateral ventricle48hours before model induction. Agomir-NC, LV-CMV-Grin2A and-control plasmids were also injected into the left lateral ventricle48hours before model induction.
     Results:①Moreover, western blot assays showed that in PC12cells, miR-137mimic (mimics of synthesized mir-137, showing similar effects to natural mir-137) significantly reduced (P<0.05), but miR-137inhibitor significantly increased (P<0.05), Grin2A levels. These results suggest that miR-137binds to the3'UTR of Grin2A mRNA and regulates Grin2A protein expression.②Luciferase assays found significantly lower fluorescence intensities in HEK-293cells transfected with Grin2A-3'UTR-wt, compared with negative controls (miR-con)(P<0.05). However, no significant difference was detected between HEK-293cells transfected with Grin2A-3'UTR-mut or empty vector (P>0.05; Figure3B). This suggests miR-137binds to the3'UTR of Grin2A mRNA, and regulates its translation.③We found significantly lower locomotor and rearing activities in the agomir-137+Grin2A group than in the negative control (agomir-137+vector) and agomir-137groups (P<0.05). Moreover, the sucrose consumption percentage was significantly lower in the agomir-137+Grin2A group than in the negative control and agomir-137groups (P<0.05). These results suggest that Grin2A overexpression prevents the improved behavioral effects of miR-137in rats with post-stroke depression, and confirms the involvement of Grin2A in the miR-137therapeutic effect in post-stroke depression rats..
     Conclusion:miR-137could bind with Grin2A mRNA3'UTR and downregulated its protein expression at the post-transcriptional level. Overexpression of Grin2A could block theinfluence of mi-137on ethology of PSD rat.
     The conclusions:
     1. PSD rat model could fully performant core symptoms of PSD such as lacking of sensation, decreased activity and etc. The maneuverability and repeatability of rat model is good and the rat model is an ideal model for investigation of PSD.
     2. Many miRNAs may participate in the pathological processes of PSD and the effect of miR-137was more noticeable. Artificially enhanced the expression of endogenous miR-137could play a role of resistance to the PSD.
     3. miR-137could bind with Grin2A mRNA3'UTR and downregulated its protein expression at the post-transcriptional level. Overexpression of Grin2A could block theinfluence of miR-137on ethology of PSD rat.
引文
[1]. Whyte EM and Mulsant BH. Post stroke depression:epidemiology, pathophysiology, and biological treatment. Biol Psychiatry.2002; 52(3):p.253-64.
    [2]. Terroni Lde M, Leite CC, Tinone G, et al. [Poststroke depression:risk factors and antidepressant treatment]. Rev Assoc Med Bras.2003; 49(4):p.450-9.
    [3]. Johnson JL, Minarik PA, Nystrom KV, et al. Poststroke depression incidence and risk factors:an integrative literature review. J Neurosci Nurs.2006; 38(4 Suppl):p. 316-27.
    [4]. Flaster M, Sharma A, and Rao M. Poststroke depression:a review emphasizing the role of prophylactic treatment and synergy with treatment for motor recovery. Top Stroke Rehabil.2013; 20(2):p.139-50.
    [5]. Cerebrovascular diseases and depression:epidemiology, mechanisms and treatment. Panminerva Med.2012; 54(3):p.161-70.
    [6].Loubinoux I, Kronenberg G, Endres M, et al. Post-stroke depression:mechanisms, translation and therapy. J Cell Mol Med.2012; 16(9):p.1961-9.
    [7]. Fang J and Cheng Q. Etiological mechanisms of post-stroke depression:a review. Neurol Res.2009; 31(9):p.904-9.
    [8]. Shmonin A, Melnikova E, Galagudza M, et al. Characteristics of cerebral ischemia in major rat stroke models of middle cerebral artery ligation through craniectomy. Int J Stroke.2012.
    [9]. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke.1989; 20(1):p.84-91.
    [10].Willner P. Chronic mild stress (CMS) revisited:consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005; 52(2):p.90-110.
    [11].Wang SH, Zhang ZJ, Guo YJ, et al. Decreased expression of serotonin 1A receptor in the dentate gyrus in association with chronic mild stress:a rat model of post-stroke depression. Psychiatry Res.2009; 170(2-3):p.245-51.
    [12].Aoki S, Inukai K, Sakurai M, et al. Monitoring of dopamine metabolism by in vivo voltammetry and high performance liquid chromatography in L-dopa-treated rats. Jpn J Pharmacol.1987; 43(1):p.98-102.
    [13].Liu F and McCullough LD. Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol.2011; 2011:p.464701.
    [14].Boys JA, Toledo AH, Anaya-Prado R, et al. Effects of dantrolene on ischemia-reperfusion injury in animal models:a review of outcomes in heart, brain, liver, and kidney. J Investig Med.2010; 58(7):p.875-82.
    [15].Bailey EL, Smith C, Sudlow CL, et al. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review. Int J Stroke.2011; 6(5):p.434-44.
    [16].Durukan A and Tatlisumak T. Ischemic stroke in mice and rats. Methods Mol Biol.2009; 573:p.95-114.
    [17].Katz RJ, Roth KA, and Carroll BJ. Acute and chronic stress effects on open field activity in the rat:implications for a model of depression. Neurosci Biobehav Rev. 1981; 5(2):p.247-51.
    [18].Katz RJ and Sibel M. Animal model of depression:tests of three structurally and pharmacologically novel antidepressant compounds. Pharmacol Biochem Behav.1982; 16(6):p.973-7.
    [19].Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Ber1).1987; 93(3):p.358-64.
    [20].Sahakian BJ, Robbins TW, Morgan MJ, et al. The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Res.1975; 84(2):p.195-205.
    [21].Robinson RG, Shoemaker WJ, Schlumpf M, et al. Effect of experimental cerebral infarction in rat brain on catecholamines and behaviour. Nature.1975; 255(5506):p. 332-4.
    [22].Robinson RG. Differential behavioral and biochemical effects of right and left hemispheric cerebral infarction in the rat. Science.1979; 205(4407):p.707-10.
    [1]Van Wynsberghe PM, Chan SP, Slack FJ, et al. Analysis of microRNA expression and function[J]. Methods Cell Biol,2011,106:p 219-52.
    [2]Berezikov E. Evolution of microRNA diversity and regulation in animals[J]. Nat Rev Genet,2011,12(12):p 846-60.
    [3]Bilsland AE, Revie J, and Keith W. MicroRNA and senescence:the senectome, integration and distributed control[J]. Crit Rev Oncog,2013,18(4):p 373-90.
    [4]De Cecco L, Dugo M, Canevari S, et al. Measuring microRNA expression levels in oncology:from samples to data analysis[J]. Crit Rev Oncog,2013,18(4):p 273-87.
    [5]Ebert MS and Sharp PA. Roles for microRNAs in conferring robustness to biological processes[J]. Cell,2012,149(3):p 515-24.
    [6]Mendell JT and Olson EN. MicroRNAs in stress signaling and human disease[J]. Cell,2012,148(6):p 1172-87.
    [7]Lamouille S, Subramanyam D, Blelloch R, et al. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs [J]. Curr Opin Cell Biol,2013,25(2):p 200-7.
    [8]Cullen BR. MicroRNAs as mediators of viral evasion of the immune system[J]. Nat Immunol,2013,14(3):p 205-10.
    [9]Smalheiser NR, Lugli G, Rizavi HS, et al. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects[J]. PLoS One,2012,7(3):p e33201.
    [10]Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, et al. Blood microRNA changes in depressed patients during antidepressant treatment[J]. Eur Neuropsychopharmacol, 2013,23(7):p 602-11.
    [11]Baudry A, Mouillet-Richard S, Schneider B, et al. miR-16 targets the serotonin transporter:a new facet for adaptive responses to antidepressants[J]. Science,2010, 329(5998):p 1537-41.
    [12]Mouillet-Richard S, Baudry A, Launay JM, et al. MicroRNAs and depression[J]. Neurobiol Dis,2012,46(2):p 272-8.
    [13]O'Connor RM, Dinan TG, and Cryan JF. Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression[J]. Mol Psychiatry,2012,17(4):p 359-76.
    [14]Tan KS, Armugam A, Sepramaniam S, et al. Expression profile of MicroRNAs in young stroke patients[J]. PLoS One,2009,4(11):p e7689.
    [15]Jeyaseelan K, Lim KY, and Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke,2008,39(3):p 959-66.
    [16]Dharap A and Vemuganti R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways [J]. J Neurochem, 2010,113(6):p 1685-91.
    [17]Nishida F, Morel GR, Herenu CB, et al. Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats[J]. Neuroscience,2011,177:p 195-206.
    [18]Pothof J and van Gent DC. Spatiotemporal aspects of MicroRNA-mediated gene regulation[J]. Adv Exp Med Biol,2011,722:p 75-85.
    [19]Pritchard CC, Cheng HH, and Tewari M. MicroRNA profiling:approaches and considerations[J]. Nat Rev Genet,2012,13(5):p 358-69.
    [20]Thomas M, Lieberman J, and Lal A. Desperately seeking microRNA targets [J]. Nat Struct Mol Biol,2010,17(10):p 1169-74.
    [21]Chen PY and Meister G. microRNA-guided posttranscriptional gene regulation[J]. Biol Chem,2005,386(12):p 1205-18.
    [22]Suzuki HI and Miyazono K. Emerging complexity of microRNA generation cascades[J]. J Biochem,2011,149(1):p 15-25.
    [23]John B, Sander C, and Marks DS. Prediction of human microRNA targets[J]. Methods Mol Biol,2006,342:p 101-13.
    [24]Henry JC, Azevedo-Pouly AC, and Schmittgen TD. MicroRNA replacement therapy for cancer[J]. Pharm Res,2011,28(12):p 3030-42.
    [25]Martin K, O'Sullivan JF, and Caplice NM. New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture [J]. Curr Opin Cardiol,2011,26(6):p 569-75.
    [26]Wang J and Sen S. MicroRNA functional network in pancreatic cancer:from biology to biomarkers of disease[J]. J Biosci,2011,36(3):p 481-91.
    [27]Mayr M, Zampetaki A, Willeit P, et al. MicroRNAs within the continuum of postgenomics biomarker discovery[J]. Arterioscler Thromb Vasc Biol,2013,33(2):p 206-14.
    [28]Shen J, Stass SA, and Jiang F. MicroRNAs as potential biomarkers in human solid tumors[J]. Cancer Lett,2013,329(2):p 125-36.
    [29]Nana-Sinkam SP and Croce CM. Clinical applications for microRNAs in cancer[J]. Clin Pharmacol Ther,2013,93(1):p 98-104.
    [30]Geekiyanage H, Jicha GA, Nelson PT, et al. Blood serum miRNA:non-invasive biomarkers for Alzheimer's disease[J]. Exp Neurol,2012,235(2):p 491-6.
    [31]Smrt RD, Szulwach KE, Pfeiffer RL, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1[J]. Stem Cells,2010, 28(6):p 1060-70.
    [32]Cummings E, Donohoe G, Hargreaves A, et al. Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137[J]. Neurosci Lett,2012.
    [33]Kwon E, Wang W, and Tsai LH. Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets[J]. Mol Psychiatry, 2011.
    [1]Lee HJ. Exceptional stories of microRNAs[J]. Exp Biol Med (Maywood),2013, 238(4):p 339-43.
    [2]Wilson RC and Doudna JA. Molecular mechanisms of RNA interference[J]. Annu Rev Biophys,2013,42:p 217-39.
    [3]Yates LA, Norbury CJ, and Gilbert RJ. The long and short of microRNA[J]. Cell, 2013,153(3):p 516-9.
    [4]Luo Y, Guo Z, and Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development[J]. Dev Biol,2013,380(2):p 133-44.
    [5]Axtell MJ. Classification and comparison of small RNAs from plants[J]. Annu Rev Plant Biol,2013,64:p 137-59.
    [6]Friedman Y, Balaga O, and Linial M. Working together:combinatorial regulation by microRNAs[J]. Adv Exp Med Biol,2013,774:p 317-37.
    [7]Younes M, Honma N. Grin2A. Arch Pathol Lab Med.2011;135(1):63-66.
    [8]Schmitz U and Wolkenhauer O. Web resources for microRNA research[J]. Adv Exp Med Biol,2013,774:p 225-50.
    [9]Ritchie W, Rasko JE, and Flamant S. MicroRNA target prediction and validation[J]. Adv Exp Med Biol,2013,774:p 39-53.
    [10]Nishida F, Morel GR, Herenu CB, et al. Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats[J]. Neuroscience,2011,177:p 195-206.
    [11]Mozhui K, Karlsson RM, Kash TL, et al. Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate-mediated neuronal excitability[J]. JNeurosci,2010,30(15):p 5357-67.
    [12]Reutlinger C, Helbig I, Gawelczyk B, et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region[J]. Epilepsia,2010,51(9):p 1870-3.
    [13]Cherlyn SY, Woon PS, Liu JJ, et al. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder:a decade of advance[J]. Neurosci Biobehav Rev,2010,34(6):p 958-77.
    [14]Sanhueza M and Lisman J. The CaMKII/NMDAR complex as a molecular memory[J]. Mol Brain,2013,6:p 10.
    [15]Bliss TV and Collingridge GL. Expression of NMD A receptor-dependent LTP in the hippocampus:bridging the divide[J]. Mol Brain,2013,6:p 5.
    [16]Paoletti P. Molecular basis of NMD A receptor functional diversity [J]. Eur J Neurosci,2011,33(8):p 1351-65.
    [17]Spalloni A, Nutini M, and Longone P. Role of the N-methyl-d-aspartate receptors complex in amyotrophic lateral sclerosis[J]. Biochim Biophys Acta,2013,1832(2):p 312-22.
    [18]Santangelo RM, Acker TM, Zimmerman SS, et al. Novel NMDA receptor modulators:an update[J]. Expert Opin Ther Pat,2012,22(11):p 1337-52.
    [19]Szakacs R, Janka Z, and Kalman J. The "blue" side of glutamatergic neurotransmission:NMDA receptor antagonists as possible novel therapeutics for major depression[J]. Neuropsychopharmacol Hung,2012,14(1):p 29-40.
    [20]Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses[J]. Nature,2011,475(7354):p 91-5.
    [21]Castillo CS, Schultz SK, and Robinson RG. Clinical correlates of early-onset and late-onset poststroke generalized anxiety[J]. Am J Psychiatry,1995,152(8):p 1174-9.
    [22]Isaev NK, Stelmashook EV, Plotnikov EY, et al. Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia[J]. Biochemistry (Mosc),2008,73(11):p 1171-5.
    [23]Marini AM, Popolo M, Pan H, et al. Brain adaptation to stressful stimuli:a new perspective on potential therapeutic approaches based on BDNF and NMDA receptors[J]. CNS Neurol Disord Drug Targets,2008,7(4):p 382-90.
    [24]Hei MY and Kuang SJ. [N-methyl-D-aspartate receptor-1 activation and neonatal brain injury][J]. Zhongguo Dang Dai Er Ke Za Zhi,2008,10(3):p 431-4.
    [25]Benquet P, Gee CE, and Gerber U. [Transient brain ischemia:NMDA receptor modulation and delayed neuronal death][J]. Med Sci (Paris),2008,24(2):p 185-90.
    [26]Villmann C and Becker CM. On the hypes and falls in neuroprotection:targeting the NMDA receptor[J]. Neuroscientist,2007,13(6):p 594-615.
    [27]Verkhratsky A and Kirchhoff F. NMDA Receptors in glia[J]. Neuroscientist,2007, 13(1):p 28-37.
    [28]Cam E, Yulug B, and Ozan E. MK 801:a possible neuroprotective agent by poststroke depression?[J]. J Neuropsychiatry Clin Neurosci,2008,20(3):p 367-8.
    [29]Robinson RG, Jorge RE, Clarence-Smith K, et al. Double-blind treatment of apathy in patients with poststroke depression using nefiracetam[J]. J Neuropsychiatry Clin Neurosci,2009,21(2):p 144-51.
    [30]Cho SI, Park UJ, Chung JM, et al. Neu2000, an NR2B-selective, moderate NMD A receptor antagonist and potent spin trapping molecule for stroke[J]. Drug News Perspect,2010,23(9):p 549-56.
    [31]Mehta SL, Manhas N, and Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics[J]. Brain Res Rev,2007,54(1):p 34-66.
    [32]Catarzi D, Colotta V, and Varano F. Competitive Gly/NMDA receptor antagonists[J]. Curr Top Med Chem,2006,6(8):p 809-21.
    [33]Gogas KR. Glutamate-based therapeutic approaches:NR2B receptor antagonists[J]. Curr Opin Pharmacol,2006,6(1):p 68-74.
    [1.]Wightman B, Ha I, Ruvkun G:Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell.1993; 75 (5):855-62.
    [2.]Lee RC, Feinbaum RL, Ambros Ⅴ:The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993; 75 (5): 843-54.
    [3.]Lee RC, Ambros V:An extensive class of small RNAs in Caenorhabditis elegans. Science.2001; 294 (5543):862-4
    [4.]Lau NC, Lim LP, Weinstein EG, et al:An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science.2001; 294 (5543): 858-62.
    [5.]Lagos-Quintana M, Rauhut R, Lendeckel W, et al:Identification of novel genes coding for small expressed RNAs. Science.2001; 294 (5543):853-8.
    [6.]Griffiths-Jones S, Saini HK, van Dongen S, et al:miRBase:tools for microRNA genomics. Nucleic Acids Res.2008; 36 (Database issue):D154-8.
    [7.]Ambros V, Bartel B, Bartel DP, et al:A uniform system for microRNA annotation. RNA.2003; 9 (3):277-9.
    [8.]Kim VN, Han J, Siomi MC:Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol.2009; 10 (2):126-39.
    [9]. Baskerville S, Bartel DP:Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA.2005; 11 (3):241-7.
    [10.]Landgraf P, Rusu M, Sheridan R, et al:A mammalian microRNA expression atlas based on small RNA library sequencing. Cell.2007; 129 (7):1401-14.
    [11.]Ozsolak F, Poling LL, Wang Z, et al:Chromatin structure analyses identify miRNA promoters. Genes Dev.2008; 22 (22):3172-83.
    [12.]Lee Y, Kim M, Han J, et al:MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J.2004; 23 (20):4051-60.
    [13]Cai X, Hagedorn CH, Cullen BR:Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA.2004; 10 (12): 1957-66.
    [14.]Saini HK, Griffiths-Jones S, Enright AJ:Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A.2007; 104 (45):17719-24.
    [15.]Borchert GM, Lanier W, Davidson BL:RNA polymerase Ⅲ transcribes human microRNAs. Nat Struct Mol Biol.2006; 13 (12):1097-101.
    [16.]Marson A, Levine SS, Cole MF, et al:Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell.2008; 134 (3): 521-33.
    [17.]Pawlicki JM, Steitz JA:Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol.2008; 182 (1): 61-76.
    [18]. Park JE, Heo I, Tian Y, et al:Dicer recognizes the 5'end of RNA for efficient and accurate processing. Nature.2011; 475 (7355):201-5.
    [19]. Guo H, Ingolia NT, Weissman JS, et al:Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature.2010; 466 (7308):835-40.
    [20]Bartel DP:MicroRNAs:target recognition and regulatory functions. Cell.2009; 136 (2):215-33.
    [21.]Lu J, Getz G, Miska EA, et al:MicroRNA expression profiles classify human cancers. Nature.2005; 435 (7043):834-8.
    [22]Sandberg R, Neilson JR, Sarma A, et al:Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science.2008; 320 (5883):1643-7.
    [23]Chin LJ, Ratner E, Leng S, et al:A SNP in a let-7 microRNA complementary site in the KRAS 3'untranslated region increases non-small cell lung cancer risk. Cancer Res.2008; 68 (20):8535-40.
    [24]. Karginov FV, Conaco C, Xuan Z, et al:A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A.2007; 104 (49):19291-6.
    [25]. Lal A, Thomas MP, Altschuler G, et al:Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet.2011; 7 (11):e1002363.
    [26]. Chi SW, Zang JB, Mele A, et al:Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature.2009; 460 (7254):479-86.
    [27]. Selbach M, Schwanhausser B, Thierfelder N, et al:Widespread changes in protein synthesis induced by microRNAs. Nature.2008; 455 (7209):58-63.
    [28.]Baek D, Villen J, Shin C, et al:The impact of microRNAs on protein output. Nature.2008; 455 (7209):64-71.
    [29.]Nelson PT, Baldwin DA, Scearce LM, et al:Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods.2004; 1 (2):155-61..
    [30.]Mitchell PS, Parkin RK, Kroh EM, et al:Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A.2008; 105 (30): 10513-8.
    [31]. Volinia S, Calin GA, Liu CG, et al:A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A.2006; 103 (7): 2257-61.
    [32]. Blenkiron C, Goldstein LD, Thorne NP, et al:MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol.2007; 8 (10):R214.
    [33.]Sempere LF, Christensen M, Silahtaroglu A, et al:Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res.2007; 67 (24):11612-20.
    [34]. Takamizawa J, Konishi H, Yanagisawa K, et al:Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.2004; 64 (11):3753-6.
    [35]. Calin GA, Ferracin M, Cimmino A, et al:A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med.2005; 353 (17):1793-801.
    [36.]van Rooij E, Sutherland LB, Liu N, et al:A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A.2006; 103 (48):18255-60.
    [37.]Eisenberg I, Eran A, Nishino I, et al:Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A.2007; 104 (43): 17016-21.
    [38]. Hebert SS, De Strooper B:Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci.2009; 32 (4):199-206.
    [39]. Lu M, Zhang Q, Deng M, et al:An analysis of human microRNA and disease associations. PloS One.2008; 3 (10):e3420.
    [40]. Schwarzenbach H, Hoon DS, Pantel K:Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer.2011; 11 (6):426-37.
    [41]. Lawrie CH, Gal S, Dunlop HM, et al:Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol.2008; 141 (5):672-5.
    [42]. Heneghan HM, Miller N, Kelly R, et al:Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist.2010; 15 (7):673-82.
    [43.]Huang Z, Huang D, Ni S, et al:Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer.2010; 127 (1): 118-26.
    [44]. Xing L, Todd NW, Yu L, et al:Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers, an official journal of the United States and Canadian Academy of Pathology, Inc. Mod Pathol.2010; 23 (8):1157-64.
    [45.]Boeri M, Verri C, Conte D, et al:MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A.2011; 108 (9):3713-8.
    [46]. Keller A, Leidinger P, Bauer A, et al:Toward the blood-borne miRNome of human diseases. Nat Methods.2011; 8 (10):841-3.ReferencesPage 9 of 15 F1000Research 2013,2:136 Last updated:28 AUG 2013
    [47]. Petriv OI, Kuchenbauer F, Delaney AD, et al:Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci U S A.2010; 107 (35):15443-8.
    [48.]Rechavi O, Erlich Y, Amram H, et al:Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs. Genes Dev.2009; 23 (16): 1971-9.
    [49]. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al:Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A.2010; 107 (14):6328-33.
    [50]. Yuan A, Farber EL, Rapoport AL, et al:Transfer of microRNAs by embryonic stem cell microvesicles. PloS One.2009; 4 (3):e4722.
    [51.]Kosaka N, Iguchi H, Yoshioka Y, et al:Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem.2010; 285 (23):17442-52.
    [52]. Hanke M, Hoefig K, Merz H, et al:A robust methodology to study urine microRNA as tumor marker:microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol.2010; 28 (6):655-61.
    [53]. Michael A, Bajracharya SD, Yuen PS, et al:Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis.2010; 16 (1):34-8.
    [54.]Park NJ, Zhou H, Elashoff D, et al:Salivary microRNA:discovery, characterization, and clinical utility for oral cancer detection, an official journal of the American Association for Cancer Research. Clin Cancer Res.2009; 15 (17):5473-7.
    [55]. Iorio MV, Croce CM:MicroRNA dysregulation in cancer:diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med.2012; 4 (3): 143-59.
    [56]. Chen C, Ridzon DA, Broomer AJ, et al:Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res.2005; 33 (20):e179.
    [57]de Planell-Saguer M, Rodicio MC, Mourelatos Z:Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc.2010; 5 (6):1061-73.
    [58]. Ramaswamy S, Tamayo P, Rifkin R, et al:Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A.2001; 98 (26): 15149-54.
    [59]. Rosenfeld N, Aharonov R, Meiri E, et al:MicroRNAs accurately identify cancer tissue origin. Nat Biotechno.2008; 26 (4):462-9.
    [60.]Varadhachary GR, Spector Y, Abbruzzese JL, et al:Prospective gene signature study using microRNA to identify the tissue of origin in patients with carcinoma of unknown primary. Clin Cancer Res.2011; 17 (12):4063-70.
    [61]. Mueller WC, Spector Y, Edmonston TB, et al:Accurate classification of metastatic brain tumors using a novel microRNA-based test. Oncologist.2011; 16 (2): 165-74.
    [62]. Meiri E, Mueller WC, Rosenwald S, et al:A second-generation microRNA-based assay for diagnosing tumor tissue origin. Oncologist.2012; 17 (6): 801-12.
    [63]. Gilad S, Lithwick-Yanai G, Barshack I, et al:Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. J Mol Diagn.2012; 14 (5):510-7.
    [64]. Lebanony D, Benjamin H, Gilad S, et al:Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Onco.2009; 27 (12):2030-7.
    [65.]Benjamin H, Lebanony D, Rosenwald S, et al:A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma. J Mol Diagn.2010; 12 (6):771-9.
    [66]. Fridman E, Dotan Z, Barshack I, et al:Accurate molecular classification of renal tumors using microRNA expression. J Mol Diagn.2010; 12 (5):687-96.
    [67]. Ryan BM, Robles AI, Harris CC:Genetic variation in microRNA networks:the implications for cancer research. Nat Rev Cancer.2010; 10 (6):389-402.
    [68.]Hu Z, Liang J, Wang Z, et al:Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat.2009; 30 (1):79-84.
    [69]. Christensen BC, Avissar-Whiting M, Ouellet LG, et al:Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. Clin Cancer Res.2010; 16 (14):3713-20.
    [70]. Shen J, Ambrosone CB, DiCioccio RA, et al:A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008; 29 (10):1963-6.
    [71]. Horikawa Y, Wood CG, Yang H, et al:Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res. 2008; 14 (23):7956-62.
    [72]. He H, Jazdzewski K, Li W, et al:The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A.2005; 102 (52):19075-80.
    [73.]Liu Z, Wei S, Ma H, et al:A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2011; 32 (11):1668-74.
    [74]Genomes Project C, Abecasis GR, Altshuler D, et al:A map of human genome variation from population-scale sequencing. Nature.2010; 467 (7319):1061-73.
    [75]. Richardson K, Lai CQ, Parnell LD, et al:A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC genomics.2011; 12:504.
    [76]. Burnett JC, Rossi JJ:RNA-based therapeutics:current progress nd future prospects. Chem Biol.2012; 19 (1):60-71.
    [77]. Shukla S, Sumaria CS, Pradeepkumar PI:Exploring chemical modifications for siRNA therapeutics:a structural and functional outlook. Chem Med Chem.2010; 5 (3):328-49.
    [78.]Siegwart DJ, Whitehead KA, Nuhn L, et al:Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc Natl Acad Sci U S A.2011; 108(32):12996-3001.
    [79.]Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al:Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science.2010; 327(5962):198-201.
    [80]. Jopling CL, Yi M, Lancaster AM, et al:Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science.2005; 309 (5740):1577-81.
    [81]. Rayner KJ, Esau CC, Hussain FN, et al:Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature.2011; 478 (7369):404-7.
    [82.]Gabriely G, Wurdinger T, Kesari S, et al:MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol.2008; 28 (17):5369-80.
    [83]. Thum T, Gross C, Fiedler J, et al:MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature.2008; 456 (7224): 980-4.
    [84]. Chau BN, Xin C, Hartner J, et al:MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med.2012; 4 (121):121ral8.
    [85]. Ma L, Reinhardt F, Pan E, et al:Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol.2010; 28 (4):341-7.
    [86.]Swarbrick A, Woods SL, Shaw A, et al:miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med.2010; 16 (10):1134-40.
    [87]. Huynh C, Segura MF, Gaziel-Sovran A, et al:Efficient in vivo microRNA targeting of liver metastasis. Oncogene.2011; 30 (12):1481-8.
    [88.]Trajkovski M, Hausser J, Soutschek J, et al:MicroRNAs 103 and 107 regulate insulin sensitivity. Nature.2011; 474 (7353):649-53.
    [89.]He L, He X, Lim LP, et al:A microRNA component of the p53 tumour suppressor network. Nature.2007; 447 (7148):1130-4.
    [90.]Liu C, Kelnar K, Liu B, et al:The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med.2011; 17 (2):211-5.
    [91]. Trang P, Wiggins JF, Daige CL, et al:Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther.2011;19(6):1116-22.
    [92]. van Rooij E, Sutherland LB, Qi X, et al:Control of stress-dependent cardiac growth and gene expression by a microRNA. Science.2007; 316 (5824):575-9.
    [93.]Montgomery RL, Hullinger TG, Semus HM, et al:Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation.2011; 124(14):1537-47. Page 10 of 15 F1000Research 2013,2:136 Last updated:28 AUG 2013
    [94]. Grueter CE, van Rooij E, Johnson BA, et al:A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell.2012; 149 (3):671-83.
    [95]. Porrello ER, Mahmoud AI, Simpson E, et al:Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A.2013; 110(1):187-92.
    [96.]Hullinger TG, Montgomery RL, Seto AG, et al:Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res.2012; 110 (1):71-81.
    [97]. Patrick DM, Zhang CC, Tao Y, et al:Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev 2010; 24 (15):1614-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700