用户名: 密码: 验证码:
唐古特白刺对NaCl胁迫的生理响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
唐古特白刺(Nitraria tangutorum)是北方内陆盐碱地区荒漠植被的优势种或建群种之一,为我国特有植物种,具有沙生植物和盐生植物的多重特性。本研究以唐古特白刺为对象,通过根系分布、根际土壤水分、幼苗盐胁迫下生理指标变化、盐离子吸收运输及分布、光响应及叶绿素荧光变化、光合日变化等的观测,对其资源特征及耐盐生理特性进行了研究,以期对其资源利用及盐碱干旱环境生态保护提供理论依据,取得如下主要研究结果:
     1.根际土壤水分变化规律明显,0~40cm土层含水量变幅较大,40~80cm土层含水量最高,80cm以下随土层加深而递减,160~300cm土层含水量没有明显变化。平均根长100cm,根幅300cm。主根较粗,入土浅,根长为株丛高的1.32倍,侧根发达,扩展范围较广,根幅为冠幅的3.23倍,地上生物量为根系生物量的1.46倍;有效根系主要分布于0~40cm土层,为吸收和利用水分的重要区域,在0~20cm、20~40cm土层中,有效根重分别占总有效根重的58.69%、22.96%,有效根长分别占总有效根长的59.65%、23.20%。根系的水平走向和浅层大范围分布,有利于及时有效吸收利用因降水而补充的地表水分,是其在干旱荒漠地区大面积分布的重要生存策略之一。
     2.NaCl胁迫10d、20d、30d后,幼苗叶片抗氧化物酶活性均随NaCl浓度的增大呈相似的变化规律,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性均在低浓度(25~100mmol·L~(-1))胁迫时上升,高浓度(200~400mmol·L~(-1))盐胁迫时下降;丙二醛(MDA)、脯氨酸(Pro)含量均随NaCl浓度增大持续上升,在相同NaCl浓度下,胁迫10d时上升幅度较大,胁迫20d、30d时上升幅度较小;可溶性蛋白(SP)含量随NaCl浓度增大呈现整体下降趋势;可溶性糖(SS)在低NaCl浓度时上升,高NaCl浓度时下降。表明随NaCl浓度增大,幼苗的膜脂过氧化程度加大,保护酶在低NaCl浓度下对清除活性氧起到主要作用,并且Pro是维持幼苗渗透压平衡的主要物质,而SS、SP对渗透压平衡具有辅助调节作用。
     3.根系对盐分离子的吸收比以K~+最大,其次为Cl~-、Na~+;运输比以Ca~(2+)最大,其次为Cl~-、Na~+。由于土壤介质Cl~-、Na~+的基数远大于其他离子,所以Cl~-、Na~+的吸收和运输总量最大,其后依次为K~+、Ca~(2+)、Mg~(2+)。在NaCl胁迫下,以叶片优先吸收并积累大量盐分离子为适应特征,茎叶和根系中Cl~-、Na~+及总离子含量随NaCl浓度的增大而上升。叶片对Cl~-、Na~+和总无机离子的积累量高于茎和根部,叶片和茎部能够大量积累盐分离子,维持组织细胞的高渗透压和原生质胶体的高亲水性,增大地上部和根部的渗透势差,促进水分向地上部运输。
     4.NaCl胁迫下,幼苗的净光合速率(P_n)和蒸腾速率(T_r)变化趋势一致,其顺序为:25>CK>50>100>200>400mmol·L~(-1);水分利用效率(WUE)在200、400mmol·L~(-1)NaCl浓度下显著高于CK和其他处理。
     随NaCl浓度增大,幼苗的表观量子效率(a)、暗呼吸速率(R_d)、最大光合速率(P_(nmax))、光饱和点(LSP)和光补偿点(LCP)均呈下降趋势,在25mmol·L~(-1)NaCl浓度下其P_(nmax)、LSP、LCP显著高于其它处理。随着NaCl浓度的增大,唐古特白刺幼苗对弱光的利用能力增强,对强光的利用能力下降,25mmol·L~(-1)NaCl浓度下光合同化潜力最大,400mmol·L~(-1)NaCl浓度下光合同化潜力最小。
     随NaCl浓度增大,幼苗的初始荧光(F_o)呈增大趋势,最大荧光(F_m)、PSⅡ原初光能转化效率(F_v/F_m)、PSⅡ潜在光化学效率(F_v/F_o)、光化学淬灭系数(qP)、非光化学淬灭系数(NPQ)、PSⅡ实际光合效率(ФPSⅡ)均呈下降趋势。说明NaCl胁迫下幼苗的PSⅡ光反应中心受到的破坏程度随NaCl浓度增大而加重,这也是其P_n下降的主要原因。
     5.幼苗P_n日变化呈现单峰趋势,峰值出现在上午10:00,之后随光合有效幅射(PAR)的增大而持续下降,无光合“午休”现象;Tr在8:00~10:00随PAR的增加呈现较大幅度上升,10:00-16:00有相对平稳的小幅升降变化,16:00开始下降;WUE的日变化整体表现为8:00-14:00快速下降,14:00以后稳定或小有上升;气孔限制值(L_s)在8:00-14:00整体表现为平稳上升趋势,14:00以后下降。
     多元回归显示,PAR偏回归系数显著大于其他环境因子,说明PAR与Pn的相关性最大。通径分析结果显示,除800mmol·L~(-1)外,各环境因子与P_n的通径系数趋势为:PAR>大气CO2浓度(C_a)>空气相对湿度(RH)>大气温度(T_a),表明PAR对P_n的贡献最大。不同NaCl浓度下PAR的通径系数随NaCl浓度的上升先升高后降低,环境因子对P_n的效应在100mmol·L~(-1)NaCl浓度下最显著,此浓度下PAR和C_a的利用效率最高,在800mmol·L~(-1)NaCl浓度下,PAR的利用效率最低。
Nitraria tangutorum is one of dominant or constructive plant species of desert vegetation innorthwest inland saline area and it is also one of the endemic plant species in China with featuresof psammophytes and halophytes. The study on resource characteristics and salt resistance ofNitraria tangutorum was conducted through measuring the microelement content, root systemdistribution, soil moisture in rhizosphere, physiological index variation of seedling under saltstress, salt ion absorb-transportation and distribution, light response and chlorophyll fluorescencechange, daily variation of photosynthesis in order to provide the basis for N. tangutorumutilization in ecological protection in saline and arid area. The main results are as follows:
     1. The soil moisture in rhizosphere showed a remarkable variation pattern. The variationwithin0to40cm soil layer was large and it was small within160to300cm soil layer. The soilmoisture within40to80cm layer was the highest. The root length and diameter of root systemwere100cm and300cm respectively. The root length was1.32times of plant height. Thediameter of root system was3.22times of plant crown. The aboveground biomass was1.46times of underground. And the alive root weight within0to20cm and20to40cm layersaccounted for58.69%and22.96%of the total respectively, and for the alive root length, theywere59.65%and23.20%respectively. Root system distributed horizontally and mainly inuplayer in order to effectively absorb the rainfall to surface and this was the important strategyfor plants growing in desert area to survive.
     2. The activity of protective antioxidant enzyme in leaf of seedling under NaCl stress for10,20and30days showed a same pattern. The activity of superoxide dismutase (SOD), catalases(CAT) and peroxidase (POD) increased under the low concentration stress (25to100mmol·L~(-1))and decreased under high concentration (200to400mmol·L~(-1)). The content of malonate (MDA)kept increasing under stress. The proline (Pro) content increased along with the stressconcentration. And the increasing amount was higher within10to20days compared to thatwithin20to30days under same stress concentration. Soluble protein (SP) content showed adecreasing pattern in general. Soluble sugar (SS) content increased under low concentrationstress and decreased under high concentration stress. This might explain that the membrane lipidperoxisome degree of seedling increased along with NaCl concentration and the protective enzyme played an important role for clearing reactive oxygen under low NaCl concentratin. Procould keep seedling osmoregulation balance as the major material, SS and SP behaved as theassistant matter.
     3. The absorptance of root system for K~+was the highest, and followed by Cl~-and Na~+. Thetransportation rate for Ca~(2+)was the highest, and followed by Cl~-and Na~+. The absorbtion andtransportation amount of Cl~-and Na~+were the highest because of their high proportions in soil,and followed by K~+, Ca~(2+)and Mg~(2+). The leaf priorly absorbed and accumulated a large amountof action for adapting the environment under NaCl stress, and the contents of Cl~-, Na~+and totalions in leaf, stem and root increased with NaCl concentration. The accumulation amount of Cl~-,Na~+and total inorganic ions in leaf were higher than those in stem and root, and leaf and stemcould store a large amount of salt ions for maitaining the osmosis pressure and protoplast of highhydrophilic property, increased over ground part and root system osmosis pressure difference,keeping water towards over ground part transportation.
     4. The variation of net photosynthetic rate (P_n) and transpiration rate (T_r) of seedling underNaCl stress with different concentrations showed a same pattern and the order of P_n was25>CK>50>100>200>400mmol·L~(-1). The water use efficiency (WUE) under treatments of200and400mmol·L~(-1)NaCl was higher that other treatments and CK.
     With NaCl concentration increased, the apparent quantum yield (a), dark respiratory rate(R_d), maximum photosynthesis rate (P_(nmax)), light saturation point (LSP) and light compensationpoint (LCP) of seedling performed a decreasing trend. And its P_(nmax), LSP and LCP were thehighest under25mmol·L~(-1)stress out of all treatment concentrations. The weak light utilizationability of seedling was increased along with the NaCl stress concentration and meanwhile thestrong light utilization ability was decreased. The photosynthesis assimilatory potential ofseedling reached the highest under25mmol·L~(-1)NaCl concentration and the lowest under400mmol·L~(-1)NaCl concentration.
     With NaCl concentration increasing, the minimal fluorescence (F_o) of seedling showed anincreasing trend, however, the maximal fluorescence (F_m), maximal quantum yield ofPSⅡ(F_v/F_m), PSⅡLatent photosynthesis efficiency (F_v/F_o), photochemical quench coefficient(qP), non photochemical quench coefficient (NPQ), PSⅡreality photosynthesis efficiency(ФPSⅡ) decreased. It could be concluded that the PSⅡlight reaction center was damaged by NaCl stress and it was also the cause of P_n decreace.
     5. The P_n daily change of seedling showed a single peak pattern and the peak valueappeared at10:00, and then it decreased along with the increase of photosynthesis activeradiation. No photosynthesis noon break phenomenon was found. T_r increased greatly from8:00to10:00along with PAR increase and it steadily increased from10:00to16:00, and then it beganto decrease. The daily change of WUE showed the following pattern: it rapidly decreased from8:00to14:00and was stable after14:00or a small amount of increasing. The stomata limitationvalue (L_s) from8:00to14:00was rising in general and dropping after14:00.
     Multiple regression indicated that PAR partial regression coefficient was notable largerthan other environment factor, and it suggested that PAR greatly correlated to P_n. Pathanalysis showed that the order of path coefficient of environmental factors was PAR> airCO_2concentration (C_a)> air relative humidity (RH)> air temperature (T_a) except800mmol·L~(-1)treatment, and this meant that the contribution of PAR to P_n was the largest. PARpath coefficient under stress of different NaCl concentrations increased first and thendecreased along with the increase of NaCl concentration. And it suggested that the impact ofenvironmental factors on P_n was most significant under100mmol·L~(-1)and PAR and C_autilization efficiency were the highest, however, they were the lowest under800mmol·L~(-1).
引文
[1]贾恢先,孙学刚.中国西北内陆盐地植物图谱[M].北京:中国林业出版社,2005
    [2]赵可夫,李法曾,张福锁.中国盐生植物(第二版)[M].北京:科学出版社,2013
    [3]王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993
    [4]王遵亲.中国土壤盐渍分布图(中国土壤集)[M].北京:地图出版社,1996
    [5]曲仲湘,吴玉树,王焕校,等.植物生态学(第二版)[M].北京:高等教育出版社,1984:132-136
    [6] Breckle S W. Studies onhalophytes and salt affected natural ecosystems.In Lauchli A, L uttge U.Salinity:Environment Plant Molecules[M]. Dordrecht, the Netherlands: Kluwer Academic publishers:2002,53-57
    [7]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991(增刊Ⅳ):1-139
    [8]潘晓云,魏小平,尉秋实,等.多倍化—白刺属的系统分类进化特征及应用前景[J].植物学通报.2003,20(5):632-638
    [9]潘晓玲,沈观冕,陈鹏.白刺属植物的分类及系统学研究[J].云南植物研究,1999.21(3)287-295
    [10]索有瑞.柴达木盆地白刺研究与开发[M].北京:科学出版社,2010:33-35
    [11]中国科学院植物研究所编.中国植物志(第四十三卷)[M].科学出版社,1998:122
    [12]中国科学院兰州沙漠研究所编.中国沙漠植物志(第二卷)[M].北京:科学出版社,1987:303-306
    [13]王尚德,康向阳.唐古特白刺研究现状与建议[J].植物遗传资源学报,2005,6(2):231~235
    [14]索有瑞,王洪伦,汪汉卿.柴达木盆地唐古特白刺果实降血脂和抗氧化作用研究[J].天然产物研究与开发,2004,16(1):54-58
    [15]王洪伦,王小艳,张凤枰,等.唐古特白刺籽油的超临界CO2流体萃取及GC/MS分析[J].中国油脂,2006,31(10):61-63
    [16]张萍,哈斯,岳兴玲,等.白刺灌丛沙堆形态与沉积特征[J].干旱区地理,2008,31(6):926-932
    [17]杨自辉,高志海.荒漠绿洲边缘降水和地下水对白刺群落消长的影响[J].应用生态学报,2000,11(6):923-926
    [18]梁继业.沙漠—河岸过渡带白刺沙堆个体特征及其空间分布格局[D].北京:中国林业科学研究院,2007
    [19]韩胜利,叶冬梅,秦佳琪,等.乌兰布和沙漠白刺灌丛土壤水分及物理特性的研究[J].干旱区地理,2005,28(4):506-510
    [20]李清河,江泽平.白刺研究[M].北京:中国林业出版社,2011:14-16
    [21]孙祥,于卓.白刺根系的研究[J].中国沙漠,1992,12(4):50-54
    [22]卢树昌,苏卫国.重盐碱区白刺耐盐性及其利用研究[J].天津农学院学报,2004,11(4):30-35
    [23]周志宇,朱宗元,刘仲龄,等.干旱荒漠地区受损生态系统的恢复重建成与可持续发展[M].北京:科学出版社,2010:205-208
    [24]赵克昌.白刺属灌木在黄土丘陵区荒山造林试验[J].干旱区资源与环境,1991,5(4):74-79
    [25]刘建泉.甘肃民勤西沙窝唐古特白刺群落的生态特性[J].植物资源与环境学报,2002,11(3):36-40
    [26]张远东,潘晓玲,顾峰雪,等.阜康荒漠植被灌木与半灌木种群生态位的研究[J].植物生态学报,2001,25(6):741-745
    [27]樊莲莲,刘金荣,赵文彬,等.唐古特白刺不同时期果实及叶所含黄酮的比较[J].中医药导报,2007,13(5):7-8
    [28]贾忠建,朱广军,王继和.唐古特白刺黄酮类化合物的研究[J].植物学报,1989,31(3):241-243
    [29]段金廒,周荣汉,赵守训,等.唐古特白刺叶黄酮类及酚酸类成分的分离鉴定[J].植物资源与环境,1999,8(1):6-9
    [30]王福珍.沙生植物-白刺开发利用前景[J].中国食物与营养,1997,1:19-41
    [31]刘利平,燕玲.白刺属植物化学成分的研究现状与发展趋势[J].内蒙古农业大学学报,2009,30(1):316-320
    [32]高航,索有瑞.柴达木盆地西伯利亚白刺和唐古特白刺的氨基酸含量及其营养评价[J].氨基酸和生物资源,2002,24(4):4-6
    [33]张勇,李鹏,李彩霞.甘肃白刺属3种植物叶片营养成分含量的测定与分析[J].草业科学,2007,24(7):37-39
    [34]王洪伦,丁晨旭,李玉林,等.白刺和枸杞中微量元素含量的对比研究[J].广东微量元素科学.2007,14(4):36-38
    [35]耿庆祯,都恕兴,尚艳霞,等.西伯利亚白刺和唐古特白刺营养成分比较分析[J].食品科技,2008,3:101-104
    [36]周利兵,吴启勋.青海地区植物白刺叶中微量元素的主要成分分析[J].微量元素与健康研究,2006,23(5):25-27
    [37]中国科学院冰川冻土沙漠研究所沙漠研究室编.中国沙漠地区药用植物[M].兰州:甘肃人民出版社,1973:448-450
    [38]高永.寄生植物锁阳的开发利用前景[J].内蒙古林学院学报(自然科学版),1996,18(3):45-49
    [39]萧浪涛,王三根.植物生理学[M].北京:中国农业出版社,2004:161-162
    [40]张勇.白刺属植物分子系统学及遗传多样性研究[D].兰州:兰州大学,2006
    [41]韩永伟,拓学森,高馨婷,等.阿拉善荒漠草原梭梭与白刺光合特征比较研究[J].草地学报,2010,18(3):314-319
    [42]赵长明,魏小明,尉秋实,等.民勤绿洲荒漠过渡带植物白刺和梭梭光合特性[J].生态学报,2005,25(8):1908-1913
    [43]张锦春,赵明,张应昌,等.灌溉植被梭梭白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):70-76
    [44]田新民,赵长明,邓建明,等.沿民勤绿洲荒漠过渡带分布的4种优势植物光合生理响应[J].草业学报,2011,20(4):108-115
    [45]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理中的研究应用[J].浙江农业学报,2006,18(1):51-55
    [46]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [47]丛雪,齐华,孟凡超,等.干旱胁迫对玉米叶绿素荧光参数及质膜透性的影响[J].华北农学报,2010,25(5):141-144
    [48]蒲光兰,周兰英,胡学华,等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究,2005,23(3):44-48
    [49]罗俊,林彦铨,张木清,等.利用甘蔗叶绿体荧光参数及活性氧代谢等指标评价甘蔗品种的耐旱性[J].甘蔗,1999,6(3):14-21
    [50]韩张雄,李利,徐新文,等.三种荒漠植物幼苗对NaCl胁迫的叶绿素荧光响应[J].辽宁工程技术大学学报(自然科学版),2010,30(增刊):153-157
    [51]邢庆振,郁松林,牛雅萍,等.盐胁迫对葡萄幼苗光合及叶绿素荧光特性的影响[J].干旱地区农业研究,2011,29(3):96-100
    [52]蒋明义,郭绍川.水分胁迫诱导的氧化胁迫和植物抗氧化作用[J].植物生理学通讯,1996,32(2):144-150
    [53]龚吉蕊,赵爱芳,张立新,等.干旱胁迫下几种荒漠植物抗氧化能力的比较研究[J].西北植物学报,2004,24(9):1570-1577
    [54]刘兴亮.盐碱胁迫对白刺生理生化的影响[D].哈尔滨:东北农业大学,2010
    [55]种培芳.荒漠植物红砂白刺和沙拐枣抗旱指标及抗旱综合评价研究[D].兰州:甘肃农业大学,2010
    [56]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000
    [57]赵纪东.白刺根—土界面水分再分配及其对干旱胁迫的影响[D].兰州:兰州大学,2007
    [58]高暝.白刺抗旱生理生化指标测定及抗旱性研究[D].兰州:甘肃农业大学,2010
    [59]范小峰,杨颖丽,程转霞,等.NaCl胁迫下唐古特白刺愈伤组织生理生化变化研究[J].干旱地区农业研究,2009,27(3):203-207
    [60]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302~305
    [61]侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35(1):1-7
    [62]赵勇.盐胁迫下植物组织中甜菜碱和脯氨酸变化的研究[D].北京:中国农业科学院研究生院,2004
    [63] Flowers T J.Physology of halophyte.Plant and soil,1985,89:41-56(63)
    [64] Flowers T J,Colmer T D.Salinity tolerance in halophytes.New phytologist,2008,179:945-963
    [65]潘瑞炽,王小菁,李娘辉.植物生理学(第六版)[M].北京:高等教育出版社,2008
    [66] Staples R C.Salinity tolerance in plant strategies for corp improvement[M].1984:67-75
    [67]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387
    [68] Rodriguez H G,Roberts J K M,Jordan W R,et al.Growth, water relations and accumulation of organic andinorganic solutes in roots of maize seedlings during salt stress[J].Plant Physiology,1997,113:881-893
    [69] Maathuis F J M,Sanders D.Regulation of K+absorption in plant root cells by external K+: Interplay ofdifferent plasma memberane K+transports[J]. Journal of Experimental Botany,1997,48:451-458
    [70]戴松香,陈少良.植物根细胞离子通道研究进展[J].北京农业大学学报,2005,27(3):98-103
    [71] Schachtman D P, Tyerman S D,Terry B R.The K+/Na+selectivity of a cation channel in the plasmamembrane of root cells does not differe in salt-tolerant and salt-sensitive wheat species[J]. Plant Physiology,1991,97:598-605
    [72]张伟.蚕豆保卫细胞质膜钙通透性通道渗透调节机制研究及拟南芥TPC1基因的克隆与鉴定[D].北京:中国农业大学,2005
    [73]翟凤林,曹鸣庆.植物的耐盐性及其改良[M].北京:农业出版社,1989:125-133
    [74]李双福,张启昌,张起超,等.白刺属植物研究进展[J].北华大学学报(自然科学版),2005,6(1):78-81
    [75]陶玲.甘肃省白刺属植物的数量分类研究[J].西北植物学报,2003,23(4):572-576.
    [76]陈世璜,张昊,王立群,等.中国北方草地植物根系[M].长春:吉林大学出版社,2001,338-340
    [77]谢忠奎.黄土高原荒漠草原区典型生态系统人工干预的水分效应研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2006
    [78]单立山,张希明,魏疆,等.塔克拉玛干沙漠腹地两种灌木有效根系[J].干旱区地理,2007,30(3):400-405
    [79]柴成武,徐先英,唐卫东,等.石羊河流域荒漠区主要固沙植物根系研究[J].西北林学院学报2009,24(4):21-26
    [80]赵爱芬,赵学勇,常学礼.奈曼旗沙丘植被根系特征研究[J].中国沙漠,1997,17(增刊1):41-45
    [81]黄昌勇.土壤学[M].北京:农业出版社,2000:101-102
    [82]黄德青,于兰,张耀生,等.祁连山北坡天然草地地上生物量及其土壤水分关系的比较研究[J].草业学报,2011,20(3):20-27
    [83]黄德青,于兰,张耀生,等.祁连山北坡草地生物量及其与气象因子的关系[J].草业科学,2011,28(8):1495-1501
    [84]陶冶,张元明.3种荒漠植物群落物种组成与丰富度的季节变化及地上生物量特征[J].草业学报,2011,20(6):1-11
    [85]盛晋华,乔永祥,刘宏义,等.梭梭根系的研究[J].草地学报,2004,12(2):91-94
    [86]陈晓远,高志宏,罗远培.植物根冠关系[J].植物生理学通讯,2005,41(5)555-562
    [87] Simonneau T, Habib R. Water up take regulation in peach trees with split-root systems[J].Plant CellEnvironment,1994,17:379-388
    [88] Van den Boogaard R,Veneklaas E J, Peacock J, Lambers H. Yield and water use of wheat environment:Effects of water availability and sowing density[J]. Plant Soil,1996,181:251-262
    [89]高洁,叶洪刚,杨荣喜.攀枝花干热河谷14个树种的耐旱性研究[J].西南林学院学报,1996,16(3):135-139
    [90]冯燕,王彦荣,胡小文.水分胁迫对两种荒漠灌木幼苗生长与水分利用效率的影响[J].草业学报,2011,20(4):293-298
    [91] Michael J Hutchings. Differential foraging for resources, and structural plasticity in plants[J].Trends inEcology&Evolution,1988,3:200-204
    [92] Schwinning S,Ehleringer J R.Water use trade-off and optimal adaptations to pulse-driven arid ecosystem[J].Journal of Ecology,2001,89:464-480
    [93]徐贵青,李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报,2009,29(1):130-137
    [94] Caldwell M M, Richards J H. Water efflux from upper root improves effectiveness of water uptake by deeproot [J]. Oecologia,1989,79:1-5
    [95]陈亚明,傅华.根-土界面水分再分配研究现状与展望[J].生态学报,2004,24(5):1040-1047
    [96] Brooks J R, Meizer F C, Coulombr,et al. Hydraulic redistribution of soilwater during summer drought intwo contrasting pacific notrhwest coniferous forests[J].Tree physiology,2002,22:1107-1117
    [97]刘穆.种子植物形态解剖学导论(第五版)[M].北京:科学出版社,2010:273-279
    [98] Dickison W C.Integrative plant anatomy[M].San Diego: Harcourt/Academic press,2000
    [99] Rost T L,Barbour M G,Stocking C R,et al.Plant Biology[M].2nd edn.Canada:Thomson brooks\cole
    [100]韦存虚,王建波,陈义芳,等.盐生植物星星草叶表皮具有泌盐功能的蜡质层[J].生态学报,2004,21(11):2451-2456
    [101] Karbulkova J, Schreiber L, Macek P. Differences betweenwater permeability of astomatous and stomatouscuticular membranes: effects of air humidity in two species of contrast-ing drought-resistance strategy[J].Journal of Experimental Botany,2008,59(14):3987-3995
    [102] Holmesm G,Keiller D R. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet andphotosynthetic wavebands: a comparison of a range of species[J]. Plant Cell Environ,2002,25:85-93
    [103] Alcerito T, Barbo F E, Negrig, et al. Foliar epicuticular wax of Arrabidaea brachypoda: flavonoids andantifungal activity[J]. Biochem Syst Ecol,2002,30(7):677-683
    [104] Wang HH, Hao JJ, Chen XJ, et al. Overexpression of rice WRKY89enhances ultraviolet B tolerance anddisease resistance in rice plants[J]. Plant Mol Biol,2007,65(6):799-815
    [105] Long L M, Patelh P, Coryw C, et al. The maize epicuticular wax layer provides UV protection[J]. FunctPlant Biol,2003,30(1):75-81
    [106] Jenks M A, Ashworth E N. Plant epicuticular waxes: function, production, and genetics HorticulturalReviews[J]. Canada: John Wiley&Sons,1999,23:1-68
    [107] Olivera A F, Meirelles S T, Salatino A. Epicuticular waxes from Caatinga and Cerrado species and theirefficiency against water loss[J]. An Acad Bras Cienc,2003,75:431-439
    [108] Vogg G, Fischer S, Leide J, et a.l Tomato fruit cuticular waxes and their effects on transpiration barrierproperties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoAsynthase[J]. Journal of Experimental Botany,2004,55:1401-1410
    [109]杨春雪,卓丽环,柳参奎.植物显微及超微结构变化与其抗逆性关系的研究进展[J].分子植物育种,2008,6(2):341-346
    [110] Bruns S, Hecht-Buchholz C. Light and electron-microscope studies on the leaves of several potato cultivarsafter application of salt at various developmental stages[J].Potato Res,1990,33:33-41
    [111] Ilker R,Waring A J,Lyons J M, et al. The cytological responses of tomato seedling cotyledons to chillingand the influence of membrane modifications upon these responses[J].Protoplasma,1976,90:229-252
    [112]赵曼容,贾恢先.几种典型盐地植物超微结构的研究[J].干旱区资历源与环境,1993,7(3):334-337
    [113]范华,董宽虎,侯燕平,等.NaCl胁迫对盐生植物碱蒿超微结构的影响[J].草地学报,2011,19(3):482-486
    [114]朱宇旌,张勇,盐胁迫下小花碱茅超微结构的研究[J],中国草地,2000,4:30-32
    [115]宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响[J].应用生态学报,2010,21(2):325-330
    [116]张德罡.盐胁迫对五个早熟禾草坪草品种苗期细胞膜伤害性的研究[J].甘肃农业大学学报,1998,33(1):38-41
    [117] André Dias de Azevedo Neto, José Tarquinio Prisco, Joaquim Enéas-Filho, Jand-Venes Rolim Medeiros,Enéas Gomes-Filho.Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants[J].Journal of Plant Physiology,2005,162:1114-1122
    [118] Giannopolitis C N, Ries S K. Superoxide dismutases. I. Occurrence in higher plants[J].Plant Physiology,1977,59:309-314
    [119] Beers Jr R F, Sizer I W. A spectrophotometric method for measuring the breakdown of hydrogen peroxideby catalase[J]. Journal of Biological Chemistry,1952,195:133-140
    [120] Urbanek H, Kuzniak-Gebarowska E, Herka K.Elicitation of defense responses in bean leaves by Botrytiscinerea polygalacturonase[J].Acta Physiology Plantarum,1991,13:43-50
    [121]李合生,孙群,赵世杰.植物生理生化实验原理及技术[M].北京:高等教育出版社,2000.134-137
    [122]罗广华,王爱国,付爱根.鉴别超氧化物歧化酶类型的定位染色法[J].生物化学与生物物理进展,1996,23(4):356-359
    [123]孙存华,李扬,贺鸿雁,等.藜对干旱胁迫的生理生化反应[J].生态学报,2005,25(10):2556-2561
    [124] Noctor G, Foyer C H. Ascorbate and glutathione: keeping oxidative oxygen under control[R].AnnualReview of Plant Physiology and Plant Molecular Biology,1998,49:249-279
    [125]廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2088
    [126]闫永庆,王文杰,朱虹,等.混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响[J].应用生态学报,2009,20(9):2085-209
    [127]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(10):23-27
    [128]杜菲,陈新,杨春华,等.NaCl胁迫对不同柳枝稷材料种子萌发与幼苗生长的影响[J].草地学报,2011,19(6):1018-1024
    [129]全先庆,张渝洁,单雷,等.高等植物脯氨酸代谢研究进展[J].生物技术通讯,2007,(1):14-18
    [130]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825
    [131]史如霞. NaCl胁迫对唐古特白刺愈伤组织生理生化特性的影响[D].兰州:西北师范大学,2010
    [132]张美云,钱吉,钟扬,等.野生大豆若干耐盐生理指标的研究[J].复旦大学学报,2002,41(6):669–673
    [133]石连旋,胡勇军,宫亮,等.不同盐碱化草甸羊草越冬根茎中可溶性糖研究[J].东北师大学报,2008,40(2):88-92
    [134] Blackman S A,Obendorf R L,Leopold A C.Maturation proteins and sugars in desiccation tolerance ofdeveloping soybean seeds[J].Plant Physiology,1992,100(1):225-230
    [135]王龙强,蔺海明,米永伟.盐胁迫对枸杞属2种植物幼苗生理指标的影响[J].草地学报,2011,19(6):1010-1017
    [136]李树华,许兴,米海莉,等.水分胁迫对牛心朴子植物生长及渗透调节物质积累的影响[J].西北植物学报,2003,23(4):592-596
    [137]刘祖祺,张石城.植物抗逆性生理学[M].北京:中国农业出版社,1994:25-71
    [138]杨鑫光,傅华,牛得草.干旱胁迫下幼苗期霸王的生理响应[J].草业学报,2007,16(5):107-112
    [139]叶冬梅,秦佳琪,韩胜利,等.乌兰布和沙漠流动沙地土壤水分动态,土壤水势特征的研究[J].干旱区资源与环境,2005,19(3):126-130
    [140]王锁民.不同程度盐胁迫对碱茅离子吸收与分配的影响[J].草地学报,1996,4(3):186-192
    [141]毛美飞,赵冰波,岳薇.稀盐酸提取植物中金属元素的效果研究[J].浙江农业科学,1985,2:29-35
    [142]甘肃农业大学.草原生态化学实验指导[M].北京:农业出版社,1987:
    [143]计小江,李超英,毛美飞.植物中氯测定前处理方法探讨[J].浙江农业科学,1997,2:89-91
    [144]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000:193-195
    [145]王锁民.不同程度盐胁迫对碱茅离子吸收与分配的影响[J].草地学报,1996,4(3):186-193
    [146]张科,张道远,王雷.等.自然生境下盐角草的离子吸收-运输特征[J].干旱区研究,2007,24(4):480-486
    [147] Wang S M, Zheng W J, Ren J Z, Zhang C L. Selectivity ofvarious types of salt-resistant plants for K+overNa+[J]. J Arid Environ,2002,52:457-472
    [148]李品芳,侯振安,龚元石.NaCl胁迫对苜蓿和羊草苗期生长及养分吸收的影响[J].植物营养与肥料学报,2001,7(2):211-217
    [149]高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(2):1-6
    [150]李品芳,白文波,杨志成. NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响[J].中国农业科学,2005,38(7):1458-1565
    [151] Pitman M G.Transport across Root and Shoot/Root Interaction(A).John.SalinityTolerance inPlant-Strategies for Crop Improvement(C).New York:Wiley,Sons.1984.93-123
    [152]朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报,2007,27(12):5447-5454
    [153]陈菊培.盐胁迫下植物细胞吸收Na+的可能途径[J].海南大学学报(自然科学版),2005,23(4):383-390
    [154]郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27(4):325-330
    [155]王颖,周晓阳.逆境胁迫下植物细胞内Ca2+水平的变化[J].安徽农学报,2010,16(8):29-31
    [156]郭照辉,张德元,毛丹丹,等.植物Mg2+转运蛋白与相关基因及其功能的研究进展[J].生命科学研究,2008,12(3):207-210
    [157] Shau L O.Magnesium transport and function in plants: the tip of the iceberg[J].BioMetals,2002,15:309-323
    [158] Richard C G. Genes for magnesium transport[J]. Current Opinion,2003,6:263-267
    [159]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(04):124-128
    [160]韩亚琦,唐宇丹,张少英,等.盐胁迫抑制槲栎2变种光合作用的机理研究[J].西北植物学报,2007,27(3):583-587
    [161]林莺,李伟,范海,等.海滨锦葵光合作用对盐胁迫的响应[J].山东师范大学学报,2006,21(2):118-120
    [162]付振书,赵世杰,孟庆伟,等.热锻炼对甘蓝幼苗叶片激发能分配的影响[J].应用生态学报,2004,15(8):1353-1357
    [163]孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报,2006,17(3):399-402
    [164]杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118
    [165] Dambrosio N, Arena C, Santo AVD.Temperature response of photosynthesis, excitation energy dissipationand alternative electron sinks to carbon assimilation in Beta vulgaris L[J]. Environmental and ExperimentalBotany,2006,55:248-257
    [166] Sinsawat V, Leipner J, Stamo P, Fracheboud Y. Effect of heat stress on the photosynthetic apparatus inmaize (Zea mays L.) grown at controlor high temperature[J].Environmental and Experimental Botany,2004,52:123-129
    [167]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,21(8):76-79
    [168]孙英,陈建纲,张德罡,等.东祁连山高寒草甸优势植物光响应特征[J].草地学报,2012,20(2):244-249
    [169]叶子飘,李进省.光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J].井冈山大学学报(自然科学版),2010,31(3):38-44
    [170]王二虎,冶林茂,乔长城.叶面积测量试验数据对比分析[J].气象与环境科学,2011,34(4):59-62
    [171]甘肃农业大学草原系编.草原工作手册[M].兰州:甘肃人民出版社,1978:439-440
    [172]高聚林,赵涛,王志刚,等.高丹草水分利用效率与叶片生理特性的关系[J].作物学报,2007,33(3):455-460
    [173]靳甜甜,傅伯杰,刘国华,等.不同坡位沙棘光合日变化及其主要环境因子[J].生态学报,2011,31(7):1783-1793
    [174]盖钧镒.试验统计方法[M].中国农业出版社,2007:193-203
    [175] Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[R].Annu Rev Plant Physiol,1982,33:317-345
    [176]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33:241-244
    [177]左应梅,陈秋波,邓权权,等.土壤水分、光照和空气湿度对木薯气孔导度的影响[J].生态学杂志,2011,30(4):689-693
    [178]黄刚,赵学勇,崔建垣,等.水分胁迫对2种科尔沁沙地植物光合和水分利用特性的影响[J].西北植物学报,2008,28(11):2306-2313
    [179] Guillermo M P, Maria V L, Pablo L P. Photosynthetic plasticity of Nothofagus pumilio seedlings to lightintensity and soil moisture[J].Forest Ecology and Management,2007,243:274-282
    [180]李伟成,王树东,钟哲科,等.几种经验模型在丛生竹光响应曲线拟合中的应用[J]竹子研究汇刊,2009,28(3):19-24
    [181]陆佩玲,罗毅,刘建栋,等.华北地区冬小麦光合作用的光响应曲线的特征参数[J].应用气象学报,2000,11(3):236-241
    [182]李建斌,李建明,邹志荣,等.厚皮甜瓜苗期叶片光合、光呼吸及暗呼吸速率的变化[J].西北农林科技大学学报(自然科学版),2008,36(7):57-63
    [183]石贵玉,康浩,宜丽娜,等.NaCl胁迫对互花米草细胞膜和光响应曲线特征参数的影响[J].广西植物,2012,32(1):101-106
    [184]韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报,2010,30(15):4019-4026
    [185]陈贻竹,李晓萍,夏雨,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79-86
    [186] Demmig B,Winter K,Krüger A,et al.Photoinhibition and zeaxanthin formation in intact leaves[J].Plantphysiol,1997,84(2):218-224
    [187] Dodd IC, Critchley C, Woodall G S, et al. Photoinhibition in differently colorded juvenile leaves ofSyzygium species[J]. Exper Bot,1998,49:1437-1445
    [188] Li Y G,Li L H,Jiang G M,et al.Traits of chlorophyll fluorescence in99plant species from the sparse-elmgrassland in Hunshandak Sandland[J].Photosynthetica,2004,42(2):243-249
    [189]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报,1997,13(2):273-278
    [190]齐华,白向历,孙世贤,等.水分胁迫对玉米叶绿素荧光特性的影响[J].华北农学报,2009,24(3):102-106
    [191]张锦春,赵明,张应昌,等.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):0070-0076
    [192]李清河,赵英铭,刘建锋,等.乌兰布和沙漠东北部不同起源的5种沙生灌木的光合及生长特性[J].林业科学研究,2008,21(3):357-361
    [193] Zhao B Z, Kondo M, Maeda M.Water use efficiency and carbon isotope discrimination in two cultivars ofupland rice during different developmental stages under three water regimes[J].Plant and Soil,2004,261:61-75
    [194]冯燕,王彦荣,胡小文,等.水分胁迫对两种荒漠灌木幼苗生长与水分利用效率的影响[J].草业学报,2011,20(4):293-298
    [195]邓雄,李小明,张希明,等.多枝柽柳气体交换特性研究[J].生态学报,2003,23(1):180-187
    [196]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005:196-220
    [197] Munn S R.Comparative physiology of salt and water strees[J].Plant,Cell and Environment,2002,25:239-250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700