用户名: 密码: 验证码:
蝙蝠蛾拟青霉胞外多糖活性和结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对蝙蝠蛾拟青霉(Paecilomyces hepiali Chen et Dai)发酵液多糖的活性和活性较高多糖组分的结构开展了一系列的实验研究,主要内容包括蝙蝠蛾拟青霉发酵液多糖的分级醇沉、不同分级醇沉粗多糖组分对果蝇寿命和果蝇体内SOD活力及MDA含量的影响,并从中选择活性最高的粗多糖进行进一步的研究。对活性最高的多糖组分进行了免疫调节活性、对佐剂性关节炎大鼠和失血性贫血小鼠的作用等方面的研究;然后用DE-52纤维素离子交换层析柱和Saphedax G-150交联葡聚糖凝胶层析柱对该粗多糖组分进行了分离纯化;之后,对分离纯化的多糖组分的抗肿瘤活性及结构分别进行了研究和分析。
     将蝙蝠蛾拟青霉发酵得到的发酵醪经16000rpm离心10min,除去菌丝;发酵液在45℃条件下真空旋转浓缩至原体积的1/4,分别依次加入乙醇使乙醇的终浓度为20%、30%、40%、50%、60%和70%分级沉淀得到粗多糖。将乙醇终浓度为20%、30%、40%、50%、60%和70%时,醇沉得到的蝙蝠蛾拟青霉胞外粗多糖组分分别标记为P20、P30、P40、P50、P60、P70,其得率分别为:0.13、0.08、0.06、0.78、0.45和0.18mg/mL。
     将不同乙醇浓度沉淀得到的粗多糖按1%(W/V)剂量分别添加到果蝇的饲料中,以不添加多糖组作为对照组(CK),进行饲养。实验结果表明粗多糖P60延缓衰老作用最好,对雌雄果蝇的半数死亡时间、平均寿命和平均最高寿命的延长率分别是6.47%、15.83%,17.04%、18.36%,28.81%和17.87%。P50和P60,可显著提高果蝇体内的SOD活性,并降低MDA含量,且P60作用效果较好。P60对雌雄果蝇体内SOD活力分别提高28.02%和26.85%,MDA含量分别降低50.67%和54.30%。表明蝙蝠蛾拟青霉胞外粗多糖P60具有良好的抗氧化和延缓衰老作用,将其选择作为进一步研究的对象。
     粗多糖P60的免疫调节实验结果表明:300mg/kg的蝙蝠蛾拟青霉胞外粗多糖P60能明显促进正常小鼠胸腺指数和脾脏指数的增长,增强小鼠的免疫功能。300mg/kg和450mg/kg均能提高免疫抑制的小鼠的免疫功能,也能抑制小鼠迟发型超敏反应;300mg/kg蝙蝠蛾拟青霉粗多糖P60能促进小鼠巨噬细胞增生,激活吞噬活性,增强小鼠吞噬异物能力。
     佐剂性关节炎大鼠模型实验结果表明:蝙蝠蛾拟青霉胞外粗多糖P60能抑制佐剂性关节炎大鼠左足趾继发性肿胀的程度,并对佐剂性关节炎大鼠血清内TGF-β1、TNF-α产生有一定的作用:促进佐剂性关节炎大鼠血清内TGF-β1的浓度升高,对佐剂性关节炎大鼠血清中促炎性细胞因子TNF-α的产生有一定的抑制作用;而对于IL-1β的产生无明显的影响作用。表明蝙蝠蛾拟青霉胞外粗多糖P60对佐剂性关节炎有一定的治疗作用。
     失血性贫血小鼠实验结果显示:用蝙蝠蛾拟青霉胞外粗多糖P60对失血性贫血小鼠进行灌胃28天后,低剂量组和高剂量组失血性贫血小鼠的外周血血红蛋白含量恢复正常,同时,外周血红细胞数也恢复至正常小鼠水平;并且有利于单核细胞和中性粒细胞恢复至正常小鼠水平;但是对小鼠血小板数和白细胞总数无明显的影响。
     粗多糖P60经Saveg试剂除蛋白,然后用DE-52纤维素离子交换层析柱进行初步纯化得到4个组分:PS1、PS2、PS3和PS4;将4个组分分别再经Sephadex G-150交联葡聚糖凝胶层析柱进行进一步的分离纯化,PS1和PS3仍是单一峰,PS2和PS4分别分离出2个组分:PS2-1、PS2-2和PS4-1、PS4-2。6个样品经Sephadex G-150交联葡聚糖凝胶层析检测和紫外200-400nm扫描初步判定均为均一性多糖。
     将粗多糖P60和分离纯化得到的纯化多糖组分分别进行对肺癌细胞A549、黑色素瘤细胞B-16、鼻咽癌细胞CNE和肝癌细胞HepG2增殖的抑制实验。实验结果表明:处理24h后,0.05μg/mL的粗多糖P60对A549细胞增殖的抑制作用较好,抑制率达到37.37%;浓度为5μg/mL多糖PS4-1对B-16细胞增殖的抑制作用达到32.54%;浓度为500μg/mL多糖PS3对CNE细胞增殖抑制作用较好,抑制率达到28.93%;浓度为50μg/mL多糖PS4-1对HepG2细胞增殖的抑制作用最好达到29.51%。处理48h后,0.05μg/mL粗多糖P60对A549细胞增殖的抑制作用较好,抑制率达到42.00%;浓度为5μg/mL多糖PS3对B-16细胞增殖的抑制作用最佳,抑制率达到47.15%;浓度为500μg/mL多糖PS3对CNE细胞增殖的抑制作用较好达到37.06%;浓度为500μg/mL多糖PS4-1对HepG2细胞增殖的抑制作用最高,抑制率达到42.51%。处理72h后,浓度为0.05μg/mL的粗多糖P60对A549抑制作用最佳,抑制率达到49.64%;浓度为5μg/mL多糖PS3对B-16细胞增殖的抑制作用达到52.81%;浓度为500μg/mL多糖PS4-1对CNE的抑制作用较好,抑制率达到59.84%;浓度为50μg/mL多糖PS3对HepG2细胞增殖的抑制作用达到56.17%。
     通过对多糖样品的FTIR、GC-MS、1H NMR、13C NMR、1H-1H COSY、HSQC和HMBC等分析,分别初步推测6个多糖样品的可能结构如下:
     PS1的分子量为361kDa,由葡萄糖、半乳糖和甘露糖组成,三者的摩尔比为5.15:0.30:0.10,其可能结构是以-1,6-D-Glcp连接形成主链,在-1,6-D-Glcp的3位处产生支链,与-1,3-D-Galp和β-1,3-D-Manp相连,端基由Glcp、Galp和Manp组成。其主链结构如下:
     →6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→
     PS2-1的分子量为412kDa,由半乳糖、阿拉伯糖、葡萄糖、木糖和甘露糖组成,单糖的摩尔比为:3.98:1.00:0.28:0.33:0.18;其可能结构为以β-1,4-D-Galp连接形成主链,在β-1,4-D-Galp的3位处产生支链,与-1,3-D-Alap相连形成重复单位,含有少量的Xyl、Man和Glc残基。根据上述结果,PS2-1可能存在如下重复单元:PS2-2的分子量为48kDa,由甘露糖、葡萄糖和半乳糖组成,三者的摩尔比为:0.14:5.10:0.32;其可能结构为以-1,6-D-Glcp连接形成主链,在-1,6-D-Glcp的3位处产生支链,与-1,3-D-Galp和β-1,3-D-Manp相连,端基由Glcp、Galp和Manp组成。其主链结构如下:→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→PS3的分子量为536kDa,由阿拉伯糖、木糖、葡萄糖和半乳糖组成,四者的摩尔比为:0.62:0.34:0.13:4.62;其可能结构是以半乳糖残基通过β-1,4-糖苷键连接形成主链结构,葡萄糖残基通过β-1,3-糖苷键连接到半乳糖的C3上,部分阿拉伯糖残基或木糖残基通过α-1,3-糖苷键连接至葡萄糖残基的C3;其余阿拉伯糖残基或木糖残基通过β-1,3-糖苷键连接到半乳糖主链上。其主链结构式如下:→4)-β-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Galp-(1→PS4-1的分子量为729kDa,由阿拉伯糖、葡萄糖和半乳糖组成,三者的摩尔比为1.13:0.21:4.40;其可能结构是半乳糖残基通过β-1,4-糖苷键连接形成主链结构,阿拉伯糖残基和葡萄糖残基通过β-1,3-糖苷键连接到半乳糖主链上,每4个半乳糖残基连接1个阿拉伯糖残基。每5个上述半乳糖残基和阿拉伯糖残基的重复单元通过β-1,3-糖苷键连接1个葡萄糖残基。即每5个通过β-1-3糖苷键连接1个D-Glcp残基。PS4-2的分子量为668kDa,由阿拉伯糖、葡萄糖和半乳糖组成,三者的摩尔比为:0.62:0.57:4.46;其可能的结构是半乳糖残基通过β-1,4-糖苷键连接形成主链结构,阿拉伯和葡萄糖残基糖残基通过β-1,3-糖苷键连接到半乳糖主链上,约每15个半乳糖残基连接2个阿拉伯糖残基和2个葡萄糖残基。其可能的主要结构式如下:
In the present dissertation, a series of experiments were performed to study thebioactivities and structures of polysaccharide fractions from fermented broth ofPaecilomyces hepiali Chen et Dai. The crude polysaccharide fractions were precipitated bydifferent concentrations of ethanol from fermented broth continuously. The effects of crudepolysaccharide fractions on the lifespan of fruit flies and the activities of SOD and thelevels of MDA in fruit flies were studied and screened the polysaccharide fraction withbest bioactivities. And then the immunological modulation and effect on adjuvant arthritisrats and hemorrhage anaemia mice of the screened crude polysaccharides wereinvestigated, respectively. What’s more, the polysaccharide fraction was purified by DE-52cellulose anion exchange chromatography and Saphedax G-150gel chromatography. Theantitumor effects of purified polysaccharide fractions were also studied and their structureswere elucidated by the motheds of GC-MS, FTIR, NMR and so on.
     The fermented broth of P. hepiali was centrifuged at a speed of16000rpm for10minutes to remove the mycelia of P. hepiali and residues of media. The gained supernatantwas concentrated to one fourth of its original volume at45oC in vacuum conditions. Andthen ethanol was added to the concentrated supernatant and made the final concentration ofethanol to20%. The mixed solution was stored at4oC for12hours and was centrifuged ata speed of5000rpm for10minutes to get the precipitates and designate as crudepolysaccharides P20. And the supernatant was added more ethanol to30%and stored at4oC for12hours and centrifuged at a speed of5000rpm for10minutes to get theprecipitates and designate as crude polysaccharides P30. The above steps were repeatedseveral times to get crude polysaccharides P40, P50, P60and P70, respectively. And theiryield rates were0.13、0.08、0.06、0.78、0.45、0.18mg/mL.
     The crude polysaccharide fractions were added to the feed of fruit flies with a dose of1%(w/v) and the group without crude polysaccharides was used as control group. Theresults indicated that the crude polysaccharide P60could elongate the lethal date of halfindividual of female and male fruit flies by6.47%and15.83%, average lifespan17.04%and18.36%, highest average life28.81%and17.87%in comparison with the control group.Crude polysaccharide P50and P60both could not only enhance the activities of SOD, but also decrease the levels of MDA in fruit flies. And the activity of P60is better than that ofP50. The crude polysaccharide P60enhanced activities of SOD28.02%and26.85%anddecreases the levels MDA50.67%and54.30%of female and male fruit flies, respectively.All these results implied that crude polysaccharide P60had the effect of antioxidant anddelay aging and was chosen as the subject for further study.
     The results of immunological modulation experiment of the crude polysaccharideindicated that P60could increase the indexes of thymus and spleen significantly andpromote the immune function of mice at the dosage of300mg/kg. What’s more, P60couldpromote the immune function of immunosuppressed mice induced by cyclophosphamideand inhibit delayed type hypersensitivity induced by DNFB at the dosages of300mg/kgand450mg/kg. At the dosage of300mg/kg, P60could enhance macrophage function ofmice.
     The result of adjuvant arthritis model of rats indicated that crude polysaccharide P60could inhibit effectively the secondary edema in the left hind paw induced by Freund'scomplete adjuvant. Besides, it could promote the level of TGF-β1and decrease the level ofTNF-α in serum of model rats significantly. But it didn’t show significant impact on thelevel of IL-1β in serum of rats. It suggested that the crude polysaccharide fraction P60havesome therapeutic effect on adjuvant arthritis.
     The results of hemorrhage anaemia mice model indicated that haemoglobin anderythrocytes of hemorrhage anaemia mice recovered to normal level after the treatment ofcrude polysaccharide for28days. Besides, it helps mononuclear cells and neutrophilicgranulocytes of hemorrhage anaemia mice to recover to normal levels. But it didn’t showsignificant effect on platelet and total number of white blood cell in mice with hemorrhageanaemia.
     Firstly, protein of crude polysaccharide P60was removed by Sevag reagent. Then thepartly purified polysaccharide was purified by DE-52cellulose anion exchangechromatography. Four polysaccharide fractions were achieved and designated as PS1, PS2,PS3and PS4. These four polysaccharide fractions were further purified by SephadexG-150gel chromatography and PS1and PS3were still single peaks in the elution profiles.Two polysaccharide fractions were gained from PS2and PS4, respectively, and designatedas PS2-1, PS2-2, PS4-1and PS4-2. Furthermore, the purity of the six purifiedpolysaccharide fractions was tested by Saphedax G-150gel chromatography and UV scanprofile from200nm to400nm.
     The antitumor activities of crude polysaccharide P60and six purified polysaccharide fractions against A549, B-16, CNE and HepG2were determined. And the results indicatedthat, after treatment for24hours, inhibition rates of P60against the proliferation of A549reached to37.37%at a dose of0.05μg/mL. PS4-1inhibited the proliferation of B-16reached to32.54%at a dose of5μg/mL. The proliferation of CNE and HepG2wereinhibited28.93%and29.51%by PS3and PS4-1at doses of500μg/mL and50μg/mL,respectively. After treatment for48hours, the inhibition rate of P60against theproliferation of A549reached to42.00%at a dose of0.05μg/mL, PS3against B-16reached to47.15%at a dose of5μg/mL, PS3against CNE reached to37.06%at a dose of500μg/mL, PS4-1against HepG2reached to42.51%at a dose of500μg/mL. Theinhibition rate of P60against the proliferation of A549reached to49.64%at a dose of0.05μg/mL after treatment for72hours. The inhibition rate of polysaccharide fraction PS3against the proliferation of B-16and HepG2reached to52.81%and56.17%at doses of5μg/mL and50μg/mL, respectively. PS4-1inhibited the proliferation of CNE reached to59.84%at a dose of500μg/mL.
     Through the analysis of FTIR, GC-MS,1H NMR,13C NMR,1H-1H COSY, HSQC andHMBC of the purified polysaccharide fractions, we could deduce the possible structures ofthe six polysaccharide fractions as following:
     The polysaccharide fraction PS1, with a molecular weight361kDa, is composed ofglucose, galactose and mannose in the mole ratio of5.15:0.30:0.10. Its possible structure isthat-1,6-D-Glcp residues link together by-1,6-glucosic bond and form the backboneand-1,3-D-Galp and β-1,3-D-Manp residues are linked to the main chain at C3of glucoseresidue with-1,3-glucosic bond and β-1,3-glucosic bond, respectively. Its main chainstructure is as following:
     →6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→
     PS2-1, with a molecular weight of412kDa, is composed of galactose, arabinose,glucose, xylose, and mannose in the mole ratio of3.98:1.00:0.28:0.33:0.18. NMR analysisshowed that the structure mainly consist of a backbone of (1,4)-β-D-Galp residues andsubstituted at C3of Galp by α-D-Arap residue. Small amount of xylose, mannose andglucose was linked to the backbone. Its possible repeat unit is as following structure:
     PS2-2, with a molecular weight48kDa, is composed of mannose, glucose and residues link together by-1,6-glucosidic bond, forming the backbone, and-1,3-D-Galpand β-1,3-D-Manp was linked to the backbone at C3of glucose residue with
     -1,3-glucosidic bond and β-1,3-glucosidic bond, respectively. Its main chain structure isas following:
     →6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glcp-(1→
     PS3, with a molecular weight of536kDa, is composed of arabinose, xylose, glucoseand galactose in the mole ratio of0.62:0.34:0.13:4.62. NMR analysis showed that thestructure mainly consist of a backbone of (1,4)-β-D-Galp residues and substituted at C3ofGalp by α-D-Arap residue. Part of arabinose and xylose were linked to of glucose residuesby α-1,3-glucosidic bond. Other arabinose and xylose was linked to galactose residues ofbackbone by β-1,3-glucosidic bond. Its backbone structure is as following:
     →4)-β-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Galp-(1→
     PS4-1, with a molecular weight of729kDa, is composed of arabinose, glucose andgalactose in the mole ratio of1.13:0.21:4.40. NMR analysis indicates that the backbone ofPS4-1is D-Galp linked to each other by β-(1→4)-glucosidic bond and D-Arap and D-Glcpresidues were linked to backbone by β-(1→3)-glucosidic bond at C3of D-Galp residues.PS4-1consists of pentasaccharides repeating units with the following structure:
     PS4-2, with a molecular weight of668kDa, is consisted of rabinose, glucose andgalactose in the mole ratio of0.62:0.57:4.46. NMR analysis indicated that the structureconsist mainly of backbone of β-(1→4)-D-Galp residues and substituted at C3by β-D-Arapresidue or β-D-Glcp. Its possible structure is as following:
引文
[1] Paulsen B.S. Biologically active polysaccharides as possible lead compounds[J].Phytochemistry Reviews,2002,1(3):379-387
    [2]刘天龙,许剑琴.多糖现代研究及应用进展[J].中国兽医杂志,2004,40(3):24-26
    [3] Rademacher T.W., Parekh R.B., Dwek R.A. Glycobiology[J]. Annual Review of Biochemistry,1988,57(1):785-838
    [4] Dell A., Morris H.R. Glycoprotein structure determination by mass spectrometry[J]. Science,2001,291(5512):2351-2356
    [5] Bertozzi C.R., Kiessling L.L. Chemical Glycobiology[J]. Science,2001,291(5512):2357-2364
    [6] Helenius A., Aebi M. Intracellular functions of N-linked glycans[J]. Science,2001,291(5512):2364-2369
    [7] Rudd P.M., Elliott T., Cresswell P., et al. Glycosylation and the immune system[J]. Science,2001,291(5512):2370-2376
    [8] Sears P., Wong C.H. Toward automated synthesis of oligosaccharides and glycoproteins[J].Science,2001,291(5512):2344-2350
    [9] Wells L., Vosseller K., Hart G.W. Glycosylation of nucleocytoplasmic proteins: signaltransduction and O-GlcNAc[J]. Science,2001,291(5512):2376-2378
    [10] Finkelstein J. Glycochemistry&Glycobiology[J]. Nature,2007,446(7139):999-999
    [11] Bishop J.R., Schuksz M., Esko J.D. Heparan sulphate proteoglycans fine-tune mammalianphysiology[J]. Nature,2007,446(7139):1030-1037
    [12] Galonic D.P., Gin D.Y. Chemical glycosylation in the synthesis of glycoconjugate antitumourvaccines[J]. Nature,2007,446(7139):1000-1007
    [13] Hart G.W., Housley M.P., Slawson C. Cycling of O-linked β-N-acetylglucosamine onnucleocytoplasmic proteins[J]. Nature,2007,446(7139):1017-1022
    [14] Scanlan C.N., Offer J., Zitzmann N., et al. Exploiting the defensive sugars of HIV-1for drugand vaccine design[J]. Nature,2007,446(7139):1038-1045
    [15] Seeberger P.H., Werz D.B. Synthesis and medical applications of oligosaccharides[J]. Nature,2007,446(7139):1046-1051
    [16] Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins[J].Nature,2007,446(7139):1023-1029
    [17] Thibodeaux C.J., Melancon C.E., Liu H.W. Unusual sugar biosynthesis and natural productglycodiversification[J]. Nature,2007,446(7139):1008-1016
    [18]傅雷.糖生物学的产生和发展[J].生物学通报,2006,41(12):27-28
    [19]王克夷.糖生物学和糖组学[J].生命的化学,2009,29(3):299-305
    [20]张树政.糖生物学:生命科学中的新前沿[J].生命的化学,1999,19(3):103-107
    [21]王川.糖组学:破解生命信息的第3种途径[J].生物学通报,2005,40(5):8-9
    [22]刘波.中国药用真菌[M].太原:山西人民出版社,1978,1-302
    [23]应建浙.中国药用真菌图鉴[M].北京:科学出版社,1987,1-579
    [24] Chihara G., Maeda Y., Hamuro J., et al. Inhibition of mouse Sarcoma180by polysaccharidesfrom Lentinus edodes (Berk.) Sing[J]. Nature,1969,222(5194):687-688
    [25] Ikekawa T., Uehara N., Maeda Y., et al. Antitumor activity of aqueous extracts of ediblemushrooms[J]. Cancer Research,1969,29(3):734-735
    [26] Zhong S., Pan H.J., Fan L.F., et al. Advances in research of polysaccharides in Cordycepsspecies[J]. Food Technology and Biotechnology,2009,47(3):304-312
    [27] Zhang M., Cui S. W., Cheung P.C.K., et al. Polysaccharides from mushrooms: a review ontheir isolation process, structural characteristics and antitumor activity[J]. Trends in FoodScience&Technology,2006,18(1):4-19
    [28] Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulatingpolysaccharides[J]. Applied Microbiology and Biotechnology,2002,60(3):258-274
    [29] Chang R. Bioactive polysaccharides from traditional Chinese medicine herbs as anticanceradjuvants[J]. The Journal of Alternative and Complementary Medicine,2002,8(5):559-565
    [30]张倩,江萍,秦礼康等.多糖功能的研究进展[J].食品研究与开发,1998,19(3):11-13
    [31]沈萍萍,付庭治.真菌多糖研究进展[J].南京大学学报,1991,27(3):524-529
    [32] Chen Y.Y., Chang H.M. Antiproliferative and differentiating effects of polysaccharide fractionfrom fu-ling (Poria cocos) on human leukemic U937and HL-60cells[J]. Food and ChemicalToxicology,2004,42(5):759-769
    [33] Leung M.Y.K., Liu C., Koon J.C.M., et al. Polysaccharide biological response modifiers[J].Immunology Letters,2006,105(2):101-114
    [34]林楠,钟耀广,王淑琴等.香菇多糖的研究进展[J].食品研究与开发,2007,28(5):174-176
    [35]单友亮,庄志铨,李博华等.云芝多糖研究进展[J].中草药,1998,29(5):349-351
    [36]林丽,吴超.云芝糖肽免疫调节作用研究进展[J].辽宁中医药大学学报,2010,12(6):273-275
    [37]刘远嵘,顾振纶,印其章.白介素-2参与云芝糖肽镇痛作用的研究[J].浙江中医药大学学报,2009,33(6):881-882
    [38]陈书明,王勤,成玉梅等.灵芝肽多糖生物活性初探[J].食用菌学报,1997,4(2):40-42
    [39]刘维,刘迪,李冠.猴头菌多糖的研究进展[J].中国食物与营养,2007,(12):23-25
    [40]郭春沅.真菌多糖的免疫调节作用[J].中国食用菌,2000,19(3):6-7
    [41]刘贤铭.真菌多糖的抗肿瘤研究及临床应用评价[J].中国药房,2006,17(8):629-630
    [42]闵三弟.真菌的药用价值[J].食用菌学报,1996,3(4):55-64
    [43]翁梁,温鲁.药用真菌多糖研究进展[J].食品科学,2008,29(12):748-751
    [44] Mizuno T., Saito H., Nishitoba T., et al. Antitumor-active substances from mushrooms[J].Food Reviews International,1995,11(1):23-61
    [45]周鹏,谢明勇.多糖的生物活性[J].食品研究与开发,2001,22(2):6-8
    [46] Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi[J]. AnnualReview of Microbiology,1968,22(1):87-108
    [47]江振友,林晨,刘小澄等.灵芝多糖对小鼠体液免疫功能的影响[J].暨南大学学报,2003,24(2):51-53
    [48]李明春,梁东升,许自明等.灵芝多糖对小鼠巨噬细胞cAMP含量的影响[J].中国中药杂志,2000,25(1):41-43
    [49]李明春,梁东升,许自明等.灵芝多糖对小鼠T细胞IL-2、IL-3mRNA表达的影响[J].解放军药学学报,2001,17(3):125-128
    [50]李明春,雷林生,梁东升等.灵芝多糖对小鼠巨噬细胞白介素-1α和肿瘤坏死因子-αmRNA表达的影响[J].中国药理学与毒理学杂志,2000,14(3):237-240
    [51] Adams D S, Pero S C, Petro J B, et al. PGG-Glucan activates NF-kappaB-like andNF-IL-6-like transcription factor complexes in a murine monocytic cell line[J]. Journal ofLeukocyte Biology,1997,62(6):865-873
    [52] Chen J.Z., Seviour R. Medicinal importance of fungal β-(1→3),(1→6)-glucans[J].Mycological Research,2007,111(6):635-652
    [53] Moradali M.F., Mostafavi H., Ghods S., et al. Immunomodulating and anticancer agents inthe realm of macromycetes fungi (macrofungi)[J]. International Immunopharmacology,2007,7(6):701-724
    [54] Bohn J.A., BeMiller J.N.(1→3)-β-D-Glucans as biological response modifiers: a review ofstructure-functional activity relationships[J]. Carbohydrate Polymers,1995,28(1):3-14
    [55]龚晓健,季晖,卢顺高等.人工虫草多糖对小鼠免疫功能的影响[J].中国药科大学学报,2000,31(1):53-55
    [56]滕霞,丛建波,田晓华等.海藻硫酸多糖抗氧化与抗肿瘤作用的实验研究[J].营养学报,1998,20(1):48-52
    [57] Tsukagoshi S., Hashimoto Y., Fujii G., et al. Krestin (PSK)[J]. Cancer Treatment Reviews,1984,11(2):131-155
    [58] Yanaki T., Ito W., Tabata K., et al. Correlation between the antitumor activity of apolysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution[J].Biophysical Chemistry,1983,17(4):337-342
    [59] Gonzaga M., Bezerra D., Alves A., et al. In vivo growth-inhibition of Sarcoma180by anα-(1→4)-glucan-β-(1→6)-glucan-protein complex polysaccharide obtained from Agaricusblazei Murill[J]. Journal of Natural Medicines,2009,63(1):32-40
    [60] Mizuno M., Minato K., Ito H., et al. Anti-tumor polysaccharide from the mycelium ofliquid-cultured Agaricus blazei Murill[J]. IUBMB Life,1999,47(4):707-714
    [61]谭建权,魏文树,陈海生.彩云多糖药理研究进展[J].中成药,1999,21(5):259-260
    [62] Zhou M., Chen Y., Ouyang Q., et al. Reduction of the oxidative injury to the rabbits withestablished atherosclerosis by protein bound polysaccharide from Coriolus vesicolor[J].American Journal of Chinese Medicine,2000,28(2):239-249
    [63] Li S.P., Zhao K., Ji Z., et al. A polysaccharide isolated from Cordyceps sinensis, a traditionalChinese medicine, protects PC12cells against hydrogen peroxide-induced injury[J]. LifeSciences,2003,73(19):2503-2513
    [64] Tsai M.C., Song T.Y., Shih P.S., et al. Antioxidant properties of water-soluble polysaccharidesfrom Antrodia cinnamomea in submerged culture[J]. Food Chemistry,2007,104(3):1115-1122
    [65] Leung P.H., Zhao S., Ho K.P., et al. Chemical properties and antioxidant activity ofexopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1[J]. FoodChemistry,2009,114(4):1251-1256
    [66] Luo J.G, Liu J., Sun Y., et al. Medium optimization, preliminary characterization andantioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilát[J].Carbohydrate Polymers,2010,81(3):533-540
    [67] Lee B.R., Kim S.Y., Kim D.W., et al. Agrocybe chaxingu polysaccharide preventinflammation through the inhibition of COX-2and NO production [J]. Biochemistry andMolecular Biology Reports,2009,42(12):794-799
    [68] Nascimento M.S., Magalh es J.E.M., Pinheiro T.S., et al. Polysaccharides from the fungusScleroderma nitidum with anti-inflammatory potential modulate cytokine levels and theexpression of Nuclear Factor kB [J]. Brazilian Journal of Pharmacognosy,2012,22(1):60-68
    [69] Lu M.K., Cheng J.J., Lin C.Y., et al. Purification, structural elucidation, andanti-inflammatory effect of a water-soluble1,6-branched1,3-β-D-galactan from culturedmycelia of Poria cocos[J]. Food Chemistry,2010,118(2):349-356
    [70]陈曦,张成义,孙晓红.芝多糖对佐剂性关节炎大鼠血清IL-12影响的研究[J].北华大学学报,2007,8(2):152-153
    [71]金涌,李俊,樊美珍等.虫草多糖体外对佐剂性关节炎大鼠免疫功能的影响[J].安徽医科大学学报,2000,35(1):20-21
    [72] Li X.T., Li H.C., Li C.B., et al. Protective effects on mitochondria and anti-aging activity ofpolysaccharides from cultivated fruiting bodies of Cordyceps militaris[J]. American Journalof Chinese Medicine,2010,38(6):1093-1106
    [73]金道山,韩志涛,王士雯等.香菇多糖抗衰老作用的实验研究[J].中国老年学杂志,1994,14(1):40-42
    [74]刘安军,祝长美,朱振元等.古尼虫草多糖对衰老模型小鼠的影响[J].现代食品科技,2008,24(3):201-203
    [75]孙纳新,王元秀,王军等.蛹虫草多糖对衰老小鼠巨噬细胞功能及氧化状态的影响[J].第四军医大学学报,2009,30(22):2492
    [76]侯安继,陈腾云,彭施萍等.苓多糖抗衰老作用研究[J].中药药理与临床,2004,20(3):10-11
    [77]虞磊,沈业寿,吴建民等.蜜环菌菌索多糖抗衰老作用研究[J].中成药,2006,28(7):994-996
    [78]李荣芷,何云庆.灵芝多糖抗衰老机理的探讨[J].中国老年学杂志,1992,12(3):184-186
    [79]张英华,张奎汉,王素芬等.猪苓多糖抗衰老作用的实验研究[J].中药新药与临床药理,1993,4(2):15-19
    [80]周慧萍,刘文丽,陈琼华等.猴头菌多糖的抗衰老作用[J].中国药科大学学报,1991,22(2):86-88
    [81]周慧萍,陈琼华,王淑如.黑木耳多糖和银耳多糖的抗衰老作用[J].中国药科大学学报,1989,20(5):303-306
    [82]王长云,管华诗.多糖抗病毒作用研究进展Ⅰ.多糖抗病毒作用[J].生物工程进展,2000,20(1):17-26
    [83]王长云,管华诗.多糖抗病毒作用研究进展Ⅱ.硫酸多糖抗病毒作用[J].生物工程进展,2000,20(2):3-14
    [84]王长云,管华诗.多糖抗病毒作用研究进展Ⅲ.卡拉胶及其抗病毒作用[J].生物工程进展,2000,20(3):39-47
    [85] Lee I. H., Huang R.L., Chen C.T., et al. Antrodia camphorata polysaccharides exhibitanti-hepatitis B virus effects[J]. FEMS Microbiology Letters,2002,209(1):61-65
    [86] Kakogawa K.H., Chigasaki M.K. Anti-virus agent. United States Patent,5320849[P].1994-6-14
    [87] Li S.P., Zhang G.H., Zeng Q., et al. Hypoglycemic activity of polysaccharide, withantioxidation, isolated from cultured Cordyceps mycelia[J]. Phytomedicine,2006,13(6):428-433
    [88]侯建明,陈刚,蓝进.银耳多糖对脂类代谢影响的实验报告[J].中国疗养医学,2008,17(4):234-236
    [89] Chen X., Zhong H.Y., Zeng J.H., et al. The pharmacological effect of polysaccharides fromLentinus edodes on the oxidative status and expression of VCAM-1mRNA of thoracic aortaendothelial cell in high-fat-diet rats[J]. Carbohydrate Polymers,2008,74(3):445-450
    [90] Raman R., Raguram S., Venkataraman G., et al. Glycomics: an integrated systems approach tostructure-function relationships of glycans[J]. Nature Methods,2005,2(11):817-824
    [91] Laughlin S.T., Bertozzi C.R. Imaging the glycome[J]. Proceedings of the National Academyof Sciences,2009,106(1):12-17
    [92]曾凯宏,明建,曾凯芳.真菌多糖的结构与功能[J].食品科技,2001,(4):65-67
    [93]刘玉红,王凤山.真菌多糖结构研究进展[J].中国药学杂志,2007,42(8):561-564
    [94] Kamerling J. Comprehensive glycoscience: From chemistry to systems biology[M].Amsterdam: Elsevier,2007
    [95]吴新君,毛培宏,湘等金.食(药)用真菌多糖的研究[J].化学与生物工程,2004,(1):14-16
    [96]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报,2002,21(2):209-212
    [97]赵春海,阚振荣.食(药)用真菌多糖的研究[J].发酵科技通讯,2008,37(2):14-16
    [98] Yoshida O., Nakashima H., Yoshida T., et al. Sulfation of the immunomodulatingpolysaccharide lentinan: A novel strategy for antivirals to human immunodeficiency virus(HIV)[J]. Biochemical Pharmacology,1988,37(15):2887-2891
    [99] Bluhm T.L., Sarko A. Conformational studies of polysaccharide multiple helices[J].Carbohydrate Research,1977,54(1):125-138
    [100] Yanaki T., Tabata K., Kojima T. Melting behaviour of a triple helical polysaccharideschizophyllan in aqueous solution[J]. Carbohydrate Polymers,1985,5(4):275-283
    [101] Stokke B.T., Elgsaeter A., Brant D.A., et al. Supercoiling in circular triple-helicalpolysaccharides[J]. Macromolecules,1991,24(23):6349-6351
    [102] Zhu J.S., Halpern G.M., Jones K. The scientific rediscovery of a precious ancient Chineseherbal regimen: Cordyceps sinensis: part II[J]. Journal of Alternative and ComplementaryMedicine,1998,4(4):429-457
    [103] Zhu J.S., Halpern G.M., Jones K. The scientific rediscovery of an ancient Chinese herbalmedicine: Cordyceps sinensis: part I[J]. Journal of Alternative and Complementary Medicine,1998,4(3):289-303
    [104]张智,谢意珍,李森柱等.冬虫夏草研究进展[J].微生物学杂志,2002,22(5):51-54
    [105]朱印酒,段双全,欧珠朗杰.冬虫夏草的研究进展[J].中央民族大学学报,2009,18(2):27-33
    [106] Kim H.O., Yun J.W. A comparative study on the production of exopolysaccharides betweentwo entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submergedmycelial cultures[J]. Journal of Applied Microbiology,2005,99(4):728-738
    [107]朱振元,梁宗琦,常胜军等.古尼虫草的生物活性物质I.含肽镇痛组分的分离及性质[J].微生物学报,2002,42(6):732-736
    [108] Holliday J., Cleaver M., Wasser S.P. Encyclopedia of Dietary Supplements[M]. New York:Taylor and Francis,2005,1-13
    [109] Li S.P., Li P., Dong T.T., et al. Anti-oxidation activity of different types of natural Cordycepssinensis and cultured Cordyceps mycelia[J]. Phytomedicine,2001,8(3):207-212
    [110] Li S.P., Zhao K.J., Ji Z.N., et al. A polysaccharide isolated from Cordyceps sinensis, atraditional Chinese medicine, protects PC12cells against hydrogen peroxide-inducedinjury[J]. Life Sciences,2003,73(19):2503-2513
    [111] Kiho T., Yamane A., Hui J., et al. Polysaccharides in fungi. XXXVI. Hypoglycemic activityof a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effecton glucose metabolism in mouse liver[J]. Biological and Pharmaceutical Bulletin,1996,19(2):294-296
    [112] Kiho T., Hui J., Yamane A., et al. Polysaccharides in fungi. XXXII. Hypoglycemic activityand chemical properties of a polysaccharide from the cultural mycelium of Cordycepssinensis[J]. Biological and Pharmaceutical Bulletin,1993,16(12):1291-1293
    [113]席昭雁,赵起华,向前等.蝙蝠蛾拟青霉菌丝体抗疲劳功能实验研究[J].中国自然医学杂志,2006,8(2):143-145
    [114]邹伟平,黄明明.蝙蝠蛾拟青霉抗排斥反应机理的初步研究[J].同济医科大学学报,1993,22(4):282-284
    [115]向群,郝长江,张进芳等.蝙蝠蛾拟青霉人工发酵菌丝培养物抗佐剂性关节炎作用机制研究[J].中国实验临床免疫学杂志,1997,9(5):5-8
    [116]童秋声,黄明明.蝙蝠蛾拟青霉抗艾氏癌作用机理研究[J].同济医科大学学报,1991,20(2):104-107
    [117] Kupfahl C., Geginat G., Hof H. Lentinan has a stimulatory effect on innate and adaptiveimmunity against murine Listeria monocytogenes infection[J]. InternationalImmunopharmacology,2006,6(4):686-696
    [118]Yu Z.H., Yin L.H., Qian Y., et al. Effect of Lentinus edodes polysaccharide on oxidative stress,immunity activity and oral ulceration of rats stimulated by phenol[J]. Carbohydrate Polymers,2009,75(1):115-118
    [119] Zhang Y.Y., Li S., Wang X.H., et al. Advances in lentinan: Isolation, structure, chainconformation and bioactivities[J]. Food Hydrocolloids,2011,25(2):196-206
    [120] Zhu X.L., Chen A.F., Lin Z.B. Ganoderma lucidum polysaccharides enhance the function ofimmunological effector cells in immunosuppressed mice[J]. Journal of Ethnopharmacology,2007,111(2):219-226
    [121] Cui J.J., Yuan J.F., Zhang Z.Q. Anti-oxidation activity of the crude polysaccharides isolatedfrom Polygonum cillinerve (Nakai) Ohwi in immunosuppressed mice[J]. Journal ofEthnopharmacology,2010,132(2):512-517
    [122] Jayathirtha M.G., Mishra S.H. Preliminary immunomodulatory activities of methanol extractsof Eclipta alba and Centella asiatica[J]. Phytomedicine,2004,11(4):361-365
    [123] Kuang H.X., Xia Y.G., Yang B.Y., et al. Screening and comparison of the immunosuppressiveactivities of polysaccharides from the stems of Ephedra sinica Stapf[J]. CarbohydratePolymers,2011,83(2):787-795
    [124] Feng Y.H., Zhou W.L., Wu Q.L., et al. Low dose of resveratrol enhanced immune response ofmice[J]. Acta Pharmacologica Sinica,2002,23(10):893-897
    [125] Makare N., Bodhankar S., Rangari V. Immunomodulatory activity of alcoholic extract ofMangifera indica L. in mice[J]. Journal of Ethnopharmacology,2001,78(2-3):133-137
    [126] Markert M.L., Devlin B.H., McCarthy E.A. Thymus transplantation[J]. Clinical Immunology,2010,135(2):236-246
    [127] Nishino M., Ashiku S.K., Kocher O.N., et al. The thymus: A comprehensive review[J].Radiographics,2006,26(2):335-348
    [128] Miller J. The golden anniversary of the thymus[J]. Nature Review Immunology,2011,11(7):489-495
    [129] Cesta M.F. Normal structure, function, and histology of the spleen[J]. Toxicologic Pathology,2006,34(5):455-465
    [130] Mebius R.E., Kraal G. Structure and function of the spleen[J]. Nature Review Immunology,2005,5(8):606-616
    [131] Miller L.E., Ludke H.R., Peacock J.E., et al. Manual of Laboratory Immunology[M]. London:Lea and Febiger,1991,1-18
    [132] Shukla S., Mehta A., John J., et al. Immunomodulatory activities of the ethanolic extract ofCaesalpinia bonducella seeds[J]. Journal of Ethnopharmacology,2009,125(2):252-256
    [133] Grabbe S., Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergiccontact hypersensitivity[J]. Immunology Today,1998,19(1):37-44
    [134] Kobayashi K., Kaneda K., Kasama T. Immunopathogenesis of delayed-typehypersensitivity[J]. Microscopy Research and Technique,2001,53(4):241-245
    [135] Mitra S.K., Gupta M., Sarma D.N.K. Immunomodulatory effect of IM-133[J]. PhytotherapyResearch,1999,13(4):341-343
    [136] Li C.R., Li Z.Z., Fan M.Z., et al. The composition of Hirsutella sinensis, anamorph ofCordyceps sinensis[J]. Journal of Food Composition and Analysis,2006,19(8):800-805
    [137] Li S.P., Yang F.Q., Tsim K.W.K. Quality control of Cordyceps sinensis, a valued traditionalChinese medicine[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41(5):1571-1584
    [138] Dong C.H., Yao Y.J. Nutritional requirements of mycelial growth of Cordyceps sinensis insubmerged culture[J]. Journal of Applied Microbiology,2005,99(3):483-492
    [139]柏干苹,方勇飞.细胞因子与类风湿性关节炎[J].临床内科杂志,2001,18(4):257-259
    [140]梁清华,罗徐,陈昌华等.痹肿消汤对类风湿性关节炎患者血清白细胞介素-1β的影响[J].湖南中医学院学报,2003,23(6):43-45
    [141]王霖,王文杰.破骨细胞在类风湿性关节炎骨破坏中的作用及其调控机制[J].生理科学进展,2004,35(3):269-272
    [142] Palladino M.A., Bahjat F.R., Theodorakis E.A., et al. Anti-TNF-alpha therapies: The nextgeneration[J]. Nature Reviews Drug Discovery,2003,2(9):736-746
    [143] Balkwill F. Tumor necrosis factor or tumor promoting factor?[J]. Cytokine&Growth FactorReviews,2002,13(2):135-141
    [144] Mortara L., Balza E., Sassi F., et al. Therapy-induced antitumor vaccination by targetingtumor necrosis factor alpha to tumor vessels in combination with melphalan[J]. EuropeanJournal of Immunology,2007,37(12):3381-3392
    [145] Yu C.H., Kastin A.J., Tu H., et al. TNF activates P-glycoprotein in cerebral microvascularendothelial cells[J]. Cellular Physiology and Biochemistry,2007,20(6):853-858
    [146] Lin J., Ziring D., Desai S., et al. TNF alpha blockade in human diseases: An overview ofefficacy and safety[J]. Clinical Immunology,2008,126(1):13-30
    [147] Madhusudan S., Foster M., Muthuramalingam S.R., et al. A phase II study of etanercept(Enbrel), a tumor necrosis factor α inhibitor in patients with metastatic breast cancer[J].Clinical Cancer Research,2004,10(19):6528-6534
    [148] O'Dell J.R. Drug therapy-Therapeutic strategies for rheumatoid arthritis[J]. New EnglandJournal of Medicine,2004,350(25):2591-2602
    [149] Chang J., Girgis L. Clinical use of anti-TNF-α biological agents-A guide for GPs[J].Australia Family Physician,2007,36(12):1035–1038
    [150]刘健中,纪宗玲,陈苏民等. OPG/RANKL/RANK系统与骨破坏性疾病[J].生物工程学报,2003,19(6):655-660
    [151] Kern W.V., Engel A., Schieffer S., et al. Circulating tumor necrosis factor alpha (TNF),soluble TNF receptors, and interleukin-6in human subacute bacterial endocarditis[J].Infection and Immunity,1993,61(12):5413–5416
    [152] Kojima F., Naraba H., Sasaki Y., et al. Prostaglandin E-2is an enhancer of interleukin-1beta-induced expression of membrane-associated prostaglandin E synthase in rheumatoidsynovial fibroblasts[J]. Arthritis and Rheumatism,2003,48(10):2819-2828
    [153]蔡小玲,胡春英,刘茂沛等.红菇及其多糖对小鼠失血性贫血的影响[J].食用菌,2002,24(1):10-11
    [154]温晓竞,马建伟,王树等.灰树花及其多糖对小鼠急性失血性贫血的影响[J].陕西医学杂志,2006,35(3):305-307
    [155]何晓燕,包贤,梁立文.东北刺人参对失血性贫血小鼠的补血作用研究[J].安徽农业科学,2010,38(6):2964-2966
    [156] Liu C., Li J.Q., Meng F., et al. Polysaccharides from the root of Angelica sinensis promoteshematopoiesis and thrombopoiesis through the PI3K/AKT pathway[J]. BMC Complementaryand Alternative Medicine,2010,10(1):1-12
    [157]林秀珍,靳珠华.番泻甙和大黄多糖对大鼠血小板细胞内游离钙浓度的影响[J].中国药理学通报,1995,11(1):29-32
    [158]杨铁虹,贾敏,梅其炳等.当归多糖对凝血和血小板聚集的影响[J].中药材,2002,25(5):344-345
    [159]李明义,董苍玉,肖国芝等.番薯叶多糖制剂的升血小板作用及其机理的初步探讨[J].北京大学学报(医学版),1993,25(4):261-263
    [160]陈岩菊,杜伟彬,李树臣.人参多糖在肿瘤放射治疗中升白细胞观察[J].中医药学报,2004,32(2):55-56
    [161]李南春.多糖升白细胞作用的研究进展[J].国际医药卫生导报,2006,12(21):103-105
    [162]李岩,曲绍春,刘杰等.白鲜皮粗多糖升白细胞作用的初步研究[J].长春中医学院学报,1995,11(49):48
    [163]罗基花,胡尚嘉,黄唯莉等.五味子粗多糖升白细胞作用的初步研究[J].北华大学学报(自然科学版),1997,17(1):1-2
    [164]朱世权,蔡文秀,薛玲等.徐长卿多糖的分离纯化及其抗辐射和升高白细胞的作用[J].中草药,2010,41(1):103-106
    [165]程建峰,张琰,贺建荣.黄芪多糖对小鼠化疗中白细胞和骨髓有核细胞减少的影响[J].中国现代应用药学,2003,20(5):378-380
    [166]吕伽林,孙建业,余南荣等.大肠癌化疗前应用注射用黄芪多糖预防白细胞减少的研究[J].中药材,2009,32(1):166-168
    [167]商捷,刘军,李可欣等.香菇多糖对放化疗致动物白细胞减少症的影响[J].沈阳药科大学学报,2006,23(12):791-796
    [168]王琪琳,桑青,曲爱琴.海带多糖对环磷酰胺所致白细胞减少保护作用的实验研究[J].山东医药,2009,49(11):48-49
    [169]姚佳,杨晓玲,彭梅等.土党参多糖对环磷酰胺所致小鼠白细胞减少症的影响[J].山地农业生物学报,2011,30(4):340-343
    [170] Livingston D.H., Malangoni M.A. An experimental study of susceptibility to infection afterhemorrhagic shock[J]. Surgery, gynecology&obstetrics,1989,168(2):138-142
    [171] Stephan R.N., Kupper T.S., Geha A.S., et al. Hemorrhage without tissue trauma producesimmunosuppression and enhances susceptibility to sepsis[J]. Archives of Surgery,1987,122(1):62-68
    [172] Shatney C.H., Read G., Cuevo R., et al. The natural leukocyte response to hemorrhagicshock[J]. Advances in shock research,1981,5:79-88
    [173] Jong S.C.生物高分子[M].北京:化学工业出版社,2004,145-157
    [174] Moore J.C. Gel permeation chromatography. I. A new method for molecular weightdistribution of high polymers[J]. Journal of Polymer Science Part A: Polymer Chemistry,1996,34(10):1833-1841
    [175] Paul-Dauphin S., Karaca F., Morgan T.J., et al. Probing size exclusion mechanisms ofcomplex hydrocarbon mixtures: The effect of altering eluent compositions[J]. Energy&Fuels,2007,21(6):3484-3489
    [176]李浩飞,邓丽颖.正交设计优化桦褐孔菌多糖的水提取工艺[J].医药论坛杂志,2008,29(2):54-55
    [177] Sunil S. Sephadex G-150in the gel filtration principles and methods[M]. Amershambiosciences,2006,1020-1022
    [178] Curado M.P., Edwards B., Shin H.R., et al. Cancer Incidence in Five Continents Vol. IX[M].2008
    [179] Thun M.J., DeLancey J.O., Center M.M., et al. The global burden of cancer: priorities forprevention[J]. Carcinogenesis,2010,31(1):100-110
    [180] Parkin D.M. The global health burden of infection-associated cancers in the year2002[J].International Journal of Cancer,2006,118(12):3030-3044
    [181] Ikekawa T., Uehara N., Maeda Y., et al. Antitumor activity of aqueous extracts of ediblemushrooms[J]. Cancer Research,1969,29(3):734-735
    [182] Miyazaki T., Nishijima M. Studies on fungal polysaccharides. XXVII. Structural examinationof a water-soluble, antitumor polysaccharide of Ganoderma lucidum[J]. Chemical&Pharmaceutical Bulletin (Tokyo),1981,29(12):3611-3616
    [183] Kanayama H., Togami M., Adachi N., et al. Studies on the antitumor active polysaccharidesfrom the mycelia of Poria cocos Wolf. III. Antitumor activity against mouse tumors[J].Yakugaku Zasshi,1986,106(4):307-312
    [184] Chihara G., Hamuro J., Maeda Y.Y., et al. Fractionation and purification of thepolysaccharides with marked antitumor activity, especially Lentinan, from Lentinus edodes(Berk.) Sing.(an edible mushroom)[J]. Cancer Research,1970,30(11):2776-2781
    [185] Hobbs C.R. Medicinal value of Lentinus edodes (Berk.) Sing.(Agaricomycetideae). Aliterature review[J]. International Journal of Medicinal Mushrooms,2000,2(4):287-302
    [186] Hiroshi S., Takeda M. Diverse biological activity of PSK (Krestin), a protein-boundpolysaccharide from Coriolus versicolor (Fr.)[M]. Hong Kong: The Chinese University Press,1993,237-245
    [187] Kobayashi H., Matsunaga K., Oguchi Y. Antimetastatic effects of PSK (Krestin), aprotein-bound polysaccharide obtained from basidiomycetes: an overview[J]. CancerEpidemiology Biomarkers&Prevention,1995,4(3):275-281
    [188] Cui J., Chisti Y. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, andproduction[J]. Biotechnology Advances,2003,21(2):109-122
    [189] Cun Z., Mizuno T., Ito H., et al. Antiinflammatory and immunomodulating properties offungal metabolites polysaccharides from the mycelium of liquid-cultured Grifola frondosa [J].Journal of the Japanese Society for Food Science and Technology,1994,41:724-733
    [190] Mizuno T., Cun Z. Maitake, Grifola frondosa: Pharmacological effects[J]. Food ReviewsInternational,1995,11(1):135-149
    [191] Mizuno T., Ohsawa K., Hagiwara N., et al. Fractionation and characterization of antitumorpolysaccharides from Maitake, Grifola frondosa[J]. Agriculture and Biological Chemistry,1986,50(7):1679-1688
    [192] Ukai S., Morisaki S., Goto M., et al. Polysaccharides in fungi. VII. Acidic heteroglycans fromthe fruit bodies of Auricularia auricula-judae[J]. Chemical&Pharmarceutical Bulletin,1982,30(2):635-643
    [193] Wasser S.P. Medicinal mushrooms as a source of antitumor and immunomodulatingpolysaccharides[J]. Applied Microbiology and Biotechnology,2002,60(3):258-274
    [194] Zhang M., Cui S.W., Cheung P.C.K., et al. Antitumor polysaccharides from mushrooms: areview on their isolation process, structural characteristics and antitumor activity[J]. Trends inFood Science and Technology,2007,18(1):4-19
    [195]司徒镇强,吴正军.细胞培养[M].世界图书出版社,2001,134-156
    [196] D.L.斯佩克特, R.D.戈德曼, L.A.莱因万德.细胞实验指南[M].科学出版社,2003,118-122
    [197] Ooi V.E.C., Liu F. A review of pharmacological activities of mushroom polysaccharides[J].International Journal of Medicinal Mushrooms,1999,1:195-206
    [198] Cui S.W. Food Carbohydrates: Chemistry, Physical Properties, and Applications[M]. BocaRaton: Taylor&Francis Group,2005
    [199] Kacurakova M., Capek P., Sasinkova V., et al. FT-IR study of plant cell wall modelcompounds: pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43(2):195-203
    [200] Robert P., Marquis M., Barron C., et al. FT-IR investigation of cell wall polysaccharides fromcereal grains. Arabinoxylan infrared assignment[J]. Journal of Agricultural and FoodChemistry,2005,53(18):7014-7018
    [201] Barker S.A., Bourne J., Stacey M., et al. Infra-red spectra of carbohydrates. Part I. Somederivatives of D-glucopyranose[J]. Journal of the Chemical Society,1954,1:171-176
    [202] Dai B., Matsukawa S. NMR studies of the gelation mechanism and molecular dynamics inagar solutions[J]. Food Hydrocolloids,2012,26(1):181-186
    [203] Tomati U., Belardinelli M., Galli E., et al. NMR characterization of the polysaccharidicfraction from Lentinula edodes grown on olive mill waste waters[J]. Carbohydrate Research,2004,339(6):1129-1134
    [204] Wu Y., Cui W., Eskin N.A.M., et al. NMR analysis of a methylated non-pectic polysaccharidefrom water soluble yellow mustard mucilage[J]. Carbohydrate Polymers,2011,84(1):69-75
    [205] Nie S.P., Cui S.W., Phillips A.O., et al. Elucidation of the structure of a bioactive hydrophilicpolysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy[J].Carbohydrate Polymers,2011,84(3):894-899
    [206]张惟杰.糖复合物生化研究技术[M].第2版.杭州:浙江大学出版社,1999,36-45
    [207] Yu R.M., Yin Y., Yang W., et al. Structural elucidation and biological activity of a novelpolysaccharide by alkaline extraction from cultured Cordyceps militaris[J]. CarbohydratePolymers,2009,75(1):166-171
    [208] Wang Y., Hollingsworth R.I., Kasper D.L. Ozonolysis for selectively depolymerizingpolysaccharides containing β-D-aldosidic linkages[J]. Proceedings of the National Academyof Sciences,1998,95(12):6584-6589
    [209] Leung M.Y.K., Liu C., Zhu L.F., et al. Chemical and biological characterization of apolysaccharide biological response modifier from Aloe vera L. var. chinensis (Haw.) Berg[J].Glycobiology,2004,14(6):501-510
    [210] Ke R.D., Lin S.F., Chen Y., et al. Analysis of chemical composition of polysaccharides fromPoria cocos Wolf and its anti-tumor activity by NMR spectroscopy[J]. CarbohydratePolymers,2010,80(1):31-34
    [211] Agrawal P.K. NMR spectroscopy in the structural elucidation of oligosaccharides andglycosides[J]. Phytochemistry,1992,31(10):3307-3330
    [212]王德华,许肖龙.核磁共振法测定高聚物的结构—核磁共振二维谱[J].高分子通报,1989,(1):8-16
    [213] Bushneva O.A., Ovodova R.G., Shashkov A.S., et al. Structural studies on hairy region ofpectic polysaccharide from campion Silene vulgaris (Oberna behen)[J]. CarbohydratePolymers,2002,49(4):471-478
    [214] Cui W.W., Eskin M.N.A., Biliaderis C.G., et al. NMR characterization of a4-O-methyl-β-d-glucuronic acid-containing rhamnogalacturonan from yellow mustard(Sinapis alba L.) mucilage[J]. Carbohydrate Research,1996,292:173-183
    [215] Coenen G.J., Bakx E.J., Verhoef R.P., et al. Identification of the connecting linkage betweenhomo-or xylogalacturonan and rhamnogalacturonan type I[J]. Carbohydrate Polymers,2007,70(2):224-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700