用户名: 密码: 验证码:
CD36单核苷酸多态性与2型糖尿病中医证型及血小板功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察CD36基因单核苷酸多态性(SNPs)与汉族人群2型糖尿病中医证型及血小板功能的相关性,以及在糖尿病合并动脉粥样硬化性脑梗死的人群中是否存在变异,探讨糖尿病合并脑梗死的遗传学机制。
     方法
     研究一选择405名2型糖尿病患者,分为阴虚热盛、湿热困脾、气阴两虚伴血瘀、阴阳两虚四种证型,对照组选择与病例组性别、年龄匹配无糖尿病体检者539例。所有入组者检测空腹血糖、HbA1c、血脂、血小板计数,并采用聚合酶链反应—连接酶检测反应(PCR-LDR)技术检测CD36rs3211842、rs1761667两个位点的个体基因型。ELISA法测定血浆血栓素B2(TXB2)。
     研究二选择107例气阴两虚伴血瘀糖尿病患者并伴有动脉粥样硬化性脑梗死,设为病例组,另设单纯动脉粥样硬化性脑梗死恢复期患者同类证型267例,列为对照组,检测方法和指标同研究一。
     研究三选择107例糖尿病伴脑梗死患者,为病例组,另设单纯糖尿病无并发症患者298例,为对照组,检测方法和指标同研究一。
     结果
     研究一结果显示:糖尿病病例组及各辨证分型组CD36rs3211842、rs1761667基因型频率与对照组相比无统计学差异(P>0.05)。气阴两虚伴血瘀组患者与对照组相比血小板计数、TXB2水平有统计学差异(P<0.05)。
     研究二结果发现气阴两虚型伴血瘀型糖尿病伴脑梗死组血糖、HbA1c、LDL、HDL与对照组相比,有显著性差异(P<0.05)。CD36rs3211842基因型频率、等位基因频率与无糖尿病的脑梗死患者相比明显增高(X~2=6.358,P=0.043),多元回归分析发现基因型AG+AA能够显著增加2型糖尿病并发脑梗死的发病风险(OR=2.460,95%CI=1.197~5.054,P=0.014),并与CH、LDL、TXB2水平呈正相关(P<0.05)。CD36rs1761667基因型及等位基因频率两组间无显著性差异(P>0.05)。
     研究三结果发现病例组CD36rs1761667基因型频率分布与对照组相比无统计学差异(P>0.05),但等位基因频率与对照组相比有统计学差异(P=0.017),CD36rs3211842AG型基因频率及A等位基因频率分布显著高于对照组,两组间具有统计学差异(P=0.047,P=0.011)。多元logistic逐步回归分析提示rs3211842基因型AG+AA是2型糖尿病并发脑梗死的危险因素之一,并与TXB2升高有关(P<0.05)。
     结论
     CD36基因rs3211842、rs1761667的变异可能与糖尿病及其中医证型无关,气阴两虚伴血瘀型患者血小板功能异常,表现在血小板计数升高,TXB2水平升高。CD36rs3211842AG+AA基因型可能是汉族人群2型糖尿病并发脑梗死的危险因素之一,与气阴两虚伴血瘀型糖尿病并发脑梗死相关,而CD36rs1761667位点可能与汉族人群2型糖尿病并发脑梗死无关,CD36rs3211842AG+AA基因型可能与血小板活化有关。
Objective: To explore the relationship between CD36single nucleotidepolymorphisms and TCM syndrome type of diabetes.
     Methods: Study1:405patients with diabetes which were divided into four groups:extreme heat with yin asthenia type, wet and heat puzzling the spleen type, Qi and Yindeficiency with blood stasis type and Yin-Yang deficiency type. The control group selectednon-diabetes physical examination person539cases. Two loci of CD36rs3211842,rs1761667individual genotypes were detected using polymerase chain reaction-ligasedetection reaction (PCR-LDR). Enzyme linked immunosorbent assay (ELISA) was usedfor determination of plasma thromboxane B2(TXB2).
     Study2: This study included107patients of Qi and Yin deficiency with blood stasistype diabetes accompany with atherosclerotic cerebral infarction.267patients withatherosclerotic cerebral infarction of the same TCM syndrome type is the control group.The methods is the same of study1.
     Study3: This study included107patients of diabetes accompany with atheroscleroticcerebral infarction.298patients with diabetes is the control group. The methods is thesame of study1.
     Results:Study1: There were no significant differences in the rs3211842andrs1761667genotype frequencies and allele frequencies between the four groups andcontrols(P>0.05). The platelet counts and plasma TXB2levels is significant differencesbetween of Qi and Yin deficiency with blood stasis type and controls(P<0.05).
     Study2: The distribution of rs3211842genotype frequencies and allele frequenciesin the Qi and Yin deficiency with blood stasis type of diabetes with significant differences compare to the atherosclerotic cerebral infarction control (X2=6.358, P=0.043).Compared to GG, genotype AG+AA can increase the risk of diabetes with atheroscleroticcerebral infarction after multi-factor logistic analysis and stepwise regression analysis(OR=2.460,95%CI=1.197~5.054,P=0.014). The GAgenotype in combination withAAgenotype showed a significant association with HDL, CH, TXB2(P<0.05).
     Study3: The distribution of rs3211842AG genotype frequencies and A allelefrequencies in diabetes with atherosclerotic cerebral infarction was significant differencescompare to the diabetes control (P=0.047,P=0.011). The AG genotype in combinationwith AA genotype showed a significant association with TXB2level(P<0.05) and increasethe risk of diabetes with atherosclerotic cerebral infarction after stepwise regressionanalysis(P<0.05).
     Conclusions:CD36rs3211842, rs1761667is not associated with diabetes and TCMsyndrome type of diabetes in our cohort. CD36rs3211842is the independent risk factors ofdiabetes with atherosclerotic cerebral infarction. CD36SNPs have correlation with plateletfunction.
引文
[1] Del Zoppo GJ. The role of platelets in ischemic stroke. Neurology.1998;51(3)(Suppl):9-14.
    [2] Konstantopoulos K, Grotta JC, Sills C, et al. Shear-induced platelet aggregation innormal subjects and stroke patients. Thromb Haemost.1995;74:1329-1334.
    [3] Podrez EA, Byzova TV, Febbraio M, et al. Platelet CD36links hyperlipidemia,oxidant stress and a pro-thrombotic phenotype. Nat Med2007;13:1086–1095.
    [4] Armesilla AL, Vega MA. Structural organization of the gene for humanCD36glycoprotein. J Boil Chem.1994:269(29):18985-18991.
    [5] Rac ME, Safranow K, Poncylijusz W. Molecular basis of CD36gene mutations. MolMed.2007;13(5)288-296.
    [6] Oquendo P, Hundt E, Lawler J, et al. CD36directly mediates cytoadherence ofPlasmodium falciparum parasitized erythrocytes. Cell.1989;58:95–101.
    [7] Roy L Silverstein.Type2scavenger receptor CD36in platelet activation: the role ofhyperlipemia and oxidative stress. Clin Lipidol.2009;4(6):767.
    [8] Miyaoka K, Kuwasako T, Hirano K, et al. CD36deficiency associated with insulinresistance. Lancet.2001;357:686–687.
    [9] Hajri T, Han XX, Bonen A, et al. Defective fatty acid uptake modulates insulinresponsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest.2002;109:1381–1389.
    [10] Handberg A, Levin K, Hojlund K, et al. Identification of the oxidized low-densitylipoprotein scavenger receptor CD36in plasma: a novel marker of insulin resistance.Circulation.2006;114:1169–1176.
    [11] Lepretre F, Vasseur F, Vaxillaire M, et al. A CD36nonsense mutation associated withinsulin resistance and familial type2diabetes. Hum Mutat.2004;24:104.
    [12] Lepretre F, Linton KJ, Lacquemant C, et al. Genetic study of the CD36gene in aFrench diabetic population. Diabetes Metab.2004;30:459–463.
    [13] Corpeleijn E, van der Kallen CJ, Kruijshoop M, et al. Direct association of a promoterpolymorphism in the CD36/FAT fatty acid transporter gene with Type2diabetesmellitus and insulin resistance. Diabet Med.2006;23:907–911.
    [14] Kashiwagi H, Tomiyama Y, Kosugi S, et al. Identification of molecular defects in asubject with type I CD36deficiency. Blood.1994;83:3545–3552.
    [15] Love-Gregory L, Sherva R, Sun L, et al. Variants in the CD36gene associate with themetabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Gene.2008;17:1695–1704.
    [16] Banerjee C, Moon YP, Paik MC. Duration of diabetes and risk of ischeamic stroke.The Northern Manhattan Study. Stroke,2012;43:1212–1217.
    [17] Megherbi SE, Milan C, Minier D, et al. For the European BIOMED study of strokecare group association between diabetes and strokesubtype on survival and functionaloutcome3months after strokedata from the European BIOMED stroke project.Stroke,2007;34(3):688-694
    [18]张清梅,陈泽奇,刘英哲,等.1490例2型糖尿病临床辩证分型调查分析.湖南中医学院学报,2004;24(5):33-35,37.
    [19]李振中,尹翠梅,张玉栋.痰浊不化与2型糖尿病血管病变.北京中医,2006;25,(2):84—85.
    [20]吴以岭.络病是区别于血瘀证的新研究领域.疑难病杂志,2006;5,(3):189—191.
    [21]高泓,谢春光,赵旭,等.2型糖尿病大血管病变的中医病机分析.时珍国医国药,2009;20,(6):1314—1315.
    [22]赵家伟,李秀钧.炎症、2型糖尿病、大血管病变之间的临床联系与新认识.辽宁实用2型糖尿病杂志,2003;11(3):325-326.
    [23]王丽英,张红敏,谢春光,等.中医释义动脉粥样硬化及2型糖尿病低度炎症的发生条件.时珍国医国药,2005;16(7):662-663.
    [24]陈敏,刘桠,谢春光,等.从炎症学说思考2型糖尿病大血管病变的中医药防治.时珍国医国药,2009;20(9):2117—2118.
    [25]牛崇峰.从中医“湿瘀互结证”认识动脉粥样硬化的成因.江苏中医药,2008;40(3):24—25.
    [26]王忆黎,严余明.试述2型糖尿病炎症发病说对中医临床的意义.浙江中医学院学报,2003;27(3):20—21.
    [27]赵进喜,李靖,王世东等.体质“从化”理论与糖尿病及其并发症辨证论治思路.世界中医药,2006;1(1):11-13.
    [28]袁婉丽,胡节惠.2型糖尿病表型与中医体质分类关系的研究.现代医药卫生,2004;20(24):2602-2603.
    [29]宫晴,糖尿病慢性并发症与中医体质相关性的初步研究.硕士论文,山东中医药大学,2008.
    [30]孙理军,崔刚,王震.糖尿病中医体质的临床调查研究.陕西中医学院学报,2010;33(4):35-36.
    [31]南征,高彦斌,钱秋海等.中西医综合治疗糖尿病,北京;人民卫生出版社,2004,1:106-115.
    [32] Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low densitylipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J ClinInvest,1995;96(4):1859-1865.
    [33] Febbraio M,Abumrad NA,Hajjar DP, et al. A null mutation in murine CD36reveals animportant role in fatty acid and lipoprotein in metabolism.J Biol Chem,1999;274(27):19055-19062.
    [34] Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis: role of thescavenger receptor CD36. Clevel and Clinic J Med,2009;76(suppl2):s27-s30.
    [35] Handberg A, Lopez-Bermejo A,Bassols J, et al. Circulating soluble CD36isassociated with glucose metabolism and interleukin-6in glucose-intolerant men.DiabVasc Dis Res,2009;6(1):15-20.
    [36] Handberg A, Skjelland M, Michelsen AE,et al. Soluble CD36in plasma is increased inpatients with symptomatic atherosclerotic carotid plaques and is related to plaqueinstability.Stroke,2008;39(11):3092-3095.
    [37] A Handberg, K Levin, K Hojlund, et al. Identification of the oxidized low-densitylipoprotein scavenger receptor CD36in plasma: a novel marker of insulin resistance.Circulation,2006;114:1169–1176.
    [38] TJ Aitman, AM Glazier, CA Wallace, et al. Identification of Cd36(Fat) as aninsulin-resistance gene causing defective fatty acid and glucose metabolism inhypertensive rats. Nat Genet,1999;21:76–83.
    [39] K Miyaoka, T Kuwasako, K Hojlund, et al. CD36deficiency associated with insulinresistance. Lancet,2001;357:686-687.
    [40] D Masuda, K Hirano, H Oku, et al. Chylomicron remnants are increased in thepostprandial state in CD36deficiency. J Lipid Res,2009;50:999–1011.
    [41] D Greco, A Kotronen, J Westerbacka, et al. Gene expression in human NAFLD. Am JPhysiol Gastrointest Liver Physiol,2008;294:G1281–G1287.
    [42] DPY Koonen, RL Jacobs, M Febbraio, et al. Increased hepatic CD36expressioncontributes to dyslipidemia associated with diet-induced obesity. Diabetes,2007;56:2863–2871.
    [43] LP Bechmann, RK Gieseler, JP Sowa, et al. Apoptosis is associated with CD36/fattyacid translocase up regulation in non-alcoholic steatohepatitis. Liver Int,2010;30:850–859.
    [44] JM Fernandez-Real, A Handberg, F Ortega, et al. Circulating soluble CD36is anovel marker of liver injury in subjects with altered glucose tolerance.J Nutr Biochem,2009;20:477–484.
    [45] T Tanaka, T Nakata, T Oka, et al. Defect in human myocardial long-chain fatty aciduptake is caused by FAT/CD36mutations. J Lipid Res,2001;42:751–759.
    [46] A Handberg, M Norberg, H Stenlund, et al. Soluble CD36(sCD36) clusters withmarkers of insulin resistance, and high sCD36is associated with increased type2diabetes risk. J Clin Endocrinal Metab,2010;95:1939–1946.
    [47] A Morabia, BM Ross, MC Costanza, et al. Population-based study of SR-BI geneticvariation and lipid profile. Atherosclerosis,2004;175:159–168.
    [48] F Lepretre, C Cheyssac, P Amouyel, et al. A promoter polymorphism in CD36isassociated with an atherogenic lipid profile in a French general population.Atherosclerosis,2004;173:375–377.
    [49] X Ma, S Bacci, W Mlynarski, et al. A common haplotype at the CD36locus isassociated with high free fatty acid levels and increased cardiovascular risk inCaucasians.Hum Mol Genet,2004;13:2197–2205.
    [50] L Love-Gregory, R Sherva,L Sun, et al. Variants in the CD36gene associate with themetabolic syndrome and high density lipoprotein cholesterol. Hum MolGenet,2008;17:1695-1704.
    [51] L Love-Gregory, R Sherva, T Schappe, et al. Common CD36SNPs reduce proteinexpression and may contribute to a protective atherogenic profile. Hum MolGenet,2011;20:193–201.
    [52] M Banerjee, S Gautam, M Saxena, et al. Association of CD36gene variantsrs1761667(GNA) and rs1527483(CNT) with Type2diabetes in North Indianpopulation. Int J Diab Mellitus,2010;2:179–183.
    [53] Pearce SFA, Wu J, Silverstein RL. Recombinant fusion proteins define athrombospondin binding domain: evidence for a single calcium-dependent bindingsite on CD36. Biol Chem1995;270:2981–2986.
    [54] Leung LL, Li WX, McGregor JL, et al. CD36peptides enhance or inhibitCD36-thrombospondin binding. A two-step process of ligand-receptor interaction.Biol Chem,1992;267:18244–18250.
    [55] Gautam S, Banerjee M. The macrophage Ox-LDL receptor, CD36and its associationwith type II diabetes mellitus. Molecular Genetics andMetabolism,2011;(201):389–398.
    [56] Chen K, Febbraio M, Li W, et al. A specific CD36-dependent signaling pathway isrequired for platelet activation by oxLDL. Circ Res.2008;102(12):1512–1519.
    [57] Koenen RR, Weber C. Platelet-derived chemokines in vascular remodeling andatherosclerosis. Semin Thromb Hermost,2010;36(2):163-169.
    [58] King SM, McNamee RA, Houng AK, et al. Platelet dense-granule secretion plays acritical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice.Circulation,2009;120(9):785-791.
    [59] Woodfin A, Voisin MB, Imnof BA, et al. Endothelial cell activation leads toneutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A,and PECAM-1. Blood,2009;113(24):6264-6257.
    [60] Zimman A,Podrez EA. Regulation of platelet function by class B scavenger receptorsin hyperlipidemia.Arterioscler Thromb Vasc Biol,2010;30(12):2350–2356.
    [61] Silverstein RL, Li W, Park YM, Rahaman SO. Mechanisms of cell signaling by thescavenger receptor cd36: Implications in atherosclerosis and thrombosis. Trans AmClin Climatol Assoc,2009;121:206–220.
    [62] Podrez EA, Poliakov E, Shen Z, et al. Identification of a novel family of oxidizedphospholipids that serve as ligands for the macrophage scavenger receptor CD36. JBiol Chem,2002;277:38503–38516.
    [63] Podrez EA, Batyreva E, Shen Z, et al. A novel family of atherogenic oxidizedphospholipids promotes macrophage foam cell formation via the scavenger receptorCD36and is enriched in atherosclerotic lesions. J BiolChem,2002;277:38517–38523.
    [64] Sun M, Finnemann SC, Febbraio M, et al. Light-induced oxidation of photoreceptorouter segment phospholipids generates ligands for CD36-mediated phagocytosis byretinal pigment epithelium: a potential mechanism for modulating outer segmentphagocytosis under oxidant stress condition. Biol Chem,2006;281:4222–4230.
    [65] Roy L Silverstein.Type2scavenger receptor CD36in platelet activation: the role ofhyperlipemia and oxidative stress. Clin Lipidol.2009;4(6):767.
    [66] Ghosh A, Li W, Febbraio M, et al. Platelet CD36mediates interactions withendothelial cell-derived microparticles and contributes to thrombosis in vivo. ClinInvest,2008;11(8):1934–1943.
    [67] Falati S, Liu Q, Gross P, et al. Accumulation of tissue factor into developing thrombiin vivo is dependent upon microparticle P-selectin glycoprotein ligand1and plateletP-selectin. Exp Med,2003;197:1585–1598.
    [68] Rahaman SO, Lennon DJ, Febbraio M, et al. A CD36-dependent signaling cascade isnecessary for macrophage foam cell formation. Cell Metab,2006;4:211–221.
    [69] Endemann, G. CD36is a receptor for oxidized low density lipoprotein. J. Biol. Chem,1993;268:11811–11816.
    [70] Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the Class B scavengerreceptor, CD36, protects against atherosclerotic lesion development in mice. J ClinInvest,2000;105:1049–1056.
    [71] Sophie Collot-Teixeira, Juliette Martin, Chris McDermott-Roe et al. CD36andmacrophages in atherosclerosis. Cardiovascular Research,75(2007):468–477.
    [72]靳文英,陈红.CD36与动脉粥样硬化.中国动脉粥样硬化杂志,2010;(18):582-585.
    [73] Lim HJ, Lee S, Lee KS, Park JH, Jang Y, Lee EJ, et al. PPARgamma activationinduces CD36expression and stimulates foam cell like changes in rVSMCs.Prostaglandins Other Lipid Mediat2006;80:165–74.
    [74]李仁康,潘腊梅.虚证血瘀患者血液流变学规律探讨【J】.湖北中医杂志,1988;(5):52.
    [75]陈可冀,马晓昌.关于传统血瘀证的现代分类.中国中西医结合杂志,2000;4(2):116-117,129.
    [76]陈可冀,李连达,翁维等.血瘀证与活血化瘀研究.中西医结合心脑血管杂志,2005;3(1):1-2.
    [77]张延群,和贵章.2080例2型糖尿病临床症状谱的流行病学调查研究.新中医,2004;36(11):42-43.
    [78]范志勇、陈立国.从通补兼施论治老年2型糖尿病.时珍国医药,2007;18(1):195-196.
    [79]董振华、李元、祝堪予.治疗2型糖尿病慢性并发症的经验.中医杂志,1997;(1):12.
    [80]王其萍,孔肇刚.青紫舌与血流变学关系的探讨.中国微循环,1997;1(1):46-47.
    [81]许沛虎、赵敬华.2型糖尿病辨证分型与客观指标研究概述.辽宁中医杂志,1995;22(1):46-47.
    [82]刘冰.益气养阴活血降糖散治疗2型糖尿病174例.四川中医,2002;20(3):29-30.
    [83]林兰,董彦敏,倪青,等.氮—氖激光合益气养阴活血中药治疗2型糖尿病脑梗塞的临床观察.中国中医药信息杂志,2000;7(7):56.
    [84]蔡少华,谌剑飞,梁浩荣.2型糖尿病合并缺血性中风证型与高凝状态的关系研究.中国中西医结合急救杂志,2000;7(3):171.
    [85]韦丽忠.糖尿病性脑血管病发病机制研究的最新进展.医学理论与实践,2012;9(25):1040-1041
    [86]苏德模.略论中医痰瘀学说与脑血栓的关系.中国中医急症,2007;16(6):746.
    [87] Bokor S, Legry V, Meirhaeghe A, et al. Single-nucleotide polymorphism of CD36locus and obesity in European adolescents. Obesity,2010;18:1398-1403.
    [88] Han XX, Chabowski A, Tandon NN, et al. Metabolic challenges reveal impaired fattyacid metabolism and translocation of FAT/CD36but not FABPpm in obese Zucker ratmuscle. Am J Physiol Endocrinol Metab,2007;293:E566-E575.
    [89] Y Wang, XO Zhou, Y Zhang, et al. Association of the CD36gene with impairedglucose tolerance, impaired fasting glucose, type-2diabetes, and lipid metabolism inessential hypertensive patients.Genet Mol Res,2012;11(3):2163-2170.
    [90] Malhotra A, Elbein SC, Ng MC, et al. Meta-analysis of genome-wide linkage studiesof quantitative lipid traits in families ascertained for type2diabetes. Diabetes,2007;56:890-896.
    [91] Arunima Ghosh, Gurunathan M, Kan C, et al. Platelet CD36surface expression levelsaffect functional responses to oxidized LDL and are associated with inheritance ofspecific genetic polymorphisms. Blood,2011;117:6355-6366.
    [92] Cho S, Park EM, Febbraio M, et al. The class B scavenger receptor CD36mediatesfree radical production and tissue injury in cerebral ischemia.J Neurosci,2005;25:2504–2512.
    [93] Cho S, Kim E. CD36: A multi-modal target for acute stroke therapy. J Neurochem,2009;109(Suppl1):126–132.
    [94] Kim E, Tolhurst AT, Qin LY, et al. CD36/fatty acid translocase, an inflammatorymediator, is involved in hyperlipidemia-induced exacerbation in ischemic brain injury.Neurosci,2008;28:4661–4670.
    [95] Amantea D, Bagetta G, Tassorelli C, et al. Identification of distinct cellular pools ofinterleukin-1beta during the evolution of neuroinflammatory response induced bytransient middle cerebral artery occlusion in the brain of rat. Brain Res,2010;1313:259-269.
    [96] Slevin M, Kumar P, Gaffney J,et al. Can angiogenesis be exploited to improve strokeoutcome? Mechanisms and therapeutic potential. Clin Sci (Lond),2006;111:171–183.
    [97] Roy L, Silverstein and Febbraio M. CD36, a Scavenger Receptor Involved inImmunity, Metabolism, Angiogenesis, and Behavior. Sci Signal,2010;2(72):1-16.
    [98] Yang DY, Pan HC, Yen YJ, et al. Detrimental effects of post-treatment with fattyacids on brain injury in ischemic rats. Neurotoxicology,2007;28:1220–1229.
    [99] Pilitsis J G, Coplin WM, O'Regan MH, et al. Measurement of free fatty acids incerebrospinal fluid from patients with hemorrhagic andischemic stroke. Brain Res,2003;985:198–201.
    [100] Chabowski A, Gorski J, Calles-Escandon J, et al. Hypoxia-induced fatty acidtransporter translocation increases fatty acid transport and contributes to lipidaccumulation in theheart. FEBS Lett,2006;580:3617–3623.
    [101] Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. NEngl J Med,2009;360:1718-1728.
    [102] Crisby M, Bronge L, Wahlund L O. Low levels of high density lipoprotein increasethe severity of cerebral white matter changes:implications for prevention andtreatment of cerebrovascular diseases.Curr Alzheimer Res,2010;7:534–539.
    [103] Fuentes B, Martinez-Sanchez P, Diez-Tejedor E. Lipid-lowering drugs in ischemicstroke prevention and their influence onacute stroke outcome. Cerebrovasc Dis,2009;27(Suppl.1):126–133.
    [104] Kestin AS, Ellis PA, Barnard MR, et al. Effect of strenuous exercise on plateletactivation state and reactivity.Circulation,1993;88(4):1502-1511
    [105] Han J, Zhou X, Yokoyama T, et al. Pitavastatin down regulates expression of themacrophage type B scavenger receptor, CD36. Circulation,2004;109(6):790-796.
    [106]臧静,王滨,张涌等. CD36单核苷酸多态性与老年动脉粥样硬化性脑梗死的相关性研究.山东大学学报(医学版),2013;4:289-290.
    [107] Ma X, Bacci S, Mlynarski W,et al. A common haplotype at CD36locus isassociated with high free fatty acid levels and increased cardiovascular risk inCaucasians. Hum Mol Genet,2004,13:2197-2205.
    [1] V Mohan, M Deepa, S Farooq, et al. Prevalence, awareness and control ofhypertension in Chennai–The Chennai Urban Rural Epidemiology Study(CURES-52), Assoc Physicians India,2007,326–332.
    [2] P A Bourne, C Morris, C Charles, et al. Health literacy and health seeking behavioramong older men in amiddle-income nation. Patient Relat. Outcome Measures,2010,39–49.
    [3] L D. Bash, E Selvin, M. Steffes, et al. Poor glycemic control in diabetes and the riskof incident chronic kidney disease even in the absence of albuminuria and retinopathy.Atherosclerosis Risk in Communities (ARIC) Study. Arch Intern Med,2008,2440–2447.
    [4] C Alavantic, T Djuric. Risk factors of atherosclerosis: A review of geneticepidemiology data from a Serbian population. Exp Clin Cardiol,2006,11,78-82.
    [5] A Versluis, AJ Bank, WH Douglas. Fatigue and plaque rupture in myocardialinfarction,Biomech,2006,339–347.
    [6] F Gongora-Rivera, J Labreuche, A Jaramillo, et al. Autopsy prevalence of coronaryatherosclerosis in patients with fatal stroke. Stroke,2007,38,1203–1210.
    [7] Y Sun, M Scavini, R A Orlando, G.H. Murata, et al. Increased CD36expression signalsmonocyte activation among patients with type2diabetes,Diab. Care,2010,33,2065–2067.
    [8] D E Greenwalt, R H Lipsky, C F Ockenhouse, et al. Membrane glycoprotein CD36:a review of its roles in adherence, signal transduction, and transfusion medicine.Blood,1992,80,1105–1115.
    [9] AL Armesilla, MA Vega. Structural organization of the gene for human CD36glycoprotein, J Biol Chem,1994,269,18985-18991.
    [10] D Kobylka, KL Carraway. Proteolytic digestion of proteins of the milk fatglobulemembrane. Biochim Biophys Acta,1973,307,133–140.
    [11] DE Greenwalt, VG Johnson, FP Kuhajda,et al. Localization of a membraneglycoprotein in benign fibrocystic disease and infiltrating duct carcinomas of thehuman breast with the use of a monoclonal antibody to guinea pig milk fat globulemembrane. Am J Pathol,1985,118,351–359.
    [12] P Oquendo, E Hundt, J Lawler, et al. CD36directly mediates cytoadherence ofplasmodium falciparum parasitized erythrocytes, Cell,1989,58,95-101.
    [13] RH Lipsky, DA Sobieski, NN. Tandon, et al. Detection of GPIV (CD36) mRNA inNaka-platelets. Thromb Haemost,1991,65,456–457.
    [14] NA Abumrad, MR el-Maghrabi, EZ Amri,et al. Cloning of a rat adipocyte membraneprotein implicated in binding or transport of long-chain fatty acids that is inducedduring preadipocyte differentiation Homology with human, CD36. J BiolChem,1993,268,17665–17668.
    [15] TJ Aitman, AM Glazier, CA Wallace, et al. Identification of Cd36(Fat) as aninsulin-resistance gene causing defective fatty acid and glucose metabolism inhypertensive rats, Nat Genet,1999,21,76–83.
    [16] J Han, DP Hajjar, M Febbraio, et al. Native and modified low density lipoproteinsincrease the functional expression of the macrophage class B scavenger receptor,CD36. J Biol Chem,1997,272,21654–21659.
    [17] EH Hwang, J Taki, S Yasue,et al. Absent myocardial iodine-123-BMIPP uptake andplatelet/monocyte CD36deficiency. J Nucl Med,1998,39,1681–1684.
    [18] MC Lam, KC Tan, KS Lam. Glycoxidized low-density lipoprotein regulates theexpression of scavenger receptors in THP-1macrophages. Atherosclerosis,2004,177,313–320.
    [19] E Griffin, A Re, N Hamel, et al. A link between diabetes and atherosclerosis: Glucoseregulates expression of CD36at the level of translation. Nat Med,2001,7,840–846.
    [20] A Bonen, SE Campbell, CR Benton, et al. Regulation of fatty acid transport by fattyacid translocase/CD36, Proc Nutr Soc,2004,63,245–249.
    [21] DJ Moore, JM Gregory, YA Kumah-Crystal, et al. Mitigating microandmacro-vascular complications of diabetes beginning in adolescence, Vasc Health RiskManag,2009,5,1015–1031.
    [22] T Abe, M Shimamura, K Jackman, et al. Key role of CD36in Toll-like receptor2signaling in cerebral ischemia, Stroke,2010,41,898–904.
    [23] A Negre-Salvayre, R Salvayre, N Auge, et al. Hyperglycemia and glycation indiabetic complications, Antioxid. Redox Signal,2009,11,3071–3109.
    [24] F Nussenbaum, IM Herman. Tumor angiogenesis: insights and innovations, JOncol,2010,132641.
    [25] A Handberg, K Levin, K Hojlund, et al. Identification of the oxidized low-densitylipoprotein scavenger receptor CD36in plasma: a novel marker of insulin resistance,Circulation,2006,114,1169–1176.
    [26] K Miyaoka, T Kuwasako, K Hojlund, et al. CD36deficiency associated with insulinresistance, Lancet,2001,357,686-687.
    [27] D Masuda, K Hirano, H Oku, et al. Chylomicron remnants are increased in thepostprandial state in CD36deficiency, J Lipid Res,2009,50,999–1011.
    [28] D Greco, A Kotronen, J Westerbacka, et al. Gene expression in human NAFLD, Am JPhysiol Gastrointest Liver Physiol,2008,294,G1281–G1287.
    [29] DPY Koonen, RL Jacobs, M Febbraio, et al. Increased hepatic CD36expressioncontributes to dyslipidemia associated with diet-induced obesity, Diabetes,2007,56,2863–2871.
    [30] LP Bechmann, RK Gieseler, JP Sowa, et al. Apoptosis is associated with CD36/fattyacid translocase upregulation in non-alcoholic steatohepatitis, Liver Int,2010,30,850–859.
    [31] JM Fernandez-Real, A Handberg, F Ortega, et al. Circulating soluble CD36is anovel marker of liver injury in subjects with altered glucose tolerance, J NutrBiochem,2009,20,477–484.
    [32] T Tanaka, T Nakata, T Oka, et al. Defect in human myocardial long-chain fatty aciduptake is caused by FAT/CD36mutations, J Lipid Res,2001,42,751–759.
    [33] H Hanawa, K Watanabe, T Nakamura, et al. Identification of cryptic splice site, exonskipping, and novel point mutations in type I CD36deficiency, J Med Genet,2002,39,286–291.
    [34] X Ma, S Bacci, W Mlynarski, et al. A common haplotype at the CD36locus isassociated with high free fatty acid levels and increased cardiovascular risk inCaucasians, Hum Mol Genet,2004,13,2197–2205.
    [35] A Handberg, M Norberg, H Stenlund, et al. Soluble CD36(sCD36) clusters withmarkers of insulin resistance, and high sCD36is associated with increased type2diabetes risk, J Clin Endocrinol Metab,2010,95,1939–1946.
    [36] A Morabia, BM Ross, MC Costanza, et al. Population-based study of SR-BI geneticvariation and lipid profile, Atherosclerosis,2004,175,159–168.
    [37] F Lepretre, C Cheyssac, P Amouyel, et al. A promoter polymorphism in CD36isassociated with an atherogenic lipid profile in a French general population,Atherosclerosis,2004,173,375–377.
    [38] L Love-Gregory, R Sherva,L Sun, et al. Variants in the CD36gene associate with themetabolic syndrome and high density lipoprotein cholesterol, Hum Mol Genet,2008,17,1695-1704.
    [39] L Love-Gregory, R Sherva, T Schappe, et al. Common CD36SNPs reduce proteinexpression and may contribute to a protective atherogenic profile, Hum MolGenet,2011,20,193–201.
    [40] M Banerjee, S Gautam, M Saxena, et al. Association of CD36gene variantsrs1761667(GNA) and rs1527483(CNT) with Type2diabetes in North Indianpopulation, Int J Diab Mellitus,2010,2,179–183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700