用户名: 密码: 验证码:
基于转录组学滩羊卷曲被毛形成的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滩羊是我国优良的地方绵羊品种。主要分布于宁夏中部以及临近甘肃、陕西及内蒙部分区域。滩羊属蒙古羊的一支,具有较强的抗逆性。除产肉性能良好,滩羊主要以生产高品质的滩裘皮而驰名中外。1月龄时期屠宰获得的滩羔皮,被毛洁白亮丽,光泽悦目,毛股纤长呈波形卷曲,花穗美观,轻轻抖动形似波纹涟漪;同时滩裘皮质地轻便柔软,保暖性好,用途较广。随着日龄增加,滩羊的卷曲被毛特征会逐渐减弱甚至消失。基于上述背景,本研究开展以下方面的工作:
     1)利用RNA-Seq技术分别对1月龄及48月龄时期滩羊皮肤组织进行了转录组测序分析。两个时期皮肤组织共获得了30081个转录本。高表达转录本包括与毛发结构形成相关的TCHH基因以及角蛋白家族成员,KRT25, KRT5, KRT71, KRT14等基因。这些高表达转录本涉及的信号通路参与了毛发的生长发育及结构形成。两个时期的皮肤转录组共获得了37个差异表达基因。差异基因本体注释分析表明部分差异基因在毛发的生长及结构形成中可能具有重要作用。经qPCR验证分析,这些差异基因在两个群体中的表达模式与转录组测序一致,包括SPINK4,KRT1, ESRa, EphA3, ASIP以及GPRl10。同时我们在转录组测序中获得上千个可变剪切事件,信号通路富集结果表明,一些重要的可变剪切事件参与了与毛发生长相关的Notch, VEGF, Wnt, MAPK等通路,而且某些通路只在某一时期特异富集。综合上述因素,我们推测不同时期滩羊皮肤组织转录组测序中的差异基因、可变剪切事件以及其参与的不同信号通路可能在调控滩羊被毛卷曲表型特征方面具有重要作用。这一研究为我们揭示滩羊被毛表型变异及毛发结构特点提供依据,同时该结果也可为研究人类毛发疾病(秃毛症)或毛发结构变异提供了参考信息。
     2)KRT71是滩羊皮肤组织转录本测序中的高表达基因之一,已报道在其他家养动物卷曲毛发结构形成过程中具有重要作用。基于此,我们研究分析了KRT71基因的结构及调控特征。利用RACE技术成功克隆获得全长为2267bp的绵羊KRT71cDNA序列(登录号为JX975451)。绵羊KRT71基因编码525个氨基酸,具有角蛋白家族特有的模体元件(filement)。无论在核苷酸序列或氨基酸序列与其他物种高度同源,其中与牛同源性最高。表达分析显示,KRT71在包括皮肤在内的不同组织中均表达,但皮肤表达量最高,表明其对动物毛发的生长具有重要作用。不同群体羊皮肤组织KRT71荧光定量PCR结果表明,KRT71在1月龄滩羊皮肤组织表达量高于48月龄的成年羊及1月龄的萨福克羊,但不同群体KRT71序列编码区域无差异,提示KRT71可能在滩羊幼年时期卷曲被毛表型形成过程中具有重要意义。因此,我们对KRT71基因上游2.2kb左右区域的转录调控模式进行了分析。KRT71基因启动子区域的克隆及分析表明转录起始位点前约300bp区域在不同物种间高度保守,含有多个保守转录因子结合位点家族,而经EMSA实验鉴定的CCAAT盒转录因子结合位点可能参与了KRT71基因在不同时期滩羊皮肤组织的差异表达调控过程。
     上述研究为进一步揭示滩羊卷曲被毛的形成过程具有重要意义,同时对于其他动物毛发结构形态研究也具有参考价值。
Tan sheep (Ovis aries), one of the Chinese indigenous breeds, distributes in Ningxia and its adjacent areas. The breed originated from Mongolian sheep amd is hardy and well adapted to a dry, cold and windy environment. It is renowned not only for its excellent meat, but also for the production of high quality pelts. The lamb pelts from Tan sheep are characterized by a natural white color and a lustrous curly fleece. The curly fleece appears when Tan lambs are one month old. After processing, the lamb pelts with curly fleece tend to be thin and light weight, which are well suited for the production of fur coats, carpets, furniture covering, and various forms of handicrafts. However, this unique phenotype disappears gradually with age and the mechanisms behind the phenomenon are still unclearthe. We did experiments below based on the background of Tan lamb curly fleece.
     1) We identificatified differential expressed genes between adult and lamb Tan sheep by RNA-Seq. In this study, the skin transcriptome data was used for shedding some lights on this issue. In total30,081transcripts including described transcripts and transfrags were identified. The pathway analysis of top100most highly expressed transcripts, which includes TCHH and keratin gene family members, such as KRT25, KRT5, KRT71, KRTI4and others, showed pathways known to be relevant to hair/fleece development and function.37differentially expressed transcripts were detected at two different physiological ages (one-month-old with curly fleece and48-month-old without curly fleece). Subsequent gene ontology analysis showed that a number of genes related to hair/fleece development and showed differential expression between the two physiological stages, the differentially expressed genes (SPINK4, KRTl, ESRa, EphA3, ASIP and GPR110) were confirmed by qPCR analysis. Further pathway analysis of alternative splices tended to be enriched in Notch, VEGF, Wnt, MAPK and some other hair/fleece development related signaling pathways, and some enriched pathways were specifically found in a single physiological stage. We deduced that the differences existed in expressed transcripts, splice isoforms and pathway between two different physiological stages, which might constitute the major reasons for explaining the trait evolvement of curly fleece in Chinese Tan sheep. This study provides some clues for elucidating the molecular mechanism of fleece change with age in Chinese Tan sheep, as well as supplying some potential values for understanding human hair disorder and texture changes.
     2) The KRT71is one of the highly expressed genes in transcriptome of four samples, which specifically expressed in the IRS (inner root sheath), particular in Henle and Huxley layers of the hair follicle in IRS. Based on clues metioned above and previous data from suppression subtractive hybridization, we cloned and analyzed KRT71gene. KRT71gene has been associated with the curly coat phenotype of animals. The complete cDNA sequence of one ovine gene—KRT71was amplified using rapid amplification of cDNA ends method. The sequence analyses of this novel gene revealed that the sheep KRT71gene encodes a protein of525amino acids which has high homology with the keratin71of other mammal species. Analysis of promoter characters and transcript factors biding site of this gene supply key role for further study. The tissue expression profile analyses indicated that the ovine KRT71gene is generally but differently expressed in the detected tissues including spleen, muscle, skin, stomach, kidney, lung, liver and heart. And the relative expression of KRT71by qRT-PCR was different at Tan sheep with age. Furthermore, the promoter of KRT71gene was conserved at2.2kb before transcription start site among species, and had some conserved transcription factor binding site families. And the CCAAT box might have some important function in regulating the differential expression of KRT71in Tan sheep skin tissues at different stages. The cloning and character analysis of the sheep KRT71gene will probably provide molecular basis for associating KRT71gene with curly fleece phenotype of Tan sheep, as well as other animals with curly coat.
引文
安继忠.岷县黑裘皮羊遗传资源保护与开发利用对策.当代畜牧.2010,8:40-42.
    崔重九,许百善,王天新,等.滩羊裘皮花穗的遗传.宁夏农业科技.1983,4:29-32.
    崔重九,张幼麟,蒋英,等.滩羊选育报告(第一报)——关于滩羊生态学和生产性能的研究.中国畜牧兽医,1962a,4:15-33.
    崔重九,张幼麟,蒋英,等.滩羊选育报告(第二报)——关于滩羊二毛皮品质的研究.中国畜牧兽医.1962b,7:1-3.
    崔重九,张幼麟,蒋英,等.关于影响滩羊二毛皮品质因素的研究.宁夏农林科技.1963,8:1-6.
    冯维祺.我国古代绵羊品种形成初考.农业考古.1991,3:338-345.
    侯文通主编.中国西北重要地方畜禽遗传资源.北京:中国农业出版社.2010.
    胡自治,文奋武,卢泰安.滩羊土-草-畜系统中的微量元素及其意义.草业学报.1999,8(2):60-64.
    蒋克平.甘肃滩羊现状.滩羊、中卫山羊科技资料汇编.1983,28-31.
    李绍欣,范玉玺.滩羊与气候条件.气象.1985,4:30-31.
    卢泰安,张桂英.季节与滩羊被毛特性的关系.甘肃农业大学学报.1993,1:19-25.
    卢泰安,张尚德,范涛,等.滩羊二毛裘皮期主要经济性状的确认及其评定方法.甘肃农大学报.1987,1:38-43.
    宁夏南部山区资源合理利用盐池科学实验队滩羊小组.宁夏滩羊主要经济性状的遗传力.动物学杂志.1978,15-16.
    宁夏计划委员会国土处主编.宁夏国土资源.银川:宁夏人民出版社.1988.
    彭张瑞.岷县黑裘皮羊的品种资源及保护.农业科技与信息.2008,19:56-57.
    沈长江.滩羊的生态分析与生态地理.家畜生态.1985,2:46-54.
    沈长江,邸醒民.滩羊品种资源生态地理特征及其应用.自然资源.1979,1:35-47.
    孙梅.青海贵德黑裘皮羊生产性能测定.青海畜牧兽医杂志.2009,39(2):13-14.
    王殿才.阿拉善盟滩羊品种资源调查报告.1982.
    汪时荃,马振中,王绥芳.滩羊血红蛋白分布的地区差异.畜牧兽医学报,1988,2:95-98.
    魏智清,于洪川,张振汉,等.宁夏滩羊体大品系、裘皮品系及其杂交后代血红蛋白多态性比较.中国草食动物.2003(z1):57-58.
    谢成侠.中国养牛羊史.北京:农业出版社,1985.
    杨丽娟,李爱华,张蕊,等.滩羊角蛋白KAP1.3基因与二毛裘皮主要性状相关性研究.宁夏大学学报(自然科学版).2010,4:381-388.
    尹长安,年长明,徐杰,等.滩羊二毛期羊毛品质与裘皮质量的遗传相关分析.中国畜牧杂志.1983.2:21-24.
    张蕊,李爱华,杨丽娟,等.宁夏滩羊角蛋白KRT1.2基因与二毛裘皮性状关联性研究.农业科学研究.2010,3:27-30.
    张英杰主编.羊生产学.北京:中国农业大学出版社,2010.
    张仲葛.中国畜牧史料集.北京:科学出版社,1986.
    赵倩君.中国部分绵羊群体的起源、遗传多样性及保护研究.[博士学位论文].北京:中国农业科学院.2007.
    赵有璋主编.羊生产学(第二版).北京:中国农业出版社.2002.
    赵增荣.甘肃中部的畜牧业.北京:科学出版社.1957,37-58.
    《中国农畜家禽品种志》编委会,《中国羊品种志》编写组.中国羊品种志.上海:上海科学技术出版社,1989.
    中国羊品种志编写组.中国羊品种志.上海:上海科学技术出版社,1989.
    Ahmad N and Mukhtar H. Cytochrome P450:a target for drug development for skin diseases. J Invest Dermatol.2004,123:417-425.
    Amoh Y, Li L, Katsuoka K, et al. Multipotent nestin-positive keratin negative hair follicle bulge stem cells can form neurons. Proc Natl Acad Sci USA.2005,102:5530-5534.
    Anders S and Huber W. Differential expression analysis for sequence count data. Genome Biol.2010,11: R106.
    Anders S and Huber W. Differential expression of RNA-Seq data at the gene level-the DESeq package. 2012.
    Andersson H, Hartmanova B, Ryden P, et al. A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. J Medicine Microbiology.2006,55(8):1023-1033.
    Andl T, Ahn K, Kairo A, et al. Epithelial Bmprla regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development.2004,131:2257-2268.
    Andl T, Reddy ST, Gaddapara T, et al. WNT signals are required for the initiation of hair follicle development. Dev. Cell.2002,2:643-653.
    Andres V, Chiara MD, Mahdavi V. A new bipartite DNA-binding domain:cooperative interaction between the cut repeat and homeo domain of the cut homeo proteins. Genes Dev.1994,8(2):245-257.
    Aoki N, Sawada S, Rogers MA, et al. A novel type Ⅱ cytokeratin, mK6irs, is expressed in the Huxley and Henle layers of the mouse inner root sheath. J Invest Dermatol.2001,116:359-365.
    Ayala M, Balint RF, Fernandez-de-Cossio ME, et al. Variable region sequence modulates periplasmic export of a single chain Fv antibody fragment in E. coli. Biol Techniques,1995,18(5):832-842.
    Ballaro C, Ceccarelli S, Tiveron C, et al. Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype. EMBO Reports.2005,6:755-761.
    Bautz EK and Reilly E. Gene-specific messenger RNA:isolation by the deletion method. Science.1966, 151:328-330.
    Bazzi H, Fantauzzo KA, Richardson GD, et al. The Wnt inhibitor, Dickkopf 4, is induced by canonical Wnt signaling during ectodermal appendage morphogenesis. Dev Biol.2007,305:498-507.
    Benjamini Y and Hochberg Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing. J Royal Statistical Society Series B (Methodol).1995,57:289-300.
    Bernot KM, Lee CH, Coulombe PA. A small surface hydrophobic stripe in the coiled-coil domain of type I keratins mediates tetramer stability. J Cell Biol.2005,168:965-974.
    Bertolino AP and O'Guin WM. Differentiation of the hair shaft. In:Disorders of Hair Growth:Diagnosis and Treatment (OlsenEA, ed.).New York:McGraw-Hill, Inc.1994,21-37.
    Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem.2003,72:291-336.
    Blanchette M and Tompa M. Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res.2002,12:739-748.
    Blanpain C, Lowry WE, Geoghegan A, et al. Self-Renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell.2004,118:635-648.
    Bongrazio M, Grafe M, Pries AR, et al. Improvement of RNA fingerprinting efficiency for the analysis of differential gene expression in human cardiac macro- and microvascular endothelial cells. Pharmacological Research.2001,43(6):553-560.
    Botchkarev VA, Botchkareva NV, Nakamura M, et al. Noggin is required for induction of hair follicle growth phase in postnatal skin. FASEB J.2001,15:2205-2214.
    Botchkarev VA, Botchkareva NV, Roth W, et al. Noggin is a mesenchymally-derived stimulator of hair follicle induction. Nat Cell Biol.1999,1:158-164.
    Botchkarev VA, Botchkareva NV, Sharov AA, et al. Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol.2002,118:3-10.
    Botchkarev VA. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. J Invest Dermatol.2003,120:36-48.
    Broude NE, Chandra A, Smith CL. Differential display of genome subsets containing specific interspersed repeats. Proceeding National Academy Sciences USA.1997,94(9):4548-4553.
    Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase Ⅱ promoter elements derived from 502 unrelated promoter sequences. Mol Boil.1990,212(4):563-578.
    Bull JJ, Miiller-Rover S, Chronnell CMT, et al. Contrasting expression patterns of CCAAT/enhancer-binding protein transcription factors in the hair follicle and at different stages of the hair growth cycle. Invest Dermatol.2002,118(1):17-24.
    Bultman SJ, Michaud EJ, Woychik RP. Molecular characterization of the mouse agouti locus. Cell.1992, 71:1195-1204.
    Cadieu E, Neff MW, Quignon P, et al. Coat variation in the domestic dog is governed by variants in three genes. Science.2009,326:150-153.
    Campbell KHS, Mcwhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature.1996,380:64-66.
    Campbell ME and Whiteley KJ, Gillespie JM. Influence of nutrition on the crimping rate of wool and the type and proportion of constituent proteins. Aust J Biol Sci,1975,28(4):389-397.
    Campbell MT, Dollin AE, Adelson DL. Differential lectin binding to presumptive cortical celts of the wool follicle bulb. J Cell Sci.1992,102:353-360.
    Cao WX, Epstein C, Liu H, et al. Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction:a case study. BMC Genomies.2004,5(1):26.
    Carroll L, Voisey J, van Daal A. Gene polymorphisms and their effects in the melanocortin system. Peptides.2005,26:1871-1885.
    Carter TC. Wavy-coated mice:phenotypic interactions and linkage tests between rex and (a) waved-1, (b) waved-2. J Genet.1951,50:268-276.
    Chase HB. Growth of hair. Physiol Rev.1954,34:113-126.
    Christiano AM. Epithelial Stem Cells:Stepping out of Their Niche. Cell.2004,118:530-532.
    Cloonan N and Grimmond SM. Transcriptome content and dynamics at single-nucleotide resolution. Genome Biology.2008,9 (9):234.
    Cock PJA, Fields CJ, Goto N, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research.2010,38(6):1767-1771.
    Cooper CB. A linkage between naked and caracul in the house mouse. J Hered.1939,30 (5):212.
    Costa V, Angelini C, De Feis I, et al. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol.2010,2010:853916.
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell.1990,61:1329-1337.
    Cotsarelis G. Epithelial stem cells:a folliculocentric view. J Invest Dermatol.2006,126:1459-1468.
    Coulombe PA and Omary MB.'Hard' and' soft' principles defining the structure, function and regulation of keratin intermediate filaments. Current Opinion in Cell Biology 2002,14:110-122.
    Cox LA, Glenn JP, Spradling KD, et al. A genome resource to address mechanisms of developmental programming:determination of the fetal sheep heart transcriptome. The Journal of Physiology.2012, 590(12):2873-2884.
    Craven AJ, Nixon AJ, Ashby MG, et al. Prolactin delays hair regrowth in mice. J Endocrinol.2006,191: 415-425.
    Crew FAE and Auerbach C. Rex:a dominant autosomal monogenic coat texture character in the mouse, J Genet.1939,38:341-344.
    Crew FAE. Waved:an autosomal recessive coat form character in the mouse. J Genet.1933,27:95-96.
    DasGupta R and Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development.1999,126:4557-4568.
    Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA.1996,93:6025-6030.
    Dicks P. The role of prolactin and melatonin in regulating the timing of spring moult in the Cashmere goat. In:Hormonal control of fibre growth and shedding (Laker JP, Allain D, eds), UK:European Fine Fibre Network, Aberdeen European Fine Fibre Network Occasional Publication.1994,2:109-127.
    Diribarne M, Mata X, Chantry-Darmon CV, et al. A Deletion in Exon 9 of the LIPH Gene Is Responsible for the Rex Hair Coat Phenotype in Rabbits (Oryctolagus cuniculus). PLoS ONE.2011,6(4):e19281.
    Dohm JC, Lottaz C, Borodina T, et al. Substantial biases in ulta-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research.2008,36:e105.
    Doolittle DP, Davisson MT, Guidi JN, et al. Catalogue of mutant genes and polymorphic loci. In Genetic Variants and Strains of the Laboratory Mouse,3rd ed., MF Lyon, S Raston, SDM Brown, eds. (New York:Oxford University Press).1996,17-854.
    Drogemuller C, Giese A, Martins-Wess F, et al. The mutation causing the black-and-tan phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mamrn Genome.2006,17:58-66.
    Du X, Tabeta K, Hoebe K, et al. Velvet, a dominant Egfr mutation that causes wavy hair and defective eyelid development in mice. Genetics.2004,166:331-340.
    Duggan DJ, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. Nature Genetics. 1999,21(1 Suppl):10-14.
    Dunlap JC. Common threads in eukaryotic circadian systems. Curr Opin Gen Dev.1998,8:400-406.
    Dunn LC. Caracul a dominant mutation. J Hered.1937,28(10):334.
    Dyhrman ST, Haley ST, Birkeland SR, et al. Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Applied Environment Microbiology.2006,72(1):252-260.
    Ebling FJ and Hervey GR. The activity of hair follicles in parabiotic rats. J Embryol Exp Morphol.1964, 12:425-438.
    Eckert RL, Rorke EA. Molecular biology of keratinocyte differentiation. Environmental Health Perspectives.1989,80:109-116.
    Erlich Y and Mitra PP. Alta-Cyclic:a self-optimizing base caller for next-generation sequencing. Nature Methods.2008,5:679-682.
    Fan R, Xie J, Bai J, et al. Skin transcriptome profiles associated with coat color in sheep. BMC Genomics. 2013,14(1):389.
    Fietz MJ, McLaughlan CJ, Campbell MT, et al. Analysis of the sheep trichohyalin gene:potential structural and calcium-bindingroles of trichohyalin in thehair follicle. J Cell Biol.1993,121:855-865.
    Filler S, Alhaddad H, Gandolfi B, et al. Selkirk Rex:morphological and genetic characterization of a new cat breed. J Hered.2012,103 (5):727-733.
    Finzi E, Harkins R, Horn T. TGF-alpha is widely expressed in differentiated as well as hyperproliferative skin epithelium. J Invest Dermatol.1991,96:328-332.
    Fowler KJ, Walker F, Alexander W, et al. A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc Natl Acad Sci USA.1995,92:1465-1469.
    Fraser AS and Nay T. Growth of the mouse coat Ⅱ. Effects of sex and pregnancy. Aust J Biol Sci.1953, 6:645-656.
    Fredriksson R, Lagerstrom MC, Lundin LG, et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003,63:1256-1272.
    Frost MR and Guggenheim JA. Mammalian polyadenylation sites:implications for differential display. Nucleic Acids Research,1999,27(5):1386-1391.
    Fuchs E and Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet.2002,3: 199-209.
    Fuchs E, Merrill BJ, Jamora C, et al. At the roots of a never-ending cycle. Dev Cell.2001,1:13-25.
    Fuchs E. Scratching the surface of skin development. Nature.2007,445:834-842.
    Fujimoto A, Farooq M, Fujikawa H, et al. A Missense Mutation within the Helix Initiation Motif of the Keratin K71 Gene Underlies Autosomal Dominant Woolly Hair/Hypotrichosis. J Invest Dermatol.132, 2342-2349.
    Fujimoto A, Kimura R, Ohashi J, et al. A scan for genetic determinants of human hair morphology:EDAR is associated with Asian hair thickness. Human Molecular Genetics.2008,17:835-843.
    Fujimoto A, Nishida N, Kimura R, et al. FGFR2 is associated with hair thickness in Asian populations. Journal of Human Genetics.2009,54:461-465.
    Gale NW, Holland SJ, Valenzuela DM, et al. Eph receptors and ligands comprise two major specificity subclasses, and are reciprocally compartmentalized during embryogenesis. Neuron.1996,17:9.
    Gandolfi B, Outerbridge CA, Beresford LG, et al. The naked truth:Sphynx and Devon Rex cat breed mutations in KRT71. Mamm Genome.2010,21:509-515.
    Garimella K, Altshuler D, Gabriel S, et al. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research.2010,20(9):1297-1303.
    Gat U, DasGupta R, Degenstein L, et al. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell.1998,95:605-614.
    Geng R, Yuan C, Chen Y. Exploring differentially expressed genes by RNA-Seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PIoS ONE.2013,8:e62704.
    Guenzi E, Topolt K, Cornali E, et al. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. J EMBO.2001,20:5568-5577.
    Gurskaya NG, Diatchenko L, Chenchik A, et al. Equalising cDNAsubtraction based on selective suppression of polymerase chain reaction:cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Analytical Biochemistry.1996,240:90-97.
    Hacia JG. Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genetics, 1999,21:42-47.
    Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Research.2010,38(12):e131.
    Hardy MH. The differentiation of hair follicles and hairs in organ culture. Adv Biol Skin.1969,9:35-60.
    Hardy MH. The secret life of the hair follicle. Trends Genet.1992,8:55-61.
    Harel S, Christiano AM. Keratin 71 Mutations:From Water Dogs to Woolly Hair. Journal of Investigative Dermatology.2012,132(10):2315-2317.
    Henry BA. Links between the appetite regulating systems and the neuroendocrine hypothalamus:Lessons from the sheep. J Neuroendocrinol.2003 15:697-709.
    Herron BJ, Rao C, Liu S, et al. A mutation in NFkB interacting protein 1 results in cardiomyopathy and abnormal skin development in wa3 mice. Hum Mol Genet.2005,14(5):667-677.
    Hubank M and Schatz DG. cDNA representational difference analysis:a sensitive and flexible method for identification of differentially expressed genes. Methods Enzymol.1999,303:325-349.
    Hubank M and Schatz DG. Identifing differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Research.1994,22:5640-5648.
    Huelsken J and Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev.2001,11:547-553.
    Huelsken J, Vogel R, Erdmann B, et al. Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell.2001,105:533-545.
    Ito T, Kito K, Adati N, et al. Fluorescent differential display:Arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer. FEBS Letters.1994,351:231-236.
    Jackson BW, Grund C, Winter S, et al. Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-size filaments in early postimplantation embryos. Differentiation.1981,20:203-216.
    Jahoda CA. Cell movement in the hair follicle dermis—more than a two-way street? J Invest Dermatol. 2003,121:1267-1275.
    James K, Hosking B, Gardner J, et al. Sox18 mutations in the ragged mouse alleles ragged-like and opossum. Genesis.2003,36:1-6.
    Jager M, Ott CE, Grunhagen J, et al. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics.2011,12(1):158.
    Jiang L, Schlesinger F, Davis CA, et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res.2011,21(9):1543-1551.
    Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science.2003,302:2141-2144.
    Joshi RS. The inner root sheath and the men associated with it eponymically. Trichol.2011,3:57-62.
    Jung HS, Francis-West PH, Widelitz RB, et al. Local inhibitory action of BMPs and their relationships with activators in feather formation:implications for periodic patterning. Dev Biol.1998,196:11-23.
    Kang S, Bennett CN, Gerin I, et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein a and peroxisome proliferator-activated receptor γ. Journal of Biological Chemistry.2007,282(19):14515-14524.
    Keeler CE. A second rexoid coat character in the house mouse. J Hered.1935,26:189-191.
    Kenzelmann M, Muhlemann K. Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) by adding a heating step to the original protocol. Nucleic Acids Research.1999,27 (3):917-918.
    Kikkawa Y, Oyama A, Ishii R, et al. A small deletion hotspot in the type Ⅱ keratin gene mK6irsl/Krt2-6g on mouse chromosome 15, a candidate for causing the wavy hair of the caracul (Ca) mutation. Genetics. 2003,165:721-733.
    Kjaer KW, Hansen L, Eiberg H, et al. Novel connexin 43(GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet.2004,127A:152-157.
    Kobielak K, Stokes N, la Cruz de J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci.2007,104:10063-10068.
    Kratochwil K, Dull M, Farinas I, et al. Lefl expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev.1996,10:1382-1394.
    Kuang WW, Thompson DA, Hoch RV, et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids Research,1998,26(4):1116-1123.
    Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J.2000,19:6664-6674.
    Kulkarni VG. Influence of Nutrition on Some Properties of High-and Low-Crimp Merino Wools and Their Cellular Components. Textile Res Journal.1983,53(11):712-716.
    Kuramoto T, Hirano R, Kuwamura M, et al. Identification of the Rat rex mutation as a 7-bp deletion at splicing acceptor site of the Krt71 gene. J Vet Med Sci.2010,72:909-912.
    Kwon HY, Bultman SJ, Loffler C, et al. Molecular structure and chromosomal mapping of the humanhomolog of the Agouti gene. Proc Natl Acad Sci.1994,91:9760-9764.
    Lamar EE and Palmer E. Y-encoded, species-specific DNA in mice:Evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell.1984,37:171-177.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001,409:860-921.
    Langbein L, Rogers M A, Praetzel-Wunder S, et al. Novel type I hair keratins K39 and K40 are the last to be expressed in differentiation of the hair:Completion of the human hair keratin catalog. J Invest Dermatol.2007,127:1532-1535.
    Langbein L, Rogers MA, Praetzel S, et al. Novel epithelial keratin, hK6irsl, is expressed differentially in all layers of the inner root sheath, including specialized Huxley cells (Flugelzellen) of the human hair follicle. J Invest Dermatol.2002,118:789-799.
    Langbein L, Rogers MA, Winter H, et al. The catalog of human hair keratins. Ⅰ. Expression of the nine type Ⅰ members in the hair follicle. J Biol Chem.1999,274:19874-19884.
    Langbein L, Rogers MA, Winter H, et al. The catalog of human hair keratins. Ⅱ. Expression of the six type Ⅱ members in the hair follicle and the combined catalog of human type Ⅰ and Ⅱ keratins. J Biol Chem.2001,276:35123-35132.
    Langbein Land Schweizer J. Keratins of the human hair follicle. Int Rev Cytol.2005,243:1-78.
    Langmead B and Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods.2012,9(4): 357-359.
    Lee D, Cross SH, Strunk KE, et al. Wa5 is a novel ENU-induced antimorphic allele of the epidermal growth factor receptor. Mammalian Genome.2004,15(7):525-536.
    Lee YJ, Rice RH, Lee YM. Proteome analysis of human hair shaft:from protein identification to posttranslational modification. Mol Cell Proteomics.2006,5(5):789-800.
    Legge T. The beginnings of caprine domestication. In:D. R. Harris (eds), The Origins and Spread of Agriculture and Pastoralism in Eurasia. Smithsonian Institution Press, New York.1996,238-262.
    Li AG, Koster MI, Wang XJ. Roles of TGFbeta signaling in epidermal/appendage development. Cytokine Growth Factor Rev.2003,14:99-111.
    Li RQ, Yu C, Li YR, et al. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics. 2009a,25:1966-1967.
    Li RQ, Li YR, Fang XD, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res.2009b,19:1124-1132.
    Li S, Wang C, Yu W, et al. Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PloS ONE.2012,7(5):e36592.
    Liang P and Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science.1992,257:961-971.
    Liberati C, Ronchi A, Lievens P, et al. NF-Y organizes the γ-globin CCAAT boxes region. Biol Chem. 1998,273(27):16880-16889.
    Lievens S, Goormachtig S, Holsters M, et al. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation:looking back and looking forward. Nucleic Acids Research.2001,29:3459-3468.
    Lim XH and Nusse R. Wnt signaling in skin development, homeostasis and disease. Cold Spring Harb Perspect Biol.2013, doi:10.1101/cshperspect.a008029.
    Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science.1993, 259:946-951.
    Loussouarn G, Garcel AL, Lozano I, et al. Worldwide diversity of hair curliness:A new method of assessment. Int J Dermatol.2007,46:2-6.
    Luetteke NC, Phillips HK, Qiu TH, et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev.1994,8:399-413.
    Luetteke NC, Qiu TH, Peiffer RL, et al. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell.1993,73:263-278.
    Mann GB, Fowler KJ, Gabriel A, et al. Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell.1993, 73:249-261.
    Mantovani R, Pessara U, Tronche F, et al. Monoclonal antibodies to NF-Y define its function in MHC class Ⅱ and albumin gene transcription. The EMBO Journal.1992,11(9):3315.
    Mao XZ, Cai T, Olyarchuk JG, et al. Automated genome annotation and pathway identification using the KEGG Orthology (K.O) as a controlled vocabulary. Bioinformatics.2005,21:3787-3793.
    Markey AD, Taylor JF, Schnabel RD, et al. A deletion mutation in KRT71 is associated with congenital hypotrichosis in Hereford cattle. Plant & Animal Genomes ⅩⅧ Conference. San Diego, CA.2010.
    Marshall RC, Orwin DF, Gillespie JM. Structure and biochemistry of mammalian hard keratin. Electron Microsc Rev.1991,4:47-83.
    Matlin AJ, Clark F, Smith CW. Understanding alternative splicing:towards a cellular code. Nature Rev Mol Cell Biol.2005,6:386-398.
    Matsumura H, Ito A, Saitoh H, et al. Super SAGE. Cell Microbiol.2005,7(1):11-18.
    Matz M, Usman N, Shagin D, et al. Ordered differential display:a simple method for systematic comparison of gene expression profiles Usman N, Shagin D. Nucleic Acids Research.1997,25(12): 2541-2542.
    Maurer M, Molidor R, Sturn A, et al. MARS:Microarray analysis, retrieval, and storage system. BMC Bioinformatics.2005,6:101-102.
    Medland SE, Nyholt DR, Painter JN, et al. Common variants in the trichohyalin gene are associated with straight hair in Europeans. The American Journal of Human Genetics.2009b,85:750-755.
    Medland SE, Zhu G, Martin N. Estimating the heritability of hair curliness in twins of European ancestry. TRHG.2009a,12:514-518.
    Miao XY and Luo QM. Genome-wide transcriptome analysis between Small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing. Reproduction.2013,145(6):587-596.
    Michael EJ, Schneiderman P, Grossman ME, et al. Epidermolytic hyperkeratosis with polycyclic psoriasiform plaques resulting from a mutation in the keratin 1 gene. Exp Dermatol.1999,8:501-503.
    Midorikawa T, Chikazawa T, Yoshino T, et al. Different gene expression profile observed in dermal papilla cells related to androgenic alopecia by DNA macroarray analysis. J Dermatol Sci.2004,36: 25-32.
    Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol.2002, 118:216-225.
    Millar SE. The role of patterning genes in epidermal differentiation. In:Cowin P, Klymkowsky M (eds). Cytoskeletal-Membrane Interactions and Signal Transduction. Austin, TX:Landes Bioscience.1997, 87-102.
    Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods.2008,5(7):621-628.
    Myazono K, Kusanagi K, Inoue H. Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol.2001,187:265-276.
    Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science.2008,320 (5881):1344-1349.
    Nagorcka BN and Mooney JR. The role of a reaction-diffusion system in the initiation of primary hair follicles. J Theor Biol.1985,114:243-272.
    Nakayama K and Ishida T. Alu-mediated 100-kb deletion in the primate genome:the loss of the agouti signaling protein gene in the lesser apes. Genome Res.2006,16:485-490.
    Noramly S, Freeman A, Morgan BA. Beta-catenin signaling can initiate feather bud development. Development.1999,126:3509-3521.
    Norris BJ and Whan VA. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res.2008,18:1282-1293.
    Nusse R. The Wnt Gene Homepage. [Internet] Stanford CA:Howard Hughes Medical Institute Available from:http://www.stanford.edu\~rnusse\wntwindow.html.1999.
    Oh HS and Smart RC. An estrogen receptor pathway regulates the telogen-anagen hair follicle transition and influences epidermal cell proliferation. Proc Natl Acad Sci USA.1996,93:12525-12530.
    Ohnemus U, Uenalan M, Conrad F, et al. Hair cycle control by estrogens:catagen induction via estrogen receptor (ER)-alpha is checked by ER beta signaling. Endocrinology.2005,146:1214-1225.
    Ohtola J, Myers J, Akhtar-Zaidi B, et al. β-catenin has sequential roles in the survival and specification of ventral dermis. Development.2008,135:2321-2329.
    Osada S, Yamamoto H, Nishihara T, et al. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. Bio Chem.1996,271(7):3891-3896.
    Oshimori N and Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell.2012,10:63-75.
    Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics.2008,40(12):1413-1415.
    Park KD, Park J, Ko J, et al. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics.2012,13(1):473.
    Pasternack SM, von Kugelgen I, Aboud KA, et al. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet.2008,40:329-334.
    Paus R and Cotsarelis G. The biology of hair follicles. N Engl J Med.1999,341:491-497.
    Paus R, Foitzik K. In search of the "hair cycle clock":a guided tour. Differentiation.2004,72:489-511.
    Paus R, Muller-Rover S, Botchkarev VA. Chronobiology of the hair follicle:Hunting the "hair cycle clock". J Invest Dermatol Symp Proc.1999a,4:338-345.
    Paus R, Muller-Rover S, Mckay I. Control of the hair follicle growth cycle. In:hair biology and hair growth disorders, edited by Camacho FM, Randall VA, and Price V. London:Martin Dunitz.2000,83-94.
    Paus R, Muller-Rover S, Van Der Veen C, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol.1999b,113:523-532.
    Paus R, Stenn KS, and Link RE. Telogen skin contains an inhibitor of hair growth. Br J Dermatol.1990, 122:777-784.
    Peeters JK and Van der Spek PJ. Growing applications and advancements in microarray technology and analysis tools. Cell Biochemistry and biophysics.2005,43(1):149-166.
    Pennist E. DNA chips give new view of classic test. Science,1999,283:17-18.
    Peters T, Sedlmeier R, Bussow H, et al. Alopecia in a novel mouse model RCO3 is caused by mK6irsl deficiency. J Invest Dermatol.2003,121:674-80.
    Plikus M, Wang WP, Liu J, et al. Morpho-regulation of ectodermal organs:integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol.2004,164:1099-1113.
    Plikus MV, Mayer JA, la Cruz de D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature.2008,451:340-344.
    Plowman JE, Bryson WG, Jordan TW. Application of proteomics for determining protein markers for wool quality traits. Electrophoresis.2000,21:1899-1906.
    Porter RM, Corden LD, Lunny DP, et al. Keratin K6irs is specific to the inner root sheath of hair follicles in mice and humans. Br J Dermatol.2001,145:558-568.
    Powell J. The serial analysis of gene expression. Methods Molecular Biology.2000,99:297-319.
    Promel S, Waller-Evans H, Dixon J, et al. Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Devel Dynamics.2012,241:1591-1602.
    Qi X, Li TG, Hao J, et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA.2004,101:6027-6032.
    Qin L, Rueda L, Ali A, et al. Spot detection and image segmentation in DNA microarray data. Applied Bioinformatics.2005,4:1-11.
    Ren H, Li L, Su H, et al. Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics.2011, 12(1):411.
    Reynolds AJ and Jahoda CAB. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development.1993,115:587-593.
    Richards M, Tan SP, Chan WK, et al. Reverse serial analysis of gene expression (SAGE) characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts and antisense transcription of key pluripotency genes. Stem Cells.2006,24(5):1162-1173.
    Risek B, Klier FG, Gilula NB. Multiple gap junction genes are utilized during rat skin and hair development. Development.1992,116:639-651.
    Roberts A, Pimentel H, Trapnell C, et al. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics.2011,27:2325-2329.
    Robinson R. Rex mutant in the Norway rat. J Hered.1981,72:131-132.
    Rogers GE. Biology of the wool follicle:an excursion into a unique tissue interaction system waiting to be re-discovered. Exp Dermatol.2006,15:931-949.
    Rogers MA, Winter H, Langbein L, et al. The human type I keratin gene family:Characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation. 2004,72:527-540.
    Runkel F, Klaften M, Koch K, et al. Morphologic and molecular characterization of two novel Krt71 (Krt2-6g) mutations:Krt71rco12 and Krt71rco13. Mamm Genome.2006,17:1172-1182.
    Ruth MB and Sikorski J. The histological structure of wool fibres and their plasticity. J Textile Institute. 1967,58:521.
    Ryder M L. Domestication, history and breed evolution in sheep. Elsevier, Amsterdam, Netherlands.1991, 157-177.
    Ryder ML. Hair. London:Arnold, the Institute of Biology's Studies of Biology, No.4, Edward Arnold. 1973.
    Saito H, Yasumoto K I, Takeda K, et al. Microphthalmia-associated transcription factor in the Wnt signaling pathway. Pigment Cell Research.2003,16(3):261-265.
    Saitoh M, Uzuka M, Sakamoto M. Human hair cycle. J Invest Dermatol.1970,54:65-81.
    Sammeth M, Foissac S, Guigo R. A general definition and nomenclature for alternative splicing events. PLoS Comput Biol.2008,4:e1000147.
    Saw CL, Huang MT, Liu Y, et al. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinogenesis.2011,50(6):479-486.
    Schlake T. Segmental Igfbp5 expression is specifically associated with the bent structure of zigzag hairs. Mech Dev.2005,122:988-997.
    Schmidt-Ullrich R and Paus R. Molecular principles of hair follicle induction and morphogenesis. BioEssays.2005,27:247-261.
    Schroder N, Sekhar A, Geffers I, et al. Identification of mouse genes with highly specific expression patterns in differentiated intestinal epithelium. Gastroenterology.2006,130:902-907.
    Schweizer J, Bowden PE, Coulombe PA, et al. New consensus nomenclature for mammalian keratins. J Cell Biol.2006,174 (2):169-174.
    Scott DW. Skin of the neck, mane and tail of the curly horse. Equine Veterinary Education 2004,16(4): 201-206.
    Searle AG. Wavy-coat, proposed symbol Rewc, Mouse News Lett.1968,39:25.
    Sharov AA, Sharova TY, Mardaryev AN, et al. Bone morphogenetic protein signaling regulates the size of hair follicles and modulates the expression of cell cycle-associated genes PNAS.2006,103:18166-18171.
    Shimomura Y and Christiano AM. Biology and genetics of hair. Annual review of Genomics and Human Genetics.2010,11:109-132.
    Shimomura Y, Garzon M C, Kristal L, et al. Autosomal recessive woolly hair with hypotrichosis caused by a novel homozygous mutation in the P2RY5 gene. Exp Dermatol.2009,18(3):218-221.
    Shimomura Y, Wajid M, Ishii Y, et al. Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nat Genet.2008a,40:335-339.
    Shimomura Y, Wajid M, Petukhova L, et al. Mutations in the lipase H gene underlie autosomal recessive woolly hair/hypotrichosis. J Invest Dermat.2008b,129(3):622-628.
    Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature.1997,390:410-413.
    Sompayrac L, Jane S, Burn TC, et al. Overcoming limitations of the mRNA differential display technique. Nucleic Acids research,1995,23:4738-4739.
    Stein J and Liang P. Differential display technology:a general guide. Cellular Molecular Life Sciences. 2002,59:1235-1240.
    Stenn KS and Paus R. Controls of hair follicle cycling. Physiol Rev.2001,81:449-494.
    Stenn KS and Paus R. What controls hair follicle cycling? Exp Dermatol.1999,8:229-236.
    Stenn KS, Combates NJ, Eilertsen KJ, et al. Hair follicle growth controls. Dermatol Clin.1996,14:543- 558.
    St-Jacques B, Dassule HR, Karavanova I, et al. Sonic hedgehog signaling is essential for hair development. Curr Biol.1998,8:1058-1068.
    Sultan M, Schulz MH, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science.2008,321(5891):956-960.
    Sun Y, Hegamyyer G, Colburn NH. Molecular cloning of five messenger RNAs differentially expressed in preneoplasmic or neoplasmic JB6 mouse epidermal cells:one is homologous to human tissue inhibitor of metalloproteinases-3. Cancer Research.1994,54:1139-1144.
    Sundberg JP and Hogan ME. Handbook of Mouse Mutations with Skin and Hair Abnormalities (CRC, Boca Raton, FL).1994,57-68.
    Sundberg JP, Rourk MH, Boggess D, et al. Angora mouse mutation:altered hair cycle, follicular dystrophy, phenotypic maintenance of skin grafts, and changes in keratin expression. Vet Pathol.1997, 34:171-179
    Tanaka S, Miura I, Yoshiki A, et al. Mutations in the helix termination motif of mouse type I IRS keratin genes impair the assembly of keratin intermediate filament. Genomics,2007,90:703-711
    Tarazona S, Garcia-Alcalde F, Dopazo J, et al. Differential expression in RNA-seq:A matter of depth. Genome Res.2011,21:2213-2223.
    Taylor LA, Harris MJ, Juriloff DM.Whiskers amiss, a new vibrissae and hair mutation near the Krtl cluster on mouse chromosome 11. Mamm Genome.2000,11:255-259.
    ten Dijke P and Hill C. New insights into TGF-beta-Smad signalling. Trends Biochem Sci.2004,29:265-273.
    Thibaut S and Bernard BA. The biology of hair shape. Inter J Dermatol.2005,44:2-3.
    Thibaut S, Barbarat P, Leroy F, et al. Human hair keratin network and curvature. International J Dermatol. 2007,46(S1):7-10.
    Ting-Berreth SA and Chuong CM. Sonic hedgehog in feather morphogenesis:induction of mesenchymal condensation and association with cell death. Dev Dyn.1996,207:157-170.
    Toni M, Dalla Valle L, Alibardi LHard (beta-) keratins in the epidermis of reptiles:Composition, sequence, and molecular organization. J Proteome Res.2007,6:3377-3392.
    Toonen JA, Liang L, Sidjanin DJ. Waved with open eyelids 2 (woe2) is a novel spontaneous mouse mutation in the protein phosphatase 1, regulatory (inhibitor) subunit 13 like (Ppplrl31) gene. BMC Genetics.2012(1),13:76.
    Trapnell C, Pachter L, Salzberg SL. TopHat:discovering splice junctions with RNA-Seq. Bioinformatics. 2009,25:1105-1111.
    Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech.2010,28:511-515.
    Trigg MJ. Hair growth in mouse mutants affecting coat texture. J Zool.1972,168:165-198.
    Trinklein ND, Aldred SJF, Saldanha AJ, et al. Identification and functional analysis of human transcriptional promoters. Genome Research.2003,13(2):308-312.
    Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin. Science.2003,303: 359-363.
    Vannucci FA, Foster DN, Gebhart CJ. Laser microdissection coupled with RNA-seq analysis of porcine enterocytes infected with an obligate intracellular pathogen (Lawsonia intracellularis). BMC Genomics. 2013,14(1):421.
    Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science.1995, 270(5235):484-487.
    von Stein OD, Thies WG, Hofmann M. A high through put screening for rarely transcribed differentially expressed genes. Nucleic Acids Research.1997,25(13):2598-2602.
    Wakabayashi N, Itoh K, Wakabayashi J, et al. Keapl-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nature Genetics.2003,35(3):238-245.
    Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008,456 (7221):470-476.
    Wang H, Parry DAD, Jones LN, et al. In vitro assembly and structure of trichocyte keratin intermediate filaments:A novel role for stabilization by disulfide bonding. J Cell Biol.2000,151(7):1459-1468.
    Wang Y, Ghaffari N, Johnson C, et al. Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens. BMC Bioinformatics.2011,12(Suppl 10):S5.
    Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet.2009, 10(1):57-63.
    Weckx S, de Rijk P, van Broeckhoven C, et al. SSHSuite:an integrated software package for analysis of large-scale suppression subtractive hybridization data. Biotechniques.2004,36(6):1043-1045.
    Weedon D and Strutton G. Apoptosis as the mechanism of the involution of hair follicles in catagen transformation. Acta Derm Venereol.1981,61:335-339.
    Wei G, Bhushan B, Torgerson PM. Nanomechanical characterization of human hair using nanoindentation and SEM. Ultramicroscopy.2005,105(1):248-266.
    Wickramasinghe S, Rincon G, Islas-Trejo A, et al. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics.2012,13(1):45.
    Widelitz RB, Jiang TX, Chen CW, et al. Wnt-7a in feather morphogenesis:involvement of anterior-posterior asymmetry and proximaldistal elongation demonstrated with an in vitro reconstitution model. Development.1999,126:2577-2587.
    Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature.2008,453(7199):1239-1243.
    Wilson PA and Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature.1995,376:331-333.
    Winter H, Rogers MA, Gebhardt M, et al. A new mutation in the type 11 hair cortex keratin hHbl involved in the inherited hair disorder monilethrix. Human Genetics.1997,101(2):165-169.
    Won CH, Yoo HG, Park KY, et al. Hair growth-promoting effects of adiponectin in vitro. J Invest Dermatol.2012,132:2849-2851.
    Au Q, Zhao W M, Chen Y, et al. Transcriptome profiling of the goose (Anser cygnoides) ovaries identify laying and broodiness phenotypes. PloS ONE.2013,8(2):e55496.
    Xu T, Guo X, Wang H, et al. De novo transcriptome assembly and differential gene expression profiling of three capra hircus skin types during anagen of the hair growth cycle. Inter J Genomics.2013:269191.
    Yamada Y, Midorikawa T, Oura H, et al. Ephrin-A3 not only increases the density of hair follicles but also accelerates anagen development in neonatal mice. J Dermatol Sci.2008,52:178-185.
    Yang GP, Kuang WW, Weigel RJ, et al. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Research.1999,27(6):1517-1523.
    Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq:accounting for selection bias. Genome Biol.2010,11:R14.
    Yu ZD, Wildermoth JE, Wallace OAM, et al. Annotation of sheep keratin intermediate filament genes and their patterns of expression. Exp Dermatol.2011,20:582-588.
    Zhang C, Wang G, Wang J, et al. Characterization and comparative analyses of muscle transcriptomes in Dorper and Small-Tailed Han sheep using RNA-Seq technique. PLoS ONE.2013,8(8):e72686. doi:10.1371/journal.pone.0072686
    Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature.2003a,425:836-841.
    Zhang JS, Duncan EL, Chang ACM, et al. Differential display of mRNA. Mol Biotech.1998,10:155-165.
    Zhang M, Brancaccio A, Weiner L, et al. Ectodysplasin regulates pattern formation in the mammalian hair coat. Genesis.2003,37(1):30-37.
    Zhang Y, Tomann P, Andl T, et al. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell.2009,17:49-61.
    Zimek A and Weber K. Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish. Eur J Cell Biol.2005,84:623-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700