用户名: 密码: 验证码:
川牛膝多糖对小鼠免疫反应的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传染病特别是病毒性传染病,在全世界范围内对畜牧业造成严重损失,接种疫苗是目前控制传染病最有效的手段。然而,养殖场虽然按免疫程序进行了严格的疫苗接种,但在很多情况下动物仍然难以产生有效的免疫应答,至使很多传染病不能完全被控制。如注射疫苗的同时,配合应用适当的免疫增强剂可以辅助疫苗产生较好的免疫应答,提高其免疫效力,从而提高疫苗免疫的效果。应用免疫增强剂成为目前提高疫苗免疫效果的重要手段之一。现有的研究表明,中药及其有效成分能够显著提高疫苗的免疫效果,很多中药及其主要成分作为疫苗的免疫增强剂已开始在动物及人的临床上使用。四川省是我国最大的中药产区,四川道地药材一向以其品质优而著称。本论文在现有文献的基础上选取10种具有免疫调节作用的四川产道地药材,包括川牛膝,川杜仲,川明参,川麦冬,川续断,川丹参,川泽泻,川芎,川白芷,川佛手;从中筛选出具有免疫增强作用的药材,并进一步研究其水提物的主要成分对疫苗免疫反应的影响及分子机理,为进一步从川产道地药材中开发免疫增强剂提供科学依据。本文具体开展的研究和取得的结果如下:
     1.十种川产道地药材水提物对小鼠注射卵清白蛋白(OVA)免疫反应的影响
     目的从10种川产道地药材中筛选出能够增强OVA受免小鼠免疫反应的中药。方法选取4-6周龄ICR小鼠为试验动物。将每种药材水提物设置高、中、低三个剂量组,每组5只,水提物灌胃0.25mL/只,1次/d,连续灌胃4d后,注射OVA进行首次免疫,两周后二次免疫,二免后14d进行眼眶采血,检测OVA特异性IgG水平。对IgG水平较高的几种中药进一步测定其特异性抗体亚类的水平。结果与对照组相比,川牛膝能显著提高OVA受免小鼠血清中特异性IgG、IgG1、IgG2a和IgG2b水平(P<0.05)。川明参、川杜仲可以显著提高受免小鼠血清中OVA特异性IgG水平(P<0.05)。
     2.口服川牛膝水提物对小鼠注射卵清白蛋白(OVA)后免疫反应的影响。
     目的观察不同剂量川牛膝水提物(RC)对小鼠注射卵清蛋白(OVA)后免疫反应的影响。方法试验选取4-6周龄ICR小鼠42只,随机分为6组,每组7只。各试验组小鼠分别灌服RC(0、0.05、0.1、0.2、0.4和0.8g),连续给药4d后,注射OVA进行首次免疫,间隔14d后二次免疫。二免后2周采集血清测定OVA特异性IgG和IgG亚类水平,同时无菌取脾,测定淋巴细胞增殖能力,淋巴细胞分泌细胞因子的水平。结果结果显示,与对照组相比在二免后14d,RC(0.2、0.4和0.8g)诱导产生了较高水平的OVA特异性IgG和抗体亚类IgG1, IgG2a, IgG2b; RC促进了淋巴细胞,增值反应,同时能够显著增加淋巴细胞分泌IL-4、IFN-γ的水平,另外,RC对实验鼠的体重无任何影响。结论川牛膝水提物能显著促进OVA受免小鼠体液免疫反应,细胞免疫反应和细胞因子的分泌。
     3.川牛膝多糖(RCPS)在体外对淋巴细胞免疫活性的影响
     目的探讨川牛膝多糖在体外对淋巴细胞免疫活性的影响。方法本试验提取了川牛膝多糖(RCPS),检测RCPS对小鼠脾淋巴细胞的最大无毒浓度,在无毒浓度范围内,将RCPS与脾淋巴细胞共同培养,观察RCPS对淋巴细胞增殖(?)淋巴细胞分泌细胞因子IL-4、IFN-γ和"NK细胞的杀伤活性的影响。结果结果表明,RCPS在淋巴细胞上的最大无毒浓度为500μg/mL。浓度为31.25、125和500μg/mL的川牛膝多糖能够显著促进T、B淋巴细胞的增殖,显著促进淋巴细胞分泌细胞因子IL-4、IFN-γ,显著促进NK细胞的杀伤活性。结论川牛膝多糖在体外能促进T、B淋巴细胞增殖,促进淋巴细胞分泌细胞因子,促进NK细胞的杀伤活性。
     4.川牛膝多糖(RCPS)对小鼠注射卵清蛋白(OVA)后免疫反应的影响
     目的探讨口服RCPS对小鼠注射卵清蛋白(OVA)后体液免疫和细胞免疫反应的影响,进而探讨了其增强免疫反应的机制。方法试验选取4-6周龄ICR小鼠42只,随机分为6组,每组7只。试验组小鼠免疫前分别灌服不同剂量RCPS(0,25,50,100mg/kg体重),连续给药4d后,注射OVA进行首次免疫,间隔14d后二次免疫。二免后2周采集血清测定抗体和抗体亚类水平,同时无菌取脾,测定淋巴细胞增殖能力,胞内细胞因子的表达水平,腹腔巨噬细胞吞噬活性、NK细胞和CTL细胞杀伤能力,共刺激信号分子(CD40、CD80和CD86)和CD4+CD25+Foxp3+Treg细胞的表达水平。结果结果显示,与对照组相比在二免后14d, RCPS促进了淋巴细胞增值反应,诱导产生了较高水平的OVA特异性IgG和IgG亚类IgG1, IgG2a, IgG2b,同时能够上调CD4+T细胞IL-2、IL-4、IFN-γ和CD8+T栅IFN-γ的表达,并增强了腹腔巨噬细胞的吞噬活性,NK细胞和CTL细胞杀伤能力:RCPS显著上调了树突细胞(DCs)表面分子CD40、CD80和CD86的表达水平,显著下调了Treg细胞的表达水平。结论综上所述,免疫前口服RCPS可提高OVA受免小鼠Th1、Th2型免疫反应,从而增强了小鼠的细胞和体液免疫反应,其免疫增强作用的机制可能是通过促进树突细胞成熟和下调Treg细胞的表达来激活T细胞引发免疫反应。
     5.川牛膝多糖(RCPS)对小鼠注射口蹄疫疫苗后免疫反应的影响
     目的探讨口服RCPS对小鼠注射O型口蹄疫疫苗后体液免疫和细胞免疫反应的影响,进而探讨了其增强免疫反应的分子机制。方法试验选取4-6周龄ICR小鼠60只,随机分为6组,每组10只。试验组小鼠免疫前分别灌服不同剂量RCPS (0,25,50,100mg/kg体重),连续给药4d后,注射口蹄疫疫苗进行首次免疫,间隔14d后二次免疫。二免后2周采集血清检测特异性IgG和IgG亚类的水平。同时无菌采集脾脏,制备脾细胞悬液,测定淋巴细胞增殖指数,胞内细胞因子(CD4+T细胞IL-2、IL-4、IFN-γ和CD8+T细胞IFN-γ)的表达水平,腹腔巨噬细胞吞噬活性,NK、CTL细胞的杀伤活性,共刺激分子(CD40, CD80, CD86)的表达水平,CD4+CD25+Foxp3+调节性T细胞的表达率。同时应用实时定量PCR检测了细胞因子(IL-2、IL-4.IL-10、 IFN-γ),内源性抗原肽(MHCⅠ)、外源性抗原肽(MHCⅡ)、CXC趋化因子受体4(CXCR4)、CC趋化因子受体7(CCR7)、TOLL样受体2(TLR-2)、TOLL样受体4(TLR-4)、转录因子T-bet、GATA-3、转化生长因子p(TGF-β)等分子mRNA表达水平。结果结果显示,与对照组相比在二免后14d, RCPS诱导产生了较高水平的IgG和IgG亚类(IgG1, IgG2a, IgG2b),促进了淋巴细胞增值反应和腹腔巨噬细胞的吞噬能力,并增强了NK细胞和CTL细胞杀伤活性,同时能够上调了CD4+T细胞IL-2、IL-4、IFN-y和CD8+T细胞IFN-γ的表达。明显增强了共刺激信号分子(CD40,CD80, CD86)的表达水平,明显下调了调节性T细胞CD4+CD25+Foxp3+的表达百分比。上调了细胞因子(IL-2、IL-4、IL-10、IFN-y), MHC Ⅰ, MHC Ⅱ, CXCR4, CCR7, TLR-2, TLR-4等信号通路分子的mRNA表达水平,下调了TGF-β mRNA表达水平。结论RCPS配合FMD疫苗免疫小鼠,显著增强了小鼠体液免疫和细胞免疫水平,其机制可能是通过激活TLR-2, TLR-4信号通路促进树突细胞的成熟和迁移和通过下调TGF-p和CD4+CD25+Foxp3+的表达途径增强了小鼠对FMD疫苗的免疫反应。
     6.本研究的结论
     综上所述,口服川牛膝多糖能增强模式抗原OVA和口蹄疫疫苗受免小鼠体液免疫、细胞免疫反应和Th1、Th2型细胞因子的产生。初步阐明其机制可能是通过激活TLR-2, TLR-4信号通路,促进树突细胞的成熟,和下调TGF-β和Treg细胞的表达,引发机体免疫反应,提高疫苗的免疫效果。另外,川牛膝多糖配合疫苗能诱导产生平衡的Th1、Th2型免疫反应,其分子机制是通过上调T-bet和GATA3的基因表达调控初始T同时向Th1/Th2型细胞发育。
Infectious diseases, especially virus diseases, are worldwide concern as they usually cause great loss in domestic animal and poultry industry. Vaccination remains the most effective biomedical approach for the control of infectious diseases. Although the strict immune program had been taken in the farms, some infectious diseases are still hard to be controlled due to the lack of effective immune responses to vaccination. The majority of vaccines require association with adjuvants capable of increasing the potency or stimulating the appropriate immune response. The application of adjuvant, one of the methods to improve the efficacy of vaccine, has been considered as an important strategy. There are many growing evidences that medicinal herbs and the ingredients enhance the immune response to vaccines direct against infectious agents. Several herbal extracts as adjuvant of vaccines has been use in the human and animal clinical trials."Sichuan herbs" are well known because the medicinal quality of the herbals Produced in Si Chuan Province believed to be better than in other Province of China. We choose ten well known herbs include Cyathula officinalis Kuan, Eucommia ulmoides Oliv, Chuanminshen violaceum, Ophiopogon japonicus,Alisma orientalis,Salvia miltiorrhiza, Dipsacaceae, Rhizoma Ligustici Chuanxiong, Radix Angelicae Dahuricae, bergamol. screening the immunoenhancement herbs from those ten "Sichuan herbs"and following to study the Effects of oral administration of herbals extract on immuno response to the vaccination in mice. The relating studies carried out and results obtained are as follows:
     1. Effects of ten Sichuan herbals Extract on the Immune Responses to Ovalbumin in Mice
     Objective This study was investigated the effects of oral administration the water extract from the ten Sichuan herbs on the immune responses in mice immunized with ovalbumin (OVA). Method One hundred fifty five Institute of Cancer Research (ICR) mice were randomly divided into Thirty one groups with five animals in each group, and daily orally administered daily for4days with a high, medium or low dose of herbal exract respectively. After that, the animals were subcutaneously immunized twice with OVA (10μg) at2-week intervals. Blood samples were collected on day14after,boosting for, measurement of OVA-specific IgG titers and the IgG subclasses. Results Our data indicated that the OVA-specific IgG titers and the level of IgG subclass was significantly enhanced in mice orally administered exact of Radix Cyathulae officinalis Kuan (RC) when compared to the control group (P<0.05). OVA-specific IgG titers were significantly improved in mice orally administered the exact from Eucommia ulmoides Oliv and the Chuanminshen violaceum when compared to the control group (P<0-05).
     2. Effects of the Extract from Radix Cyathulae (RC) on the Immune Responses to Ovalbumin in Mice
     Objective This study was designed to evaluate the effects of oral administration of the water extract from the Radix Cyathula (RC) on the immune responses in mice immunized with ovalbumin (OVA). Method Forty two Institute of Cancer Research (ICR) mice were randomly divided into six groups with seven animals in each group, and orally administered daily for4days at a dose equivalent to0,0.05,0.1,0.2,0.4or0.8g of the RC exract, respectively. After that, the animals were subcutaneously immunized twice with OVA at2-week intervals. Blood samples and spleen were collected on day14after boosting for measurement of OVA-specific IgG titers and the IgG subclasses, lymphocyte proliferation as well as the production of IL-4and IFN-y. Results Our data indicated that the OVA-specific IgG titers and the level of IgG subclass was significantly enhanced in mice orally administered RC at the dose of0.2,0.4or0.8g when compared to the control group (P<0.05). The splenocyte proliferation response and the production of IL-4and IFN-y were also significantly improved (P<0.05). Besides, the body weight of the mice administered with the RC extract (0,0.1,0.2,0.4or0.8g) was no significant difference compared to the mice administered saline.Considering the immunomodulatory effect and safety of RC presented in this study, it deserves further investigation to evaluate the potential improvement of vaccination in other animals such as pigs, goats and cattle. Conclution Our data show that RC significantly enhanced OVA-specific IgG and IgG subclasses titers, lymphocyte proliferation, the production of IL-4and IFN-y.
     3. Effects of Polysaccharide from the Radix Cyathulae officinalis Kuan (RCPS) on the Immune Activity of Lymphocyte in vitro
     Objective This study was to extract Polysaccharide from the Radix Cyathulae officinalis Kuan (RCPS) and to explore the effects on the immune activity in vitro. Method firstly, the highest non-toxic concentrations of RCPS on splenocytes were measurement. Effect of RCPS on lymphocyte proliferation, the production of IL-4and IFN-y from lymphocyte, NK cell Killing activity were investigated. Results The results showed that the highest non-toxic concentrations of RCPS at500μg/mL, The splenocyte proliferation response and the production of IL-4and IFN-γ were also significantly improved (P<0.05) after the splenocytes were stimulated by RCPS. Besides, RCPS promoted the NK cell activity. Conclution Our findings show that RCPS significantly enhanced lymphocyte proliferation, the production of IL-4and IFN-y and NK activity in vitro.
     4. Effects of the Polysaccharide from the Radix Cyathulae officinalis Kuan (RCPS) on the Immune Response to Ovalbumin in Mice
     Objective This study was designed to investigate the effects of oral administration of the polysaccharide from the Radix Cyathulae officinalis Kuan (RCPS) on the specific cellular and humoral immune responses in mice. Methods Forty two ICR mice were randomly divided into six groups (n=7), and orally administered at a dose equivalent to0,25mg,50mg,100mg of the RCPS for continuous4days respectively. After that, the animal were subcutaneously immunized twice with OVA at2weeks intervals. Blood samples and spleen collected on day14after boosting for measurement including serum OVA-specific antibody level, lymphocyte proliferation, expression of surface and intracellular molecules, phagocytic capacity of peritoneal macrophage, NK (Nature killer) and CTL (cytotoxic lymphocyte) Killing activity, The frequency of costimulatory molecule (CD40, CD80, CD86) and CD4+CD25+Foxp3+Treg cells. Results In this study, our findings demonstrated that oral administration of RCPS significantly enhanced OVA-specific IgG, IgG1, IgG2a, and IgG2b antibody titers, splenocyte proliferation, the phagocytic capacity of peritoneal macrophage, and the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). Furthermore, RCPS promoted the level of interleukin-2(IL-2), IFN-γ and IL-4in CD4+T cells and level of IFN-y in CD8+T cells. In addition, RCPS enhanced the expression of CD40, CD80and CD86on the dendritic cells (DCs). Importantly, RCPS down-regulated the frequency of CD4+CD25+Foxp3+Treg cells. C Taken together, these results suggested that RCPS could increase both cellular and humoral immune responses via up-regulating-DCs maturation, and suppressing Treg frequency.
     5. Effects of the Polysaccharide from the Radix Cyathulae officinalis Kuan (RC)on the immune Response to Foot-and-Mouth Disease Vaccine in Mice
     Objective This study was designed to investigate the effects of oral administration of the polysaccharide from the Radix Cyathulae officinalis Kuan (RCPS) on the specific cellular and humoral immune responses in mice to explore its mechanisms. Methods Sixty ICR mice were randomly divided into six groups (n=10), and orally administered at a dose equivalent to0,25,50,100mg of the RCPS for continuous4days respectively. After that, the animal were subcutaneously immunized twice with FMDV vaccine at2weeks intervals. Blood samples and spleen collected on day14after boosting for measurement of were determined, including serum antibody level, lymphocyte proliferation, the phagocytic capacity of peritoneal macrophage, Natural killer cell (NK) and cytotoxic T lymphocyte(CTL) activity, expression of surface and intracellular molecules, the frequency of CD4+CD25+Foxp3+regulatory T cells (Treg cells), the mRNA level of interleukin-2(IL-2), interleukin-4(IL-4), interleukin-10(IL-10), interferon-y (IFN-y), major histocompatibility complex Ⅰ (MHC Ⅰ), major histocompatibility complex Ⅱ (MHCⅡ), CXC chemokine receptor4(CXCR4), CC chemokine receptor7(CCR7), Toll like receptor2(TLR-2), Toll like receptor4(TLR-4), transcription factor T-bet, GATA-3,transforming growth factor-β (TGF-β) were detected by Real-Time PCR. Results In this study, our findings show that addition of the RCPS increased FMDV-specific antibody production, lymphocyte proliferation, phagocytic capacity of peritoneal macrophage, NK and CTL activity. Production of IL-2, IFN-y and IL-4in CD4+T cells and IFN-y in CD8+T cells were dramatically:increased. Expression-of CD40,CD80, CD80,CD86were was significantly increased. In addition, the frequency of CD4+CD25+Foxp3+regulatory T cells were down-regulated. The mRNA expression of the MHC I, MHC II, CXCR4, TLR-2TLR-4, T-bet, GATA-3, IL-2, IL-4, IL-10, IFN-y were up-regulated. The mRNA level of TGF-β were down-regulated. Conclution Taken together, these results demonstrate that RCPS can enhance both cellular and humoral immune responses via up-regulating DCs maturation through TLR2, TLR4signaling pathway, and inhibit the expression of TGF-β and frequency of Treg cells.
     6. Conclution of this study
     Taken together, these results demonstrate that RCPS can enhance both cellular and humoral immune responses in mice immunized with FMD vaccine via up-regulating DCs maturation through TLR2, TLR4signaling pathway, and inhibit the expression of TGF-β and frequency of Treg cells. RCPS promoted a balanced Thl/Th2immune response via the develop of ThO cells to Thl/Th2cells through up-regulated T-bet, GATA-3mRNA level.
引文
[1]明·缪希雍.神农本草经疏[M].北京:中医古藉出版社,2002,137.
    [2]倪青松,王斌,李旭廷.川牛膝多糖对鸡血清抗体和血液生化指标的影响[J].四川畜牧兽医,2011,6:27-31.
    [3]罗李媛,贾仁勇,殷中琼,等.川牛膝多糖对鸡免疫器官和免疫活性细胞动态变化的影响[J].黑龙江畜牧兽医,2008,1:82-83.
    [4]王剑,付田,蒲蔷,何开泽,张国林.川牛膝多糖的体内免疫活性研究[J].中药药理与临床,2007,23(6):31-33.
    [5]贾仁勇,周墨梅,葛宇,等.川牛膝多糖对鸡红细胞免疫及外周血淋巴细胞免疫功能的影响[J].中国兽医杂志,2009,(45)1:35-38.
    [6]李祖伦,石圣洪,陈红.川牛膝多糖促红细胞免疫功能研究[J].中药药理与临床,1999,15(4):26-67.
    [7]Chen H, Liu YP. The elementary anti-tumor research of Cyathula officinalis Kuan polysaccharide [J]. J Chengdu Uni TCM,2001,24(1):49-50.
    [8]陈绍红,高志杰,刘艳芬.杜仲素对贵妃鸡生产性能和免疫功能的影响[J].中国畜牧兽医,2009,36(4):25-27.
    [9]路振香,祝玉,宁康健,等.复方杜仲对AA肉仔鸡新城疫HI抗体效价的影响[J].中国试验方 剂学杂志,2007,13(9):522-524.
    [10]Gonda R. An acidic polysaccharide having activity on the reticufoen dothelial system from the bark of Eucommia ulmoides[J]. Chem Pharm Bull,1990,38(7):1966.
    [11]徐诗伦,等.杜仲对机体非特异性免疫功能的影响[J].中草药,1993,14(8):27.
    [12]黄红莹,杜红岩,李钦,等.杜仲雄花水提液上调抑制状态下小鼠淋巴细胞功能的作用[J].中药材,2010,33(3):431-435.
    [13]朱宇红,等.杜仲不同炮制品增强免疫作用[J].比较中国中药杂志,1997,22(10):597.
    [14]邱果,包旭,李颖,等.杜仲叶醇提取物对小鼠免疫功能的影响中药药理与临床2008,24(4):41-43.
    [15]陈绍红,高志杰,刘艳芬.杜仲素对贵妃鸡生产性能和免疫功能的影响[J].中国畜牧兽医,2009,36(4):25-27.
    [16]辛晓明,郭桂丽,王浩.杜仲多糖对环磷酰胺致小鼠毒性的影响[J].时珍国医国药,2009,20(7):1664-1667.
    [17]辛晓明,王大伟,赵娟,等.杜仲多糖抗肿瘤的试验研究[J].医药导报,2009,28(6):719-720.
    [18]张梅,雨田,苏筱琳,等.川明参镇咳祛痰药理作用研究[J].时珍国医国药,2006,17(7):1121-1122
    [19]邵承斌,吴鹤麟.川明参与北沙参中氨基酸的测定[J].渝州大学学报,1996,13(4):21-23.
    [20]李帮经,彭树林,梁健,等.川明参须根中的化学成分[J].中草药,2004,35(6):616-618.
    [21]张梅,雨田,苏筱琳,等.川明参多糖的理化性质和免疫活性研究[J].华西药学杂志,2007,22(4):396-398.
    [22]苏筱琳,张梅,雨田.川明参对小鼠T淋巴细胞增殖反应的影响[J].中药药理与临床2008,24(3):78-79.
    [23]张梅,苏筱琳,雨田,等.川明参药理作用初步研究[J].中药药理与临床,2007,23(2):49-51.
    [24]国家药典委员会.中华人民共和国药典,2005年版[s].北京:化学工业出版社,2005,20,122.
    [25]邓小云,丁登峰,戴美红,等.植物多糖药理作用研究进展[J].中医药导报,2006,12(9):86-88.
    [26]余伯阳,殷霞,张春红.麦冬多糖的免疫活性研究[J].中国药科大学学报,1991,22(5):286-288.
    [27]汤军,黄琦,徐志瑛,等.麦冬多糖的免疫活性研究[J].中国中医基础医学杂志,1998,4(9):44-46.
    [28]余伯阳,殷霞,湖北麦冬与浙麦冬质量的研究-免疫活性比较[J].中国中药杂志,1991,10(16):584-585.
    [29]张继红,焦晓明,李儒新,等.沙参麦冬汤对运动小鼠免疫功能的影响[J].中国康复医学杂志,2009,5:45-47.
    [30]余伯阳,殷霞.短葶山麦冬皂甙的药理活性研究[J].中国药科大学学报,1994,5(25):286-288.
    [31]韩凤梅,刘春霞,陈勇.山麦冬多糖对免疫低下小鼠的保护作用[J].中国医药学报,004,19(6): 347-348.
    [32]苟兴能,张克,杨兴江,等.川麦冬多糖对恒磁场致小鼠免疫损伤的防护作用[J].四川中医,2009,5:18-20
    [33]韩彦华.沙参麦冬汤在小儿肺炎恢复期中的应用[J].临床合理用药杂志,2009,24:378-379.
    [34]徐强,王蓉.短葶山麦冬皂苷对迟发型变态反应及炎症反应的影响[J].中国药科大学学报,1993,2(24):95-101.
    [35]钟美英,申玉华.川续断的研究现状[J].中医药导报,14(6):137-139.
    [36]石扣兰,李丽芬,车月英,等.川续断对小鼠免疫功能的影响[J].中药药理与临床,1998,14(1):36-37.
    [37]国家中医药管理局中华本草编委会.中华本草(第七卷)[M].上海:上海科学技术出版社,1999,587-588.
    [38]严忠红.川续断根部免疫调节多糖的分离和化学性质[J].国外医药,植物学分册,1998,13(3):122-123.
    [39]王一涛,王家葵,杨奎,等.续断的药理学研究[J].中药药理与临床,1996,12(3):20-23.
    [40]赵连根.几类补益药对机体防御机能作用的比较研究[J].中医杂志,1990,31(4):52.
    [41]苗戎,陈静,高岚丹参对肺泡巨噬细胞分泌功能的影响[J].天津中医学院学报,1998,17(1):389
    [42]许峰,陆伯刚,姚智,等.丹参及丹参素对内毒素刺激下肝巨噬分泌细胞因子影响的动态观察[J].中国危重病急救医学,1996,8(5):262.
    [43]Jiang Kai-Yu, Ruan Cheng-Geng, Gu Zhen-Lun. Effects of tanshonone ⅡA sulfonate on adhesion molecule expression of endothelial cells and platelets in vitro [J]. Acta Pharmacological Sinica, 1998,19(1):47.
    [44]罗千古,周玖瑶,李毓祺,等.黄芪丹参提取液对小鼠免疫系统的影响[J].中医药导报,2011,8(2):23-25.
    [45]郝志勇,马世彬,何维.丹参提取物对氧化衰老模型小鼠的免疫保护作用[J].哈尔滨商业大学学报(自然科学版),2003,19(3):2555-258.
    [46]周薇莉,张剑峰.复方丹参对肠套叠患儿肠道黏膜免疫功能的影响[J].中国综合临床,2006,22(11):1046-1048.
    [47]李柏钧,王志维,王龙.丹参注射液对体外循环术后红细胞免疫的影响[J].新乡医学院学报,2009,26(1):77-79.
    [48]祝绚,鲍依稀,李进.云芝、丹参对EAC荷瘤小鼠的抗肿瘤及免疫调节的作用[J].免疫学杂志,2008,24(3):275-278.
    [49]马文军,刘江静,徐淑琴.复方丹参提取物对Hep瘤体及荷瘤小鼠免疫功能的影响[J].甘肃科技,2004,20(12):157-159.
    [50]汤伟,彭求贤,蔡红兵.丹参多糖对免疫抑制小鼠单核吞噬细胞吞噬功能的影响[J].时珍国医国药,2011,22(10):2484-2486.
    [51]段玉峰,李淼,王应强,等.丹参糖蛋白提取物免疫活性研究[J].中成药,2008,30(8):1213-1215.
    [52]尹春萍,吴继洲.泽泻及其活性成分免疫调节作用研究进展[J].中草药,2001,32(12):930
    [53]丁霞,吴水生.泽泻的研究进展[J].中医药信息,2008,25(5):19-21.
    [54]范智超,张志琪.川芎多糖的提取、纯化及抗氧化活性的研究[J].天然产物研究与开发,2005,17(5):561-563.
    [55]郭静.川芎嗪注射液对早期糖尿病肾病患者IL-6、TNF-α和CRP的影响[J].中国美容医学,2011,20(5):274-275.
    [56]马敏,马华,张京平,等.诃免脱敏胶囊的药效及急性毒性研究[J].中国药物与临床,2004,4(10):800.
    [57]吕立珍,王海涛,王连文,等.鼻敏合剂对变态性鼻炎患者血清和鼻腔分泌物中IgE、IgG4、 IL-4和IL-12含量的影响[J].中国中西医结合耳鼻喉科杂志,2004,12(6):303.
    [58]蒋桂华,张绿明,马逾英.白芷综合开发利用研究进展及展望[J].时珍国医国药.2008,19(11):2718-2719.
    [59]黄玲,张敏.佛手多糖对小鼠免疫功能的影响[J].时珍国医国药,1999,10(5):324-325.
    [60]黄玲,邝枣园,张敏.佛手多糖对环磷酰胺造模小鼠巨噬细胞的影响[J].广州中医药大学学报,2000,179(1):58-60.
    [61]陆承平主编.兽医微生物学[M].北京:中国农业出版社,2001,127-128.
    [62]Du, X.G., Chen, X.B., Zhao, B. Astragalus polysaccharides enhance the humoral and cellular immune responses of hepatitis B surface antigen vaccination through inhibiting the expression of transforming growth factor b and the frequency of regulatory T cells[J]. FEMS Immunol. Med. Microbiol,2011,63:228-235
    [63]孔祥峰.9种中药成分对新城疫ⅣV系疫苗免疫雏鸡血清中血凝抑制抗体水平的影响[J].畜牧兽医学报,2004,35(4):468-472.
    [64]谢国秀,王芙艳,杨忠东.茯苓多糖对流感灭活疫苗的免疫增强作用生命科学研究,2009,6,13(3):246-251.
    [65]Xu, H.S., Wu, Y.W., Xu, SF. Antitumor and immunomodulatory activity of Polysaccharides from the roots of Actinidia eriantha[J]. Journal of Ethnopharmacology,2009,125:310-317.
    [66]李冬青,王宏梅.白术多糖对激发态小鼠体液免疫的效应[J].研究现代中西医结合杂志,2007,16(24):3472-3473.
    [67]贺新怀主编.中医药免疫学[M].北京:人民军医出版社,2002,94.
    [68]张红英,王亚宾,王学兵,等.板蓝根多糖对体外培养的猪脾脏淋巴细胞增殖及分泌细胞因子和NO的影响[J].河南农业大学学报,2009,43(2):173-176.
    [69]罗燕,邵永斌,谷新利.淫羊藿多糖对鸡免疫功能及疫苗免疫效果的影响[J].中国家禽,2009,1:34-36.
    [70]陈灵然,胡庭俊,程富胜,等.厥麻多糖对小鼠淋巴细胞增殖和一氧化氮分泌的影响[J].中 国兽医科技,2005,35(9):735-738.
    [71]Lai Chao-Yang, Hung Jung-Tung, Lin Hsin-Hung et al. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro [J].vaccine,2010,05:1-10.
    [72]帅学宏,胡庭俊,陈炅然.鬼臼多糖对小鼠免疫功能和抗氧化能力的影响[J].畜牧兽医学报,2008,39(7):1000-1004.
    [73]谭成明,房慧伶,胡庭俊.山豆根多糖对小鼠胸腺和脾脏淋巴细胞凋亡的影响[J].西南农业学报,2011,24(2):766-771.
    [74]康乐,姚东璧,胡庭俊.天门冬多糖对小鼠脾脏淋巴细胞体外增殖的影响[J].中国畜牧兽医,2010,37(10):15-18.
    [75]邱妍,崔保安,胡元亮,等.4种多糖对免疫雏鸡抗体效价和T淋巴细胞的影响[J].南京农业大学学报,2008,31(1):77-81
    [76]赵娟,刘凤华,邱河辉,等.黄芪多糖对PCV2阳性猪外周血免疫细胞及相关细胞因子的影响[J].中国兽医杂志,2010,46(3):3-5.
    [77]余国庆,陈晓明.多糖免疫受体研究进展[J].温州医学院学报,2012,42(4):396-402.
    [78]林卡莉,张赛男,林卡勤.香菇多糖对荷瘤鼠脾细胞因子和NK活性的调节作用[J].时珍国医国药,2011,22(5):1188-1189.
    [79]杨铁虹,贾敏,梅其炳.当归多糖组分AP-3诱生小鼠脾细胞IL-2和IFN-y的作用[J].药学学报,2006,41(1):54-57.
    [80]张建,韦星呈,鲍蕾.北冬虫夏草多糖对人肿瘤坏死因子a、白细胞介素2及其可溶性受体水平的影响[J].中国实用内科杂志,1997,17(12):727-729.
    [81]詹林盛,张新生,吴小红,等.褐藻多糖对小鼠淋巴细胞功能和细胞因子产生的影响[J].营养学报,2001,23(2):122-125.
    [82]毕薇薇.紫菜多糖对小鼠淋巴细胞IL-2分泌水平的影响[D].中国医科大学,2006:56-78.
    [83]朱科学,聂少平,李文娟.黑灵芝多糖对小鼠脾淋巴细胞增殖及诱生细胞因子的影响[J].31(19):351-352.
    [84]牛晓晖,纪凤兰,张伟,等.云芝多糖对小鼠细胞因子的影响[J].中国免疫学杂志,2006,22(12):1124-1127.
    [85]Siegel I, Liu TL, Giei Cher N. The red-cell immune system [J]. Lancet,1981,8246(2):556-559.
    [86]郭峰.红细胞免疫的研究和意义[J].自然杂志,2002,24(5):268-273.
    [87]贾仁勇,周墨梅,葛宇,等.川牛膝多糖对鸡红细胞免疫及外周血淋巴细胞免疫功能的影响[J].中国兽医杂志,2009,45(1):35-38.
    [88]靳录洋,李星艳.当归多糖对鸡红细胞免疫功能的影响[J].中兽医医药杂志,2011,5:55-57.
    [89]刘德义,孙运,顾有方大枣多糖对小鼠红细胞免疫功能的影响[J].中国中医药科技,2009,16(3):202-203.
    [90]段县平,赵锁花,李振国,等.口服姬松茸多糖对鸡疫苗免疫力及红细胞免疫功能影响的研究[J].中国畜牧兽医,2006,33(6):17-19.
    [91]李宏全,武彩红,高海,等.黄芪多糖对人工感染雏鸡红细胞免疫功能的影响[J].中国兽医科学,2006,36(1):74-79.
    [92]王艳杰,孙阳,李明珠,等.五味子多糖对S180荷瘤小鼠红细胞免疫抗肿瘤的作用[J].天津医药,2011,39(9):824-827.
    [93]Chisari F V, and Ferrari, C. Hepatitis B virus immunopathogenesis[J]. Annu Rev Immunol,1995, (13):29-60.
    [94]Milan, M., Diaz-Benjumea, F.J., Cohen, S.M.. Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: amodel for LMO oncogene function[J]. Genes Dev.1998,12(18):2912-2920.
    [95]崔颖杰,吴晓娟,郭岩,等.黄芪多糖对人用狂犬病疫苗免疫原性的影响[J].中国生物制品学杂志,2006,19(5):492-494.
    [96]郝习,赵明耀.枸杞多糖对树突状细胞的成熟及免疫学功能的影响[J].中医研究,2010,11,23(11):24-27.
    [97]侯元,霍德胜,魏艳君,等.草苁蓉多糖的抗肿瘤作用及免疫调节作用[J].吉林大学学报(医学版),2007,33(6):1022-1025.
    [98]石学魁,阮殿清,王亚贤,等.红花多糖抗肿瘤活性及对T739肺癌鼠CTL、NK细胞杀伤活性的影响[J].中国中药杂志,2010,35(2):215-218.
    [99]陈真,钱之玉,郭青龙,等.海洋真菌多糖YCP对荷瘤小鼠肿瘤生长及免疫功能的影响[J].中草药,2006,37(2):241-245.
    [100]王峻,周智东,夏大静,等.香菇多糖增强树突状细胞瘤苗的抗肿瘤作用及其机制研究[D].中国科学院上海冶金研究所,2007,27(1):60-64.
    [101]王翔岩,齐云,蔡润兰,等.肉从蓉多糖的巨噬细胞活化作用[J].中国药理学通报,2009,25(6):787-90.
    [102]刘华,田嘉铭,孙黎,等.正常小鼠巨噬细胞及外周血淋巴细胞亚群对防风多糖干预的反应们[J].中国组织工程研究与临床康复,2008,12(18):3475-3478
    [103]尹美珍,阮启刚,余桂朋,等.艾叶多糖对体外培养巨噬细胞吞噬功能的影响[J].时珍国医国药,2012,23(1):162-163.
    [104]杨淳,田维毅.防风多糖对巨噬细胞分泌细胞因子的影响[J].贵阳中医学院学报,2011,33(4):31-33.
    [105]郑尧,何景华,高建华,等.甘草多糖对小鼠巨噬细胞吞噬功能的影响[J].中医药学刊,2003,21(2):254-255.
    [106]奚瑾磊,彭仁绣,杨哲琼.当归多糖及其中性组分对巨噬细胞分泌TNF-α的影响[J].武汉大学学报(医学版),2002,23(1):21-23.
    [107]钟建春,张艳,丁振涛,等.人工冬虫夏草多糖提取物对小鼠免疫功能的影响[J].中山大学学报(自然科学版),2011,50(6):99-102.
    [108]贺新怀主编.中医药免疫学阿[M].北京:人民军医出版社,2002,98.
    [109]Broeke L T, Daschbach EK, Thomas K, et al. Dendritic cell induced activation of adaptive and innate antitumor immunity[J]. J Immunol,2003,171(11):5842-5852.
    [110]Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells:the near future[J]. Int J Cancer,2001,94(4):459-473.
    [111]Randolph G J, Angeli V, Swartz M A. Dendritic cell trafficking to lymphnodes through lymphatic vessels[J]. Nat Rev Immunol,2005,5(8):617.
    [112]Pan M R, Hou M F, Chang H C, et al. Cyclooxygenase-2 up-Regulate's CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells [J]. J Biol Chem,2008,283(17):11155.
    [113]Banchereau J, Steinman R M. Dendritic cells and the control of Immunity [J].Nature, 1998,392(6673):245-252.
    [114]Austyn J M, Kupiec-Weglinski J W, H Sankin D F, et al. Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone[J]. J Exp Med,1988,167(2):646-651.
    [115]ROCK K. L. A new foreign policy:MHC class I molecules monitor the outside world[J]. Immunol Today,1996,17(3):131-137.
    [116]Baggiolini M. Chemokines and leukocyte traffic [J]. Nature,1998,392 (6676): 565-568.
    [117]irao M, Onai N, Hiroishi K et al. CC chemokine rceptor 7 dendritic cell is induced after interaction with at tumor cell:critical role in mioation from the tumor site to draining lymph nodes[J]. Cancer Research,2000,60(5):2209-2217.
    [118]Jang M H, Sougawa N, Tanaka T, etal. CCR7 is Critically important for migration of dendritic cells in intestinal lamina propia to mesenteric lymph nodes [J]. J Immunol, 2006,176(2):803-810.
    [119]Bleul C C, Fuhlbrigge R C, Casasnovas J M, etal. Ahighly efficacious lymphocyte chemo attractant, stromal cell derived factor 1(SDF-1)[J]. J Exp Med,1996,184(3): 1101-1109.
    [120]Steinman RM. The dendritic cell system and its role in immunogenicity[J]. J Annu Rev Immunol,1991,9:271-296.
    [121]Zhang N W, Li J F, Hu Y X. Effects of astragalus_response to foot-and-mouth disease vaccine in mice[J]. Carbohydrate Polymers, 2010,82:680-686.
    [122]Su BW, Wang JP, Wang X, et al. The effects of IL-6 and TNF-a as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination[J]. Vaccine,2008,26:5111-5122.
    [123]赵冰.黄芪多糖作为乙肝病毒DNA疫苗佐剂对小鼠免疫反应的影响[D].四川农 业大学硕十论文,2012,6:34-37.
    [124]Chang Z. L.. Important aspects of Toll-like receptors, ligands and their signaling pathways [J]. Inflammation Research,2010,59,791-808.
    [125]Smyth M.J., Dunn G.P. Robert D.. Schreiber Cancer Immunotherapy Immunosurveillance and Immunoediting:The Roles of Immunity in Suppressing Tumor Development and Shaping Tumor Immunogenicity [J]. Cancer Immunotherapy,2006,90,1-50
    [126]Shao B.M., Xu W., Dai H., Tu P., Li Z., Gao X.M.,. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb[J]. Biochem. Biophys. Res. Commun.,2004,320,1103-1111.
    [127]Nakano H. Signaling crosstalk between NF-kB and J NK [J]. Trends Immunol,2004, 25(8):402-405.
    [128]Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway [J]. Nat Immunol,2002,3(2):196-200.
    [129]Jin H, Li Y, Ma Z, Zhang F, Xie Q, Gu D, et al. Effect of chemical adjuvants on DNA vaccination [J]. Vaccine,2004,22(21-22):2925-2935.
    [130]Gu Q L, Huang X, Ren WH, Shen L, Liu BY, Chen SY. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency [J]. World J Gastroenterol,2007,13(44):5911-5917.
    [131]Schon M P, Schon M. TLR7 and TLR8 as targets in cancer therapy [J]. Oncogene 2008,27(2):190-199.
    [132]许文,李心群.猪苓多糖经TLR4刺激小鼠骨髓来源的树突状细胞成熟[J].温州医学院学报,2010,40(3):269-272.
    [133]Zhang Wenjuan, Du Xiaogang, Zhao Gang. Levamisole is a potential facilitator for the activation of Thl responses of the subunit HBV vaccination[J]. Vaccine,2009, 27 (2) 4938-4946.
    [134]Chattopadhyay S, Chakraborty NG, Mukherji B, et al. Regulatory T cells and tumor immunity[J]. Cancer Immunol Immunonother,2005,54:1153-1161.
    [135]Kao G, Stevenson K, Kim E, et al. Autologous peripheral blood stem cell products from patients with hematologic malignancies have increased frequency of regulatory T cells (CD4+FoxP3+Treg) [J]. ASHAnnual Meeting Abstracts,2008,112:2310.
    [136]Di Nunzio S, Cecconi M, Passerini L. Wild-type FOXP3 is selectively active in CD4+CD25 hi Regulatory T cells of healthy female carriers of different FOXP3 mutations [J]. Blood,2009,114:4138-4141.
    [137]Kubota K, Kato S, Watanabe S. Usefulness of endoscopic biopsy using FOXP3+Treg up-regulation in the duodenal papilla in the differential diagnosis between autoimmune pancreatitis and pancreatic cancer [J]. J Hepatobiliary Pancreat Sci., 2011,18:414-421.
    [138]Furuichi Y, Tokuyama H, Ueha S, et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+T cell response primed by DNA immunization [J]. World J. Gastroenterol,2005,11:3772-3777.
    [139]Masaki H Cherry I K, Masanori N, et al. IL-10 is required for regulatory T cells mediate tolerance to alloantigen in vivo [J]. J Immunol,2001,166(9):3789-3796.
    [140]Yamagiwa S, Gray J, Hashimoto S, etal. A role for TGF-β in the generation and expansion of CD4+CD25+regulatory T cells from human peripheral blood [J]. J Immunol,2001,166(12):7282-7289.
    [141]Brunkow ME, Jeffcry EW, Kathryn AH, et al. Disruption of a forkhead/winged-helix protein, scurf in, results in the fatal lymphoproliferative disorder of the scurfy mouse [J]. Nature Geneties,2001,27(1):68.
    [142]Misra N, Bayry J, Lacroix-Desmazes, et al.cutting edge:human CD4+CD25+T cells restrain the maturation and antigen-presenting function of dendritic cells[J]. J Immunol,2004,172:4676-4680.
    [143]Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4+CD25+ T cells in autoimmune liver disease[J]. J Hepatol,2004,41:31-37.
    [144]Walkerm R, Kasprowicz D J, Gersuk V H, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25. T cells. J Clin Invest. 2003,112:1437-1443
    [145]Toka F N, Suvas S, Rouse B T. CD4+CD25+T Cells regulate vaccine-generated primary and memory CD8+T-Cell responses against herpes simplex virus typel [J]. J.Virol,2004,78:13082-13089.
    [146]Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-1 maintains suppressor function and Foxp3 expression in CD4+CD25+regulatory T cells [J]. JEM 2005,201: 1061-1067.
    [147]Wang JP, Su BW, Din g Z et al. Cimetidine enhances immune response of HBV DNA vaccination via impairment of the regulatory T cells[J]. Biochemical and Biophysical Research Communications 2008,372:491-496
    [148]Zou Q, Zhong Y, Su H.et al. Enhancement of humoral and cellular responses to HBsAg DNA vaccination by immunization with praziquantel through inhibition TGF-beta/Smad2,3 signaling[J]. Vaccine,2010,28(8):2032-3038.
    [149]唐·蔺道人仙授理伤续断秘方.北京:人民卫生出版社,1957,78
    [150]明·李时珍.本草纲目(点校本上册)[M].北京:人民卫生出版社,1991,102-811
    [151]明·贾九如药品化义卷七.学枝司排印局枝印.31
    [152]清·汪昂.本草备要[M].北京:人民卫生出版社,1963,981
    [153]吴仪洛.本草从新.上海:上海出版社,1957,17.
    [154]清·张璐.本经逢原.上海:上海科学技术出版社,1959,78
    [155]张秉承.本草便读.上海:上海科学技术出版社,1957,17.
    [156]清-顾元交.本草便笺卷三.见:朱大年.历代本草精华丛书,上海:上海中医药大学出版社影印,1992.
    [157]石圣洪,宋军,李祖伦,等.川牛膝本草.成都中医药大学学报,1998,21(4):4.
    [158]黎万寿,陈幸,崔红梅.川牛膝的生产加工调查和开发利用[J].基层中药杂志,2000,14(6):251.
    [159]黎万寿,陈幸,李彬.正交法优选盐炙川牛膝最佳炮制工艺[J].时珍国医国药,2005,16(12):18-19.
    [160]马英HPLC法测定川牛膝中杯苋甾酮的含量[J].中草药,2000,31(6):7-9.
    [161]黎万寿,陈幸.川牛膝的品质研究[J].现代中药研究与实践,2003,17(4):21.
    [162]Chen H, Liu YP. The elementary anti-tumor research of Cyathula officinalis Kuan polysaccharide [J]. J Chengdu Uni TCM,2001,24(1):49-50.
    [163]徐婷,王微.川牛膝水煎液对自发性高血压大鼠血压和左心室肥厚的影响[J].长春中医药大学学报,2008,24(4):367-471.
    [164]启明,辛国,朱国琪.川牛膝醇提物对自发性高血压大鼠血压、心肌ACE活性及心肌细胞直径影响的研究[J].中国现代中药,2010,12(6):34-37
    [165]张仲起,张国侠,曲智勇.川牛膝醇提物对SHR大鼠血浆PGI2浓度影响[J].中国社区医师,2008,10(13):6.
    [166]刘彦灸,盖国忠.牛膝醇提物对肾脏转移生长因子蛋白表达的影响[J].吉林中医药,2008,28(6):454-455
    [167]陈红,石圣洪.中药川、怀牛膝对小鼠微循环及大鼠血液流变学的影响[J].中国微循环,1988,2(3):182
    [168]倪青松,王斌,李旭廷.川牛膝多糖对鸡血清抗体和血液生化指标的影响[J].四川畜牧兽医,2011,6:27-31.
    [169]贾仁勇,周墨梅,葛宇,等.川牛膝多糖对鸡红细胞免疫及外周血淋巴细胞免疫功能的影响[J].中国兽医杂志,2009,(45)1:35-38.
    [170]罗李媛,贾仁勇,殷中琼,等.川牛膝多糖对鸡免疫器官和免疫活性细胞动态变化的影响[J].黑龙江畜牧兽医,2008,1:82-83.
    [171]李祖伦,石圣洪,陈红.川牛膝多糖促红细胞免疫功能研究[J].中药药理与临床,1999,15(4):26-27.
    [172]宋军,杨金蓉.川牛膝多糖对小鼠肝癌细胞H22抑制作用研究[J].中药药理与临床,2001,17(3):15.
    [173]李乾五,葛玲,李生止.川牛膝提取物抗生育作用的试验研究[J].西安医科大学学报,1990,1(1):27.
    [174]全宏勋,侯士良,麦饭石.牛膝对早期鸡胚发育的影响[J].河南中医,1993,13(5):208.
    [175]宋树立.川牛膝水煎液小鼠妊娠的实验研究[J].中国医药学报,1994,9(4):232
    [176]丁杰龙.川牛膝多糖的抗肿瘤作用初探[J].中国民族民间医药,2009,13:46-48
    [177]Tian G Y, Li S T, Song M L, Zheng MS, Li w. Synthesis of Achyranthes polysaccharide sulfated and its antivirus activity[J]. Acta Pharm Sin,1995,30(2): 107-111.
    [178]刘颖华,何开泽.川牛膝多糖硫酸醋的体外抗单纯疱疹病毒2型活性[J].生物与环境生物学报,2004,10(1):46-50.
    [179]李献平,刘敏.川、怀牛膝对家蚕寿命的实验研究[J].北京针灸骨伤学院学报,1998,5(2):10.
    [180]孙水平,李新华,孙曙光.怀牛膝的药理研究续报[J].河南中医,1985,5(1):40.
    [181]王云飞 阙华发 四君子汤加川牛膝治疗慢性下肢溃疡60例[J].上海中医药杂志2012,3:24-25.
    [182]蒲昭和.萆薢化毒汤治风湿[J].家庭医药,2009,5:25.
    [183]吴敏田.牛膝内服外敷治疗膝关节炎25例[J].国医论坛,2008,23(3):
    [184]李林章,魏东华.通淋消石合剂的制备及临床疗效观察[J].中药材,2001,24(3):12.
    [185]王义,朱明艳,任洪志.目前我国畜禽传染病防制存在的问题[J].畜牧兽医科技信息,2004,6:44.
    [186]李鹰.猪禽新病2004年流行趋势与综合防制[J].畜禽业,2004,9:2-5.
    [187]Hu S, Concha C Lin F, Persson WK. unization adjuvant effect of ginseng extracts on the immune responses to immunization against Staphylococcus auteus in dairy cattle [J].VET Immunol Immunopathol,2003,91:29-37.
    [188]Scaglione F, Ferrara F, Dugnani S, Falchi M, santoro GF, immunomodulatory effects of two extracts of Panax ginseng CA. Meyer [J]. Drugs Exp Clin Res,1990, 16:537-542.
    [189]孙峻岭,薛家宾,胡元亮,等.中药成分复方的佐剂作用及其与中药复方的功效比较[J].南京农业大学学报,2005,28(4):109-112.
    [190]孔祥峰,胡元亮,李祥瑞,等.9种中药成分对新城疫Ⅳ系疫苗免疫雏鸡血清中血凝抑制抗体水平的影响[J].畜牧兽医学报,2004,35(4):68-472.
    [191]Scaglione F, Cogo R, Cocuzza C, Arcidiacono M, Bdretta A. Immunomodulatory effects of Panax ginseng C.A. Meyer. (G115) on alveolar macrophages from patients suffering with chronic bronchitis[J]. Int J Immumotherapy,1994,10:21-24.
    [192]Schepetkin IA. Botanical polysaccharides:macrophage immunomodulation and therapeutic potential[J]. Int Immunopharmacol,2006,6:317-323.
    [1]仇有文,张兴国.道地药材规范化生产与品牌发展战略的思考[J].中国现代中药,2006,8(6):10-12.
    [2]孙志国,程东来,刘成武等.四川省道地药材类国家地理标志产品的保护分析[J].西南农业学报.2010,23(2):532-537.
    [3]Farrar M A, Schreiber R D. The molecular cell biology of interferon-gamma and its receptor [J]. Ann. Rev. Immunol,1993,11:571-611.
    [4]Gajewski T F, Joyce J, Fitch F W. Antiproliferative effect of IFN-y in immune regulation. III. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-y [J]. J. Immunol,1989,143: 15-22.
    [5]Chen R F, Ye W T, Yang M Y. A model of the real time cor-relation of viral titer swith immunere actions in antibody dependent enhancement of dengue infections [J]. Immunol Med Microbiol,2001,30:17.
    [6]Mosmann T R, Cherwi H, Bond M W. Two types of murine helper T cell clone I Definition according to profile soflymphokine activities and secreted proteins [J].Immumol,1986,136:23-48.
    [7]McVicar J W, Sutmoller P. The epizootiological importance of foot-and-mouth disease carriers. Part II. The carrier status of cattle exposed to foot-and-mouth disease following vaccination with an oil adjuvant inactivated virus vaccine [J]. Arch Gesamte Virusforsch,1969,26(3):217-224.
    [8]Hu S H, Concha C Lin F, Persson W K. unization adjuvant effect of ginseng extracts on the immune responses to immunization against Staphylococcus auteus in dairy cattle[J].VET Immunol Immunopathol,2003,91:29-37.
    [9]Scaglione F, Ferrara F, Dugnani S, et al.mmunomodulatory effects of two extracts of Panax ginseng CA.Meyer [J].Drugs Exp Clin Res,1990,16:537-542.
    [10]Marciani DJ. Vaccine adjuvants:role and mechanisms of action in vaccine Immunogenicity [J]. Drug Discover Today,2003,8(20):934-943.
    [11]Mc Cluskie MJ,Weeratna RD. Novel adjuvant systems [J]. Curr Drug Targets Infect Disord,2001,1(3):263-271.
    [12]Mitwalli A. Responsiveness to hepatitis B vaccine in immunocompromised patients by doubling the dose scheduling [J]. Nephron,1996,73(3):417-420.
    [1]倪青松,王斌,李旭廷.川牛膝多糖对鸡血清抗体和血液生化指标的影响[J].四川畜牧兽医,2011,6:27-31.
    [2]贾仁勇,周墨梅,葛宇,等.川牛膝多糖对鸡红细胞免疫及外周血淋巴细胞免疫功能的影响[J].中国兽医杂志,2009,(45)1:35-38.
    [3]罗李媛,贾仁勇,殷中琼,等.川牛膝多糖对鸡免疫器官和免疫活性细胞动态变化的影响[J].黑龙江畜牧兽医,2008,1:82-83.
    [4]蒋淑君,许兰芝.淫羊霍黄酮的药理作用研究进展[J].中医药学报,2004,32(4):61-63.
    [5]陈灵然,胡庭俊,程富胜,等.厥麻多糖对小鼠淋巴细胞增殖和一氧化氮分泌的影响[J].中国兽医科技,2005,35(9):735-738.
    [6]Lai Chao-Yang, Hung Jung-Tung, Lin Hsin-Hung et al. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro.vaccine.2010,05:1-10.
    [7]帅学宏,胡庭俊,陈炅然,鬼臼多糖对小鼠免疫功能和抗氧化能力的影响[J].畜牧兽医学报,2008,39(7):1000-1004.
    [8]谭成明,房慧伶,胡庭俊.山豆根多糖对小鼠胸腺和脾脏淋巴细胞凋亡的影响[J].西南农业学报,2011,24(2):766-771.
    [9]康乐,姚东璧,胡庭俊.天门冬多糖对小鼠脾脏淋巴细胞体外增殖的影响[J].中国畜牧兽医,2010,37(10):15-18.
    [10]李涛,孙振武,李玉晓,等.CFSE标记技术及其在细胞研究中的应用进展[J].现代生物医学进展,2007,7(2):316-317
    [11]陈蕾蕾,陈军浩,孙雪梅,等.荧光染料CFSE作为细胞标记的特性研究[J].细胞与分子免疫学杂志,2004,20(2):140-141
    [12]洪介民,黎庆梅,吕海峰,等CFSE标记细胞的影响因素探讨[J].广东药学院学报,2006,22(5):541-543
    [13]Xu, H.S., Wu, Y.W., Xu, SF.,2009.Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha [J]. Journal of Ethnopharmacology.125:310-317.
    [14]Chisari F V, and Ferrari, C. Hepatitis B virus immunopathogenesis[J].Annu Rev Immunol,1995,(13):29-60.
    [15]Milan, M., Diaz-Benjumea, F.J., Cohen, S.M.. Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: amodel for LMO oncogene function[J]. Genes Dev.1998,12(18):2912-2920.
    [1]方先珍,郑立运,梅娜丽,等.河南规模化猪场猪瘟、口蹄疫抗体水平监测和免疫效果分析[J].畜牧与兽医,2010,35(8):81-83.
    [2]皮绍娣,陈海霞,唐耀平,等.强制免疫病种的免疫抗体监测与免疫效果评估[J]畜牧与兽医,2011,43(1):81-82.
    [3]陈德坤,李俊生,党岩.中药佐剂对提高新城疫Ⅱ系疫苗免疫效果试验[J].中国兽医科技,1998,11:23-24.
    [4]孙峻岭,薛家宾,胡元亮,等.中药成分复方的佐剂作用及其与中药复方的功效比较[J].南京农业大学学报,2005,28(4):109-112.
    [5]孔祥峰,胡元亮,李祥瑞,等.9种中药成分对新城疫Ⅳ系疫苗免疫雏鸡血清中血凝抑制抗体水平的影响[J].畜牧兽医学报,2004,35(4):68-472.
    [6]Hu s,Concha C Lin F,Persson WK.unization adjuvant effect of ginseng extracts on the immune responses to immunization against Staphylococcus auteus in dairy cattle[J].VET Immunol Immunopathol,2003,91:29-37.
    [7]Scaglione F,Ferrara F,Dugnani S,Falchi M,santoro G F,immunomodulatory effects of two extracts of Panax ginseng CA.Meyer[J].Drugs Exp Clin Res,1990,16:537-542.
    [8]Scaglione F,Cogo R,Cocuzza C,Arcidiacono M,Bdretta A.Immunomodulatory effects of Panax ginseng C.A.Meyer.(G115)on alveolar macrophages from patients suffering with chronic bronchitis[J]. Int J Immumotherapy,1994,10:21-24.
    [9]Scaglione F, Cattaneo G, A. lessandria M. Efficacy and safety of the standardized ginseng extract G115 for potentiating vaccination against influenza syndrome and protenction against the connon cold [J]. Drugs Exp Cin Res,1996,22:65-72.
    [10]邱妍,崔保安,胡元亮等.4种多糖对免疫雏鸡抗体效价和T淋巴细胞的影响[J].南京农业大学学报,2008,31(1):77-81.
    [11]Schepetkin IA. Botanical polysaccharides:macrophage immunomoduJation and therapeutic potential [J]. Int Imm unopharmacol,2006,6:317-323.
    [12]Haibo Feng, Xiaogang Du, Xiaohan Cao. Enhancement of the immune responses to ovalbumin in mice by oral administration of the extract from Radix Cyathulae (RC) [J] Journal of Med Plants Res.
    [13]Farrar MA, Schreiber RD. The molecular cell biology of interferon-gamma and its receptor [J]. Ann. Rev. Immunol.,1993,11:571-611.
    [14]Nelms K, Keegan A D, Zamorano J. The IL-4 receptor;, signaling mechanisms and biologic functions[J]. Annu Rev Immunol,1999,17:701-738.
    [15]Chen RF, Yeh WT, Yang MY. A model of the real time correlation of viral titer swith immunere actions in antibody dependent enhancement of dengue infections [J]. Immunol Med Microbiol,2001,30:17
    [16]Mosmann T R, Cherwi H, Bond M W. Two types of murine helper T cell clone I Definition according to profile soflymphokine activities and secreted proteins [J]. Immumol,1986,136:23-48.
    [17]Gajewski T F, Joyce J, and Fitch F W. Antiproliferative effect of IFN-y in immune regulation. Ⅲ. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-γ [J]. J. Immunol,1989,143:15-22.
    [18]Nathan, R., Altman, A., Monselise, S.P.. Changes in activity of polyamine biosynthetic enzymes and in polyamine contents in developing fruit tissues of'Murcott' mandarin [J]. Scientia Hort, 1984,22:359-364.
    [19]McVicar, J. W.,& Sutmoller, P.. The epizootiological importance of foot-and-mouth disease carriers. Part II. The carrier status of cattle exposed to foot-and-mouth disease following vaccination with an oil adjuvant inactivated virus vaccine[J]. Arch Gesamte Virusforsch,1969, 26(3),217-224.
    [20]Zhang Nuowei, Li Jiefeng, Hu Yanxin. Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice[J]. Carbohydrate Polymers,2010, 82:680-686.
    [21]Chisari F V, and Ferrari, C. Hepatitis B virus immunopathogenesis[J]. Annu Rev Immunol,1995, (13):29-60.
    [22]Milan, M., Diaz-Benjumea, F.J., Cohen, S.M.. Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development:amodel for LMO oncogene function[J]. Genes Dev.,1998,12(18):2912-2920.
    [23]Broeke L T, Daschbach EK, Thomas K, et al. Dendritic cell induced activation of adaptive and innate antitumor immunity[J]. J Immunol,2003,171 (11):5842-5852.
    [24]Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells:the near future[J]. Int J Cancer,2001,94(4):459-473.
    [25]Kao G, Stevenson K, Kim E, et al. Autologous peripheral blood stem cell products from patients with hematologic malignancies have increased frequency of regulatory T cells (CD4+FoxP3+Treg) [J]. ASH Annual Meeting Abstracts 2008,112:2310.
    [26]Di Nunzio S, Cecconi M, Passerini L. Wild-type FOXP3 is selectively active in CD4+CD25 hi Regulatory T cells'of healthy female carriers of different FOXP3 mutations [J]. Blood,2009,114: 4138-4141.
    [27]Kubota K, Kato S, Watanabe S. Usefulness of endoscopic biopsy using FOXP3+Treg up-regulation in the duodenal papilla in the differential diagnosis between autoimmune pancreatitis and pancreatic cancer[J]. J Hepatobiliary Pancreat Sci.,2011,18:414-421.
    [28]Furuichi Y, Tokuyama H, Ueha S, et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+T cell response primed by DNA immunization[J]. World J. Gastroenterol, 2005,11:3772-3777.
    [29]Toka F N, Suvas S, Rouse B T. CD4+CD25+T Cells regulate vaccine-generated primary and memory CD8+T-Cell responses against herpes simplex virus type1 [J]. J. Virol,2004, 78:13082-13089.
    [30]Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-1 maintains suppressor function and Foxp3 expression in CD4+CD25+regulatory T cells [J]. JEM,2005,201:1061-1067.
    [31]Chavali SR, Campbell JB. Adjuvant effects of orally administered saponins on humoral and cellular immune responses in mice [J]. Immunobiology,1987,174(3):347-359.
    [1]Kitching R P, Hutber A M, Thrusfield M V. A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease [J]. Veterinary Journal,2005,2(169):197-209.
    [2]Ward M P, Highfield L D, Vongseng P, et al. Simulation of foot-and-mouth disease spread within an integrated livestock system in Texas [J]. Preventive Veterinary Medicine,2009,88(4):286-297.
    [3]方先珍,郑立运,梅娜丽,等.河南规模化猪场猪瘟、口蹄疫抗体水平监测和免疫效果分析[J].畜牧与兽医,2010,35(8):81-83.
    [4]皮绍娣,陈海霞,唐耀平,等.强制免疫病种的免疫抗体监测与免疫效果评估[J].蓄牧与兽医.2011,43(1):81-82.
    [5]Farrar M A, Schreiber R D. The molecular cell biology of interferon-gamma and its receptor [J]. Ann. Rev. Immunol,1993,11:571-611.
    [6]Gajewski T F, Joyce J, Fitch F W. Antiproliferative effect of IFN-y in immune regulation. III. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-y [J]. J. Immunol,1989,143:15-22.
    [7]Chen R F, Ye W T, Yang M Y. A model of the real time cor-relation of viral titer swith immunere actions in antibody dependent enhancement of dengue infections [J]. Immunol Med Microbiol, 2001,30:17
    [8]Mosmann T R, Cherwi H, Bond M W. Two types of murine helper T cell clone I Definition according to profile soflymphokine activities and secreted proteins [J].Immumol,1986,136:23-48.
    [9]Xie H. Liu T. Chen H. etal. Evaluating the vaccine potential of an influenza A viral hemagglutinin and matrix double insertion DNA Plasmid[J]. Vaccine,2007,25(44):7649-7655.
    [10]Aste-Ame Zaga M, Ma X. Sartori A et al. Moleeular mechanisms of the induction of IL-12 and its inhibition by IL-10 [J]. J Immunol,1998,160(12):5936-5944.
    [11]Szabo SJ. Kim5. Costa GL. et al. A novel transcription factor. T-bet. directs Thl lineage commitment [J]. Cell,2000,100(6):655-669.
    [12]McVicar J W, Sutmoller P. The epizootiological importance of foot-and-mouth disease carriers. Part II. The carrier status of cattle exposed to foot-and-mouth disease following vaccination with an oil adjuvant inactivated virus vaccine [J]. Arch Gesamte Virusforsch,1969,26(3):217-224.
    [13]Kos, F.J., Engleman, E.G.. Immune regulation:a critical link between NK cells and CTLs [J]. Immunology Today,1996,17,174-176.
    [14]Medzhitov R., Janeway Jr C.A.. Innate immunity:impact on the adaptive immune response [J]. Current Opinion in Immunology,1997,9:4-9.
    [15]Xu H.S., Wu Y.W., Xu S.F.. Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha [J]. Journal of Ethnopharmacology,2009,125,310-317.
    [16]Moretta L., Bottino C., Cantoni C., Mingari M.C., Moretta A.,. Human natural killer cell function and receptors [J]. Current Opinion in Pharmacology,2001,1,387-391.
    [17]Chisari F V, and Ferrari, C. Hepatitis B virus immunopathogenesis [J]. Annu Rev Immunol,1995, (13):29-60.
    [18]Milan M, Diaz-Benjumea F J, Cohen S M. Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development:a model for LMO oncogene function [J]. Genes Dev.,1998,12(18):2912-2920.
    [19]Bancherau J, Steinman R M. Dendritic cells and the control of immunity[J]. Nature,1998, 392(6673):245-252.
    [20]Austyn J M, Kupiec-Weglinski J W, Hsankin D F, et al. Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone[J]. J. Exp. Med.,1988,167(2):646-651.
    [21]Rock K L. A new foreign policy:MHC class I molecules monitor the outside world [J]. Immunol Today,1996 17(3):131-137.
    [22]Zhang Nuowei, Li Jiefeng, Hu Yanxin. Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice[J]. Carbohydrate Polymers,2010, 82:680-686.
    [23]赵冰,黄芪多糖作为乙肝病毒DNA疫苗佐剂对小鼠免疫反应的影响[D].四川农业大学, 2012,56-71.
    [24]Su BW, Wang JP, Wang X, et al. The effects of IL-6 and TNF-α as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination[J]. Vaccine, 2008,26:5111-5122.
    [25]Zhou L J, Tedder T F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells [J]. Proc Natl Acad Sci USA,1996,93(6):2588-2592.
    [26]Zhou L J, Tedder T F. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily[J]. J Immunol,1995,154(8):3821-3835.
    [27]Rescigno M, Martino M, Sutherland C L, et al. Dendritic cell survival and maturation are regulated by different signaling pathways[J]. J Exp Med,1998,188(11):2175-2180.
    [28]Allen S J, Crown S E, Handel T M. Chemokine:receptor structure, interactions, and antagonism[J]. Anna Rev Immunol,2007,25:787-820.
    [29]Bleul C C, Fuhlbrigge R C, Casasnovas J M, etal. Ahighly efficacious lymphocyte chemo attractant, stromal cell derived factor 1(SDF-1) [J]. J Exp Med,1996,184(3): 1101-1109.
    [30]Forster R, Davalos-misslitz A C, Rot A. CCR7 and its ligands:balancing immunity and tolerance [J]. Nat Rev Immunol,2008,8(5):362-371.
    [31]Hirao M, Onai N. Hiroishi K et al. CC chemokine rceptor 7 dendritic cell isinduced after interaction with at tumor cell:critical role in mioation from the tumor site to draining lymph nodes[J].Cancer Research,2000,60(5):2209-2217.
    [32]Jang M H, Sougawa N, Tanaka T, etal. CCR7 is Critically important for migration of dendritic cells in intestinallamina propia to mesentericlymph nodes[J]. J Immunol,2006,176(2):803.
    [33]Chang Z. L.. Important aspects of Toll-like receptors, ligands and their signaling pathways [J]. Inflammation Research,2010,59,791-808.
    [34]Smyth M.J., Dunn G.P. Robert D.. Schreiber Cancer Immunotherapy Immunosurveillance and Immunoediting:The Roles of Immunity in Suppressing Tumor Development and Shaping Tumor Immunogenicity[J]. Cancer Immunotherapy,2006,90,1-50.
    [35]Shao B.M., Xu W., Dai H., Tu P., Li Z., Gao X.M.. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus,a Chincsc medicinal herb[J]. Biochem.Biophys. Res. Commun,2004,320,1103-1111.
    [36]Du X G, Chen X B, Zhao B et al. Astragalus polysaccharides enhance the humoral and cellular immune responses of hepatitis B surface antigen vaccination through inhibiting the expression of transforming growth factor b and the frequency of regulatory T cells [J]. FEMS Immunol Med Microbiol,2011,63:228-235
    [37]Ming O. Li, Richard A. Flavell, et al.TGF-β:A Master of All T Cell Trades [J].2008,134(8): 392-404
    [38]陈小兵.黄芪多糖作为佐剂对乙型肝炎疫苗免疫反应影响的研究[D].四川雅安,四川农业大学,2011.42-56.
    [39]Kao G, Stevenson K. Kim E, et al. Autologous peripheral blood stem cell products from patients with hematologic malignancies have increased frequency of regulatory T cells (CD4+FoxP3+Treg) [J]. ASHAnnual Meeting Abstracts,2008,112:2310.
    [40]Di Nunzio S, Cecconi M, Passerini L. Wild-type FOXP3 is selectively active in CQ4+CD25 hi Regulatory T cells of healthy female carriers of different FOXP3 mutations [J].Blood,2009,114: 4138-4141.
    [41]Kubota K, Kato S, Watanabe S. Usefulness of endoscopic biopsy using FOXP3+Treg up-regulation in the duodenal papilla in the differential diagnosis between autoimmune pancreatitis and pancreatic cancer[J]. J Hepatobiliary Pancreat Sci.,2011,18:414-421.
    [42]Furuichi Y, Tokuyama H, Ueha S, et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+T cell response primed by DNA immunization[J]. World J. Gastroenterol, 2005,11:3772-3777.
    [43]Toka F N, Suvas S, Rouse B T. CD4+CD25+T Cells regulate vaccine-generated primary and memory CD8+T-Cell responses against herpes simplex virus type1[J]. J. Virol,2004, 78:13082-13089.
    [44]Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-1 maintains suppressor function and Foxp3 expression in CD4+CD25+regulatory T cells [J]. JEM,2005,201:1061-1067.
    [45]Wang JP, Su BW, Ding Z et al. Cimetidine enhances immune response of HBV DNA vaccination via impairment of the regulatory function of regulatory T cells [J]. Biochemical and Biophysical Research Communications,2008,372:491-496
    [46]Marciani, D.J.. Vaccine adjuvants:role and mechanisms of action in vaccine immunogenicity [J]. Drug Discover Today,2003,8:934-943.
    [47]Mc Cluskie, M.J., Weeratna, R.D.. Novel adjuvant systems [J]. Curr. Drug Targets Infect. Disord.,2001,1:263-271.
    [48]Spickler, A.R., Roth, J.A.,2003. Adjuvants in veterinary vaccines:modes of action and adverse effects [J]. J. Vet. Intern. Med.,17:273-281.
    [49]Aguilar, J.C., Rodriguez, E.G.. Vaccine adjuvants revisited [J]. Vaccine,2007,25:3752-3762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700