用户名: 密码: 验证码:
日光温室番茄栽培基质的根际环境及化感作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生态农业和可持续循环农业的发展,日光温室番茄有机生态型无土栽培发展迅速。但是,由于各地追求连片种植、规模经营和降低基质成本的需要,日光温室番茄无土栽培基质的重复利用较为普遍,导致了病虫害加重、果实品质和产量下降等连作障碍问题,这些已成为制约日光温室番茄有机生态型无土栽培可持续发展的瓶颈。自毒作用是导致作物产生连作障碍的主要因子之一,普遍存在于设施蔬菜栽培中。因此,探究日光温室番茄不同茬口无土栽培基质的根际环境和化感作用以及化感消减技术对连作障碍的研究有重要的理论和实践意义。本文研究了日光温室番茄无土栽培不同茬口基质的理化性质和酶活性;以番茄“粉冠一号”为受体材料,以基质浸提液为供体材料,验证了基质化感作用的存在,分析了基质化感作用的影响因素,分离鉴定了基质所含的化感物质;在此基础上,研究了抗坏血酸对番茄自毒现象的缓解效应。得出了以下主要结果:
     1.连茬栽培基质的蛋白酶、碱性磷酸酶、脲酶、过氧化氢酶、蔗糖酶和脱氢酶活性下降,有机质、全氮、铵态氮、碱解氮、全磷、速效磷、全钾和速效钾等主要养分含量降低,而容重和pH值增加,正茬栽培对基质容重、孔隙度、酶活性、有机质和主要养分含量的影响较小。基质酶活性与理化性质的相关性分析表明,番茄无土栽培中,连茬、迎茬和正茬条件下基质的理化性质与酶活性密切相关,引起了番茄连茬基质微生态环境的改变,最终导致植株生长不良、病虫害加重、品质降低和产量下降等危害。连茬栽培后基质酶活性下降、有机质和主要养分含量降低,提供给番茄的营养源减少,不利于番茄植株生长,而正茬栽培对基质酶活性和主要养分的影响较小。
     2.基质水浸液处理后较对照显著降低了番茄种子的发芽率、发芽势、发芽指数、主根长、上胚轴长和干鲜重,且随基质水浸液浓度的升高抑制作用增强。连茬基质浸提液处理明显降低了番茄幼苗的株高、茎粗、叶长和叶宽的增幅,说明连茬基质水浸液抑制了番茄生长。不同茬口基质水浸液处理降低了番茄幼苗的叶绿素含量和根系活力,其中连茬的降幅最大。基质浸提液处理的叶片SOD活性先降后升,APX活性呈“降-升-降”的变化趋势,连茬的SOD、APX活性始终低于其它处理。可见,连茬基质浸提液的化感作用强度最大。此外,基质水浸液的化感作用存在浓度效应,0.05g/mL的浸提液化感抑制作用最强。
     3.利用连茬基质水浸液和水浸液醇溶组分模拟研究了不同化感物质成分和含量对番茄的化感作用。结果表明,不同浓度基质水浸液、水浸液醇溶组分和灭菌水浸液对番茄种子萌发表现为化感抑制作用,且随着水浸液浓度的增大,化感作用增强。水浸液对番茄的化感作用大于水浸液醇溶组分,且浓度越高化感抑制作用越大,说明化感物质的成分越多、含量越高,其化感作用越强。化感物质在高浓度时,微生物可降低或抑制化感物质的作用,使化感物质的抑制作用减弱,但灭菌与未灭菌处理的敏感指数基本一致,可见化感作用中起主要作用的是化感物质。
     4.对各组分进行生物检测表明,1:1的“乙醚+乙酸乙酯”洗脱组分的化感作用最强,其发芽率、发芽势、发芽指数、主根长、上胚轴长和干鲜重显著低于对照和其它组分。经过对基质化感优势组分“乙醚+乙酸乙酯”洗脱组分的GC-MS检测后发现,不同茬口基质所含的化感物质种类、数量和峰面积大小不同。其中,正茬基质共检测到化感物质14种、迎茬20种、连茬19种,连茬基质中检测到的化感物质峰面积显著高于正茬和迎茬。
     5.与单一基质水浸液处理相比,基质水浸液和不同浓度抗坏血酸共同处理番茄种子的发芽率、发芽势和发芽指数均增大,促进了幼苗主根和上胚轴的生长,抗氧化酶活性和抗氧化剂含量升高,内源激素ABA含量下降,IAA、GA3和ZT含量增加。说明外源抗坏血酸能有效缓解番茄连茬基质水浸液对番茄的自毒作用,其中1mmol/L的抗坏血酸缓解效果最佳。
With the development of ecological agriculture and sustainable circular agriculture,greenhouse tomato in organic media culture develops rapidly. However, due to the requirementof habits of plant and reduction of production costs, the reuse of medium become commonly. Itis more and more extrude that diseases and pets get heavier, the yield and quality of fruitsdecreased, both physical and chemical character become declined, and so on, which becomes amain bottleneck that restricts the sustainable development of the greenhouse tomato in organicmedia culture. The self-allelopathy is one of the most important reasons of continuous croppingobstacle, commonly found in protected vegetable cultivation. Therefore, in protected tomatocultivation system, to explore the different cropping rotation organic ecotype soilless culturemedia of environmental effects, allelopathy and allelopathic decreases the technique has animportant theoretical and practical significance. In this paper, to study the biological charactersand physicochemical characters, verified autotoxicity on cultivation, analyzes influencingfactors of allelopathy, isolation and identification of allelochemicals in four cropping rotations(i.e. the normal cropping, alternate cropping, continuous cropping2years and continuouscropping for3years). Meanwhile, the roles of ascorbic acid in the alleviation mechanism ofautotoxicity in tomato were studied. The main results were as follows:
     1. In continuous cropping media, the activity of protease, phosphatase, urease, catalase,invertase and dehydrogenase decreased, and organic matter content, nitrogen, ammoniumnitrogen, available nitrogen, total phosphorus, available phosphorus, total potassium andavailable potassium decreased too, but media bulk density and pH increased. While in normalcropping media, the media bulk density and pH, the activity of enzymes, the content of organicmatter and major nutrient were affected slightly. The chemical properties closely related with thephysical properties in the organic media under the normal cropping, alternate cropping andcontinuous cropping, thus led to the change of micro-ecological environment, which resultedthat the growth of plant was lowest, the diseases and pets get heavier, the yield and quality offruits decreased. The result indicated that the enzyme activity correlated with the content oforganic matter and main nutrients in rhizosphere media of greenhouse tomato under differentcropping rotations. Enzyme activity, the content of organic matter and main nutrients might beimportant factors in the material cycle of media. Therefore, the enzyme activity can be used tocharacterize the status and changes of organic matter and nutrient to some extent, whichreflected the intensity and direction of various biological activities in media. After continuouscropping, the activity of enzyme, content of organic matter and major nutrients so decreased,that nutrient source provided to tomato was reduced. It goes against the growth of tomato plants.While in first-planting treatment, the activity of enzymes and main nutrients of media were affected slightly. The biological and physicochemical characters of replanting media and newmedia has little difference.
     2. When the tomato seed was treated with different rotation systems and differentconcentions of aqueous extracts, the seed germination rate, germination energy and germinationindex, seedling root and epicotyl length, dry weight and fresh weight were significantlydecreased compared to the control, and the inhibition was increased with the increase ofconcentration. The plant height, stem diameter, increase amplitude of leave length and widthdecreased significantly after treatment with extracts of continuous cropping media aqueous, theresults show that the continuous cropping media aqueous extracts inhibit leaf growth. When theplant was treated with different media aqueous extracts, chlorophyll content in leaves and rootactivity of tomato seedlings decreased rapidly, the activity of superoxide dismutase dropped atfirst and rose later, the ascorbate peroxidase activity increased at first and then decreased anddecreased lastly, but also the activities of superoxide dismutase and ascorbate peroxidase werehigher than other treatments. The results indicated that the aqueous extract of3medias couldinhibit seed germination and seedling growth in tomato, and the aqueous extracts of continuouscropping media was greatly inhibited than other media, and inhibition effect is concentrationdependent, increasing with the increase of concentration. When the concentration of aqueousinfusion0.05g/mL had the largest effect on the inhibition of seed germination and seedlinggrowth.
     3. Allelopathy of various components and contents of allelochemicals on tomato wasstudied by aqueous extracts and methanol soluble components of continuous cropping media.The results indicated that the more allelochemicals content and composition, the stronger theinhibition effects of seed germination and seedlings growth, vice versa.The differentconcentrations of aqueous extracts, methanol soluble fractions of aqueous extracts and sterilizedaqueous extracts all inhibit seed germination, and with the increasing of concentration, theinhibition effect increases gradually. Lower concentration of continuous cropping mediaaqueous extracts sterilization or not had little effect on the seed germination and seedling growthof tomato, while the seed germination and seedling growth were affected by highconcentration(0.05g/mL) of aqueous extracts sterilization or not, but no obvious differenceunder the same concentration. It seemed that micro-organisms play a role in the allelopathicsystem, in which allelochemicals were the main affecting factors, microorganisms weresubsidiary.
     4. The results of each fraction bioassay showed that allelopathy of50%aether+50%ethylacetate fraction were the strongest in there cropping rotations media, in which the seedgermination rate, germination energy and germination index, seedling root and epicotyl length,dry weight and fresh weight were significantly decreased compared to the control. Furthermore, many organic compounds found in the extracts from50%aether+50%ethyl acetate fraction byGC-MS analysis, and it shows that the numbers of allelochemicals were significantly differentcropping rotations(normal cropping, alternate cropping, continuous cropping) media, they were14、20and19separately.
     5. The seed germination rate, germination energy and germination index are increased,seedling root and epicotyl grew faster, the protective enzyme activity and antioxidants contentincreased, the content of abscisic acid decreased, and the contents of glutathione, ascorbic acid,auxin, gibberellin and zeatin were significantly increased under treated by ascorbic acid of0.25,0.5and1mmol/L and media aqueous extracts of0.05g/mL compared with those treated by wateror aqueous media extracts only. It was illustrated that there were certain alleviate effects ofexogenous ascorbic acid on autotoxicity caused by aqueous extracts of continuous croppingmedia, among the ascorbic acid concentrations used,1mmol/L was the optimum concentrations.
引文
[1]蒋卫杰,余宏军,刘伟.有机生态型无土栽培技术在我国迅猛发展[J].中国蔬菜,2000,增刊:35-39.
    [2]邢禹贤.世界无土栽培及发展趋势[J].农业新技术新方法,1997(3):17-22.
    [3]王化.中国蔬菜无土栽培发展历史的初步探讨[J].上海蔬菜,1997(1):11-12.
    [4]田吉林,汪寅虎.设施无土栽培基质的研究现状、存在问题与展望[J].上海农业学报,2000,16(4):87-92.
    [5]蒋卫杰.有机生态型无土栽培番茄营养生理与优化施肥研究[D].北京:中国农业科学院,2007.
    [6]陶卫民.国外设施农业发展的方向和重点[J].南方农机,2004(5):46.
    [7]何启伟等.罗马尼亚温室蔬菜有机基质无土栽培技术[J].山东蔬菜,2003(l):23-24.
    [8]孙中华,李远新.蔬菜无土栽培技术的发展[J].辽宁农业科学,2004(4):34-35.
    [9]周树德.有机生态无土栽在长春地区蔬菜生产上的应用[J].中国蔬菜,2000(2):31-33.
    [10]吴德广.公害蔬菜营养与施肥研究进展[J].西北园艺,2003(7):2-4.
    [11]赵文怀.温室甜瓜有机生态无土栽培技术[J].上海蔬菜,2003(3):31-32.
    [12]孙霞.无土栽培技术的发展状况及趋势[J].中国农机化,2005,11(6):47-50.
    [13]侯江龙,史联联,杨叶,王志峰,赵勤绪.日光温室番茄有机生态型无土栽培技术[J].陕西农业科学,2009(4):216-218.
    [14]郝金元,张德健,范丰盛.日光温室嫁接茄子有机生态型无土栽培技术[J].内蒙古农业科技,2006(6):79-80.
    [15]王玉江,翟乃军,蒋卫杰,孙东文,田学,耿波.日光温室番茄有机生态型无土栽培技术[J].山东农业科学,2006(5):89-91.
    [16]李天林,沈兵,李红霞.无土栽培中基质培选料的参考因素与发展趋势(综述)[J].石河子大学学报(自然科学版),1999,3(3):250-258.
    [17] Reis M, Inacio H, Rosa A, Jone N. Grape marc compost as an alternative growing media for greenhousetomato[J]. Acta Horticulturae,2001,5:75-81.
    [18]刘淑娴,张金云,高正辉,吴孝良,赵仁敏.黄瓜有机生态型无土栽培基质的筛选[J].安徽农业科学,2003(4):45-46,48.
    [19]郭图强.彩椒有机生态型无土栽培基质的筛选[J].中国农学通报,2005,21(5):278-283.
    [20]周艳丽,程智慧,孟焕文,杜慧芳,姚静.有机基质配比对番茄生长发育及产量和品质的影响[J].西北农林科技大学学报,2005(1):79-81.
    [21]秦新惠,郁继华.樱桃番茄有机生态型无土栽培基质筛选试验研究[J].农业工程技术(温室园艺),2009(3):39-40.
    [22]曾长立,刘丽,陈禅友,雷刚.不同有机生态型基质配比对辣椒生长发育的影响[J].长江蔬菜,2010(6):52-54.
    [23]孙世海,李树和,罗莎.不同基质浸提液对蔬菜种子萌发的影响[J].种子世界,2010(9):29-30.
    [24]巩芳娥,张国斌,李雯琳,王婷,颉建明,郁继华.不同配比基质对黄瓜穴盘幼苗生长的影响[J].甘肃农业大学学报,2011(5):65-70.
    [25]王勤礼,许耀照,王佩堂,吕彪,张文斌,张东昱.以有机废弃物为主的辣椒无土育苗基质配方研究[J].土壤通报,2012(1):188-191.
    [26]李婧,郁继华,颉建明,冯致.不同配比基质对番茄穴盘苗品质的影响[J].西北农林科技大学学报(自然科学版),2012(11):173-179.
    [27]李建勇.日光温室有机基质型无土栽培番茄的施肥效应[D].山东农业大学,2004.
    [28]余宏军,蒋卫杰,史振霞,李红,佟小刚,蔡路.基肥量和追肥量对基质培韭菜生长和产量的影响[J].中国蔬菜,2008(7):16-19.
    [29]秦嘉海,王多成,肖占文,陈叶,王治江,王进.茄子有机生态型无土栽培专用肥最佳施用量的研究[J].中国蔬菜,2009(14):55-58.
    [30]鄂利锋,秦嘉海,吕彪,朱高,肖占文,陈叶,王治江,王进.辣椒有机生态型无土栽培专用肥最大利润施肥量的研究[J].长江蔬菜(学术版),2010,10(22):54-56.
    [31]刘佳,郁继华,冯致,张国斌,刘凯,李琨.追肥对有机生态型无土栽培辣椒生长发育与产量的影响[J].甘肃农业大学学报,2011(3):28-34.
    [32]李琨.荒漠区日光温室有机生态型无土栽培辣椒滴灌灌水下限研究[D].甘肃农业大学,2010.
    [33]李向文,颉建明,吕剑,颉旭,郁继华.灌水下限对日光温室番茄生长及生理指标的影响[J].甘肃农业大学学报,2012(5):69-74.
    [34]余宏军,蒋卫杰,屈冬玉,李红,史振霞,佟小刚.基质含水率对春茬日光温室韭菜产量及生长的影响[J].农业工程学报,2005(S2):173-176.
    [35]李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质[J].自然资源学报,2002,17(4):515-520.
    [36]郭世荣.固体栽培基质研究、开发现状及发展趋势[J].农业工程学报,2005,21(增刊):1-4.
    [37]蒲兴秀.番茄有机生态型无土栽培技术试验研究[D].甘肃农业大学,2005.
    [38]柴再生,张国森,余宏军.西北戈壁日光温室茄果类蔬菜有机生态型无土栽培技术[J].甘肃农业科技,2011(3):54-57.
    [39]吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000,31(3):241-247.
    [40]杨振明.关于大豆连作障碍几个问题的理论思考[J].大豆通报,1997(2):27-28.
    [41]李谦盛,郭世荣,李式军.基质EC值与作物生长的关系及其测定方法比较[J].中国蔬菜,2004(1):70-71.
    [42]喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126.
    [43] Yu JQ and Komada H. Hinoki bark, a substrate with anti-pathogen properties that suppress root diseasesof tomato. Scientia Hort,1999(81):13-20.
    [44]喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26(3):175-179.
    [45]王芳.茄子连作障碍机理研究[D].中国农业大学,2003.
    [46]甄文超,曹克强,代丽,张学英.连作草莓根系分泌物自毒作用的模拟研究[J].植物生态学报,2004,28(6):828-832.
    [47]邹丽芸.西瓜连作障碍中自毒作用的研究[D].浙江大学,2004.
    [48]汪立刚,沈阿林,孙克刚,武继承.大豆连作障碍及调控技术研究进展[J].土壤肥料,2001(5):3-8.
    [49]李春龙,贺阳冬,陈华,史伟,练华山.辣椒连作障碍机制初探及其下茬作物的初选[J].安徽农业科学,2007,35(26):8187-8188.
    [50]吕卫光,张春兰,彭宇,袁飞.外源苯丙烯酸抑制连作黄瓜生长的机制初探[J].中国蔬菜,2001,(3):10-12.
    [51]马彦霞.自毒作用下外源谷胱甘肽(GSH)对辣椒幼苗生理生化特性的影响[D].甘肃农业大学,2009.
    [52]陈捷,高洪敏,吴友三.酚类物质和代谢对瓜果腐霉菌产生的细胞壁降解酶活性的影响[J].植物生理学报,1996,26(2):171-176.
    [53]周志红,骆世明,牟子平.番茄(Lycopersicon)的化感作用研究[J].应用生态学报,1997(4):445-449.
    [54]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    [55]唐咏,梁成华,刘志恒,须湘成.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报(自然科学版),1999,30(1):16-19.
    [56]李振方,杨燕秋,谢冬凤,朱兰芳,张自冠,黄木极,刘宗泉,张重义,林文雄.连作条件下地黄药用品质及土壤微生态特性分析[J].中国生态农业学报,2012,20(2):217-224.
    [57]张新慧,张恩和,郎多勇,赵云生,王惠珍.不同茬口对当归根际土壤酶活性及其产量和品质的影响[J].中草药,2011,42(11):2322-2325.
    [58]王树起,韩晓增,乔云发,王守宇,李晓慧,许艳丽.寒地黑土大豆轮作与连作不同年限土壤酶活性及相关肥力因子的变化[J].大豆科学,2009(4):611-615.
    [59] Garcia-Gil J C, Plaza C, Soler-Rovira P, et al. Long-term effects of municipal soil waste compostapplication on soil enzyme activities and microbial biomass [J]. Soil Biology and Biochemistry,2000,32(13):1907-1913.
    [60]刘建国,卞新民,李彦斌,张伟,李崧.长期连作和秸秆还田对棉田土壤生物活性的影响[J].应用生态学报,2008,19(5):1027-1032.
    [61]倪宏正,孙兴祥,尤春,倪玮.设施栽培连作障碍成因及综合治理技术研究[J].中国园艺文摘,2011(8):114-116.
    [62]赵尊练,谭根堂,严小良,阎玉让,史联联.辣椒高效生产实用技术[M].杨陵:西北农林科技大学出版社,2003:58-59.
    [63]赵尊练,严小良.中国线辣椒产业发展的思路与对策[J].中国农学通报,2003,19(5):176-179.
    [64] Patterso D T. Effects of allolopathic chemicals on growth and physiological responses of soybean[J].Weed science,1981,29(1):53-59.
    [65]李刚,文景芝,吴凤芝,张齐凤,叶楠.连作条件下设施黄瓜根际微生物种群结构及数量消长[J].东北农业大学学报,2006,37(4):444-448.
    [66]吴凤芝,王学征,潘凯.小麦和大豆茬口对黄瓜土壤微生物生态特征的影响[J].应用生态学报,2008,19(4):794-798.
    [67]张雪艳,田永强,刘军,高丽红.不同栽培制度下温室黄瓜土壤生物学特性的变化[J].应用生态学报,2009,20(4):829-835.
    [68]李威,程智慧,孟焕文,周静,梁静,刘雪娇.轮作不同蔬菜对大棚番茄连作基质中微生物与酶及后茬番茄的影响[J].园艺学报,2012(1):79-86.
    [69]蒋卫杰.“有机生态型无土栽培体系与技术开发研究”通过成果鉴定[R].中国蔬菜,2002(1):43.
    [70]杨亚新.混合基质的选择和应用[J].中国花卉园艺,2005,22:57-58.
    [71]周晓芬,杨军芳.设施蔬菜土壤连作障碍及防治措施探讨[J].河北农业科学,2004,8(1):92-94.
    [72]何文寿.设施农业中存在的土壤障碍及其对策研究进展[J].土壤,2004,36(3):235-240.
    [73]孙红霞,武琴,郑国祥,王振忠. EM对茄子、黄瓜抗连作障碍和增强土壤生物活性的效果[J].土壤,2001(5):264-267.
    [74]喻国辉,谢银华,陈燕红,陈远凤,程萍.利用微生物缓解苯丙烯酸对黄瓜生长的抑制[J].微生物学报,2006,46(6):934-938.
    [75]田丽萍,王祯丽,陶丽琼.大棚蔬菜连作障碍原因与防治措施[J].石河子大学学报(自然科学版),2000,4(2):159-163.
    [76] Magnusson J, Strom K, Roos S, Smith M. Broad and complex antifungal activity among environmentalisolates of lactic acid bacteria. FEMS Microbiology,2003,2(19):129-135.
    [77]张春兰,吕卫光,袁飞,朱林.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J].中国农学通报,1999,15(6):67-69.
    [78]吕卫光,张春兰,袁飞,彭宇.有机肥减轻连作黄瓜自毒作用的机制[J].上海农业学报,2002,18(2):52-56.
    [79] Rice EL. Allelopathy[M].2nd.1984, Academic Press, Newyork.
    [80] Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphereinteractions with plants and other organisms [J]. Annual Review in Plant Biology,2006,57:233-266.
    [81]耿广东.辣椒化感作用及其机理研究[D].西北农林科技大学,2005.
    [82]国际种子检验协会(ISTA).1996国际种子检验规程[M].北京:中国农业出版社,1999.
    [83]汪思龙.几种化感物质对杉木幼苗生长的影响[J].应用与环境生物学报,2002,8(6):588-591.
    [84]王大力.豚草的化感作用研究[J].生态学报,1996,16(1):11-19.
    [85]曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报,1999(1):123-126.
    [86]姜丽,孙玉文,刘景安.分葱对黄瓜、萝卜和白菜的化感作用[J].中国农学通报,2007,23(2):273-276.
    [87] Devi SR, Prasad MNV. Ferulic acid mediated changes in oxidative enzymes of maize seedlings:implications in growth [J]. Biologia Plantarum,1996,38:387-395.
    [88] Lin WX, Kim KU, Shin DH. Rice allelopathic potential and its-.cedes of action on barnyardgrass(Echinochloa crus-galli)[J]. Allelopathy Journal,2000(7):215-224.
    [89] Zeng RS, Luo SM, Shi YH, Shi MB, Tu CY. Physiological and biochemical mechanism of allelopathyof secalonic acid on higher plants [J]. Agronomy Journal,2001,93:72-79.
    [90] YU JQ, MASTSUI Y. Effects of root exculpates of cucumber and allelochemicaly on ion uptake bycucumber seeding [J]. J chem. Ecol.,1997,23(3):817-827.
    [91]马彦霞,张国斌,颉建明,郁继华.外源谷胱甘肽对自毒作用下辣椒幼苗叶片活性氧清除系统的影响[J].西北植物学报,2009,29(7):1380-1386.
    [92]侯永侠,周宝利,吴晓玲,付亚文,王月英.辣椒秸秆腐解物化感作用的研究[J].应用生态学报,2006,17(4):699-702.
    [93] Liu DL, Lovett JV. Biologically active econdary metabolites of barley.Ⅱ. Phytotoxicity of barleyallelochemicals[J]. J. Chen Ecol.,1993,19(10):2231-2244.
    [94] Kaur H, Inderjit, Kaushik S. Cellular evidence of allelopathic interference of benzoicaid to mustardseeding growth [J]. Plant Physiol Biochem,2005,43(1):77-81.
    [95]张韵.两种化感物质对茄子幼苗生理特性的影响[D].甘肃农业大学,2006.
    [96]吴凤芝.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学,2002,35(7):821-825.
    [97] Hallak AMG, Davide LC, Souza IF. Effects of sorghum (Sorghum bicolor L.) root exudates on the cellcycle of the bean plant (Phaseolus vulgaris L.)root [J]. Genetics and Molecular Biology,1999,22:95-99.
    [98] Abenavoli MR, Sorgona A, Sidari M, Badiani M, Fuggi A. Coumarin inhibits the growth of carrot(Daucus carota L. cv. Saint Valery) cells in suspension culture[J]. Journal of Plant Physiology,2003,160:227-237.
    [99] Kaur H, Inderjit, Kaushik S. Cellular evidence of allelopathic interference of benzoic acid to mustard(Brassica juncea L.)seegling growth [J]. Plant Physiology and Biochemistry,2005,43:77-81.
    [100] Cruz O R, Anaya L, Hermandez-Bautista B E, et al, Effects of allelochemical stress produced bysicyosdeppei in seedling root ultrastructure of Phaseolous valgaris and Cucubita ficifolia [J]. J ChemEcol.,1998,24(12):2039-2057.
    [101] Peirce L C, Miller H G. Asparagus emergence on Fusarium-treated and sterile media followingexposure of seeds or radicals to one or more cinnamic acids [J]. J.Amer.Soc.Hort.Sci.,1993,118:23-28.
    [102] Omega RC, Anaya AL, Ramos L. Effects pollen of allelopathic compounds of corn on respiration andcell division of watermelon [J]. Journal of Chemical Ecology,1988,14:71-86.
    [103] Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA. Sorgoleone from root exudates inhibitsmitochondria functions [J]. Journal of Chemical Ecology,1992,18:197-207.
    [104]聂呈荣,曾任森,黎华寿,任永浩,黄京华,程莉琼.三裂叶蟛蜞菊对花生化感作用的生理生化机理[J].花生学报,2002,31(3):1-5.
    [105] Muscolo A., Panuccio M.R., Sidari M.. The effect of phenols on respiratory enzymes in seedgermination respiratory enzyme activities during germination of Pinus laricio seeds treated withphenols extracted from different forest soils [J]. Plant Growth Regul,2001,35:31-35.
    [106] Hejl AM, Einhellig FA, Rasmussen JA. Effects of juglone on growth, photosynthesis, and respiration[J]. Journal of Chemical,1993,19:559-568.
    [107] Penuelas J, Ribas-Carbo M, Giles L. Effects of allelochemicals on plant respiration and oxygen isotopefractionation by the alternative oxidase [J]. Journal of Chemical Ecology,1996,22:801-805.
    [108] Abrahim D, Takahashi L, Kelmer-Bracht AM, Ishii-Iwamoto EL. Effects of phenolic acids andmonoterpenes on the mitochondria respiration of soybean hypocotyls ax [J]. Allelopathy Journal,2003,11:21-30.
    [109] Baziramakenga R, Simard RR, Leroux GD. Effects of benzoic and cinnamic-acids on growth, mineral-composition and chlorophyll content of soybean [J]. Journal of Chemical Ecology,1994,20:2821-2833.
    [110] Einhellig FA, Rasmussen JA, Hejl AM, Souza IF. Effects of root exudates sorgoleone onphotosynthesis [J]. Journal of Chemical Ecology,1993,19:369-375.
    [111]马彦霞,郁继华,张国斌,李雯琳,曹刚.谷胱甘肽对自毒作用下辣椒叶片光合特性的影响[J].核农学报,2012,26(2):0396-0402.
    [112] Yu JQ, Ye SF, Zhang MF, Hu WH. Effects of root exudates, aqueous root extracts ofcucumber(Cucumis sativus L.)and allelochemicals on photosynthesis and antioxidant enzymes incucumber[J]. Biochemical Systimatics and Ecology,2003,31:129-139.
    [113] Weir TL, Park SW, Vivanco JM. Biochemical and physiological mechanisms mediated byallelochemicals [J]. Current Opinion of Plant Biology,2004,7:472-479.
    [114] Gonzales VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM. Inhibition of a photosystem II electrontransfer reaction by the natural product sorgoleone[J]. Journal of Agriculture and Food Chemistry,1997,45:1415-1421.
    [115] Czarnota Paul RN, Dayan FE, Nimbal CI, Weston LA. Mode of action localization of production,chemical nature, and activity of sorgoleone: a potent PS II inhibitor in Sorghum spp. root exudates [J].Weed Technology,2001,15:813-825.
    [116] Meazza G, Scheffier BE, Tellez MK, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA,Abourashed EA, Dayan FE. The inhibitory activity of natural products on plant phydroxyphenylpyruvate dioxygenase [J]. Phytochemistry,2002,60:281-288.
    [117] Politycka B, Gmerek J. Effects of ferulic and p-coumaric acids on the activity of hydrolytic enzymesand the growth of radicles in germinating seeds of cucumber and pea [J]. Allelopathy Journal,2008,21:227-237.
    [118] Poljtycak B. Free and glucosylated phenol-beta-glucosyltranserase activity and membrane pennabilityin cucumber roots affected by devivatives of cinnamon and benzoic aci [J]. Acta PhysiologiesPlantarum,1997,19(3):311-317.
    [119] Batish DR, Singh HP, Kaur S, Kohli RK, Yadav SS. Caffeic acid affects early growth, andmorphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus)[J]. Journal of PlantPhysiology,2008,165:297-305.
    [120]周凯,郭维明,王智芳.菊花不同部位水浸液自毒作用的研究[J].西北植物学报,2008,28(4):0759-0764.
    [121] Booker FL, Blum U, Fiscus EL. Short term of ferulic acids on ion uptake and water relations oncucumber seedlings[J]. Joumal of Experimental Botany, l992,43(250):649-655.
    [122] Barkosky RR, Einhellig FA. Effects of salicylic acid on plant-water relationships [J]. Journal ofChemical Ecology,1993,19:237-247.
    [123] Barkosky RR, Einhellig FA, Butler JL.Caffeic acid-induced changes in plant-water relationships andphotosynthesis in leaf spurge Euphorbia esula [J]. J.Chem.Ecol.,2000,26:2095-2109.
    [124]马瑞霞.化感物质对硝酸还原酶活性影响的研究[J].环境科学,1999(1):81-84.
    [125] Holappa LD, Clum U. Effects of exogeously applied ferulic acid, a potential allelopathic compound, onleaf growth, water utilization, and endogenous abscissic acid leves of tomato, cucumber, and bean [J].Chem., Ecol.,1991,17:865-886.
    [126]刘秀芬,胡晓军.化感物质阿魏酸对小麦幼苗内源激素水平的影响[J].中国生态农业学报,2001,9(1):86-88.
    [127] Hejl AM, Koster KL. The allelochemical sorgoleone inhibits root H+-ATPase and water uptake [J].Journal of Chemical Ecology,2004,30:2181-2191.
    [128]李春花.大豆连作导致植株内源激素比例失调初报[J].中国林副特产,2001,58(3):11.
    [129] YU J Q, YOSHIHIS M M. Extraction and identification of phytotocdcity substances accumulated innutrient solution for hydroponic culture of tomato [J]. Soil Science and Plant Nutrition,1993,39(4):691-700.
    [130] Bais H P, Vepachedu R, Gilroy S, et al. Allelopathy and exotic plant invasion: from molecules andgenes to species interactions[J]. Science,2003,301:1377-1380.
    [131] Golisz A, Sugano M, Fujii Y. Microarray expression profiling of Arabidopsis thaliana L. in response toallelochemicals identified in buckwheat [J]. Journal of Experimental Botany,2008,59:3099-3109.
    [132] Baerson SR, Sanchez-Moreiras A, Pedrol-Bonjoch N, Schulz M, Kagan IA, Agarwal AK, Reigosa MJ,Duke SO. Detoxification and transcriptome response in Arabidopsis seedlings exposed to theallelochemical Benzoxazolin-2(3H)-one [J]. Journal of Biological Chemistry,2005,280:21867-21881.
    [133] Chou CH, Lin TJ. Autointoxication mechanism of Oryzasativa. I Phytotoxic effects of decomposingrice residues in soil [J]. J.Chem.Ecol.,1976(2):353-367.
    [134] Chung I M, Miller D A. Natural herbicide potential of alfalfa residue on selected weed species [J].Agron.J.,1995,87:920-925.
    [135] Lovett GM, Lindberg SE. Concentration and deposition of particles and vapors in a vertical profilethrough a forest canopy [J]. Atmos Environ,1992,26:1469-1476.
    [136] Singh H P, B atish D R, Kohil R K. Autotoxicity: Concept, organisms and ecological significance [J].Crit. Rev.Plant Sci.,1999,18:757-772.
    [137] Yu J Q, Matsui Y, Pytotoxic substances in root exudates of cucumber(Cucumis sativus L.)[J]. J.Chem.Ecol.,1994,20(1):21-31.
    [138] Wang T S C, Kao M M, Li S W. The exploration and improvement of the yield deline of monoculturesugarcane in Taiwan, In: Chou, C, H,(Ed).Tropical plant[J].Inst; of Bot, Acadsinica, Monogr, Taibei,Taiwan,1984,5:1-9.
    [139] Szajdak L. etal. Phenolic acids in brown soils under continuous cropping of rye and crop rotation [J].Polish Joural of soil science,1994,27(2):113-121.
    [140]王震宇,千英祥,陈祖任.重茬大豆生长发育障碍机制初探[J].大豆科学,1991,10(1):31-36.
    [141] Nelson L S. Isolating potential allelochemicals from soybean-soil residues [D]. Iowa: Iowa StateUniversity,1985.
    [142] Sène M, Gallet C, Doré T. Phenolic compounds in a sahelian Sorghum (Sorghum bicolor)genotype(CE145-66) and associated soils [J]. Journal of Chemical Ecology,2001,27(1):81-92.
    [143] Kimy S, KIL B S. Biossay on susceptivity of selected species to phytotoxic substance fromtomatoplants [J]. Krean J Bot.,1987,30:59-67.
    [144] Perez P J. Root exudates of wild oats: Allelopathic effect on spring Politycak B.1997. Free andglucosylate dphenol-beta-glucosyltranserase activity and membrane Pennability in cucumber rootsaffected by derivatives of cinnamon and benzoic acid[J]. Acta Physiologies Plantarum,1991,19(3):311-317.
    [145]胡元森.黄瓜连作障碍因子分析及其生物修复措施探讨[D].博士学位论文,2005.
    [146] Blum U, Shafer R, Lehmen M E. Evidence for inhibitory allelopathic inter-actions involving phenolicacids in field soils: Concepts vs. An experimental model[J].Crit.Rev.Plant Sci.,1999,18:673-693.
    [147] Bertin C, Paul R N, Duke S O, et al. Laboratory assessment of the allelopathic effects of fine leaffescues[J]. J. Chem Ecol.,2003,29(8):1919-1937.
    [148]温切木阿不拉,艾尼瓦尔玉山.温室蔬菜连作障碍及其防止措施[J].新疆农业科技,2008(3):46.
    [149]王光华,金剑,潘相文,周克琴,刘晓冰.不同茬口大豆根圈土壤pH值和氮营养分布的变化[J].中国油料作物学报,2004,26(1):55-59.
    [150]刘梦云,常庆瑞,齐雁冰,安韶山.宁南山区不同土地利用方式土壤酶活性特征研究[J].中国生态农业学报,2006(3):67-70.
    [151]侯雪莹,韩晓增,王树起,宋春,张迪.土地利用方式对黑土酶活性的影响[J].中国生态农业学报,2009,17(2):215-219.
    [152] Caravaca F, Alguacil M M, Figueroa D, et al. Re-establishment of retama sphaerocarpa as a targetspecies for reclamation of soil physical and biological properties in a semi-arid Mediterranean area[J].Forest Ecology and Management,2003,182:49-58.
    [153]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅰ.长期轮作与施肥对土壤酶活性的影响[J].植物营养与肥料学报,2003,9(1):9-13.
    [154]王丽,何文寿,沈凯等.宁夏引黄灌区不同种植年限及方式温室土壤酶活性的变化特点[J].宁夏大学学报自然科学版,2009,30(1):72-75.
    [155]杨丽娟,丘忠祥,须晖,刘永青.菜田土壤酶活性与黄瓜产量之间的关系[J].植物营养与肥料学报,2000,6(1):113-116.
    [156]刘瑜,褚贵新,梁永超,李俊华,王飞.不同种植方式对北疆绿洲土壤养分和生物学性状的影响[J].中国生态农业学报,2010,18(3):465-471.
    [157]郑林林,任明波,陈旭,石屹,马兴华,田磊,张继光,王文杰,吴元华,元建,张忠锋.不同种植方式下烤烟烟田土壤酶活性研究[J].中国烟草科学,2010,31(3):23-28.
    [158]郭世荣.无土栽培学[M].北京:中国农业出版社,2003:202-214,423-425.
    [159]程斐,孙朝晖,赵玉国,李式军.芦苇末有机栽培基质的基本理化性能分析[J].南京农业大学学报,2001,24(3):19-22.
    [160]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:30-107.
    [161] Mclachlan K D. Acid phosphatase: activity of intact roots and phosphorus nutrition in plants. I assayconditions and phosphatase activity[J]. Australian Journal of Agricultural Research,1980,31(3):429-440.
    [162]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:206-339.
    [163] Carbonell G, Pablos M V, García P, Ramos C, Sánchez P, Fernández C, Tarazona J V. Rapid andcost-effective multiparameter toxicity tests for soil microorganisms [J]. The Science of the TotalEnvironment,2000,247(2-3):143-150.
    [164] Acosta-Martinez V, Reicher Z, Bischoff M, et al. The roal of tree leaf mulch and nitrogen fertilizer onturfgrass soil quality[J]. Biol Fort Soils,1999,29:55-61.
    [165] Whalley W R, Dumitru E, Dexter A R. Biological effects of soil compaction[J]. Soil Till Res.,1995,35:53-68.
    [166]张飞,陈云明,王耀凤,王琳琳.黄土丘陵半干旱区柠条林对土壤物理性质及有机质的影响[J].水土保持研究,2010,17(3):105-109.
    [167] Thauer R K. Biochemistry of methanogenesis: A tribute to Marjory Stephenson [J]. Microbiology,1998,144(9):2377-2406.
    [168] Springer E, Sachs M S, Woese C R, et al. Partial gene sequences for the A subunit of methyl-coenzymeM reductase(rncrI)as a phylogenetic tool for the family Methanosarcinaceae[J].International Journal ofSystem Bacteriol,1995,45(3):554-559.
    [169] Alef K, Nannipieri P. Methods in applied soil microbiology and biochemistry [M]. London: AcademicPress,1995:229-355.
    [170]弋良朋,马健,李彦.荒漠盐生植物根际土壤酶活性的变化[J].中国生态农业学报,2009,17(3):500-505.
    [171]马冬云,郭天财,宋晓,王晨阳,朱云集,王永华,岳艳军,查菲娜.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J].生态学报,2007,27(12):5222-5228.
    [172]孙艳艳,蒋桂英,刘建国.加工番茄连作对农田土壤酶活性及微生物区系的影响[J].生态学报,2010,30(13):3599-3607.
    [173]解开治,徐培智,严超,张发宝,陈建生,唐拴虎,黄旭,顾文杰.不同土壤改良剂对南方酸性土壤的改良效果研究[J].中国农学通报,2009,25(20):160-165.
    [174] Elliott G C. Urea hydrolysis in potting media [J]. Journal of the American Society for HorticulturalScience,1986,11(6):862-866.
    [175] Carlile W R, Wilson D P. Microbial activity in growing media: a brief review [J]. Acta Horticulturae,1991,294:197-206.
    [176]于宁,关连珠,娄翼来,马莹,颜丽.施石灰对北方连作烟田土壤酸度调节及酶活性恢复研究[J].土壤通报,2008,39(4):849-851.
    [177]柴仲平,梁智,王雪梅,贾宏涛.连作对棉田土壤理化性状的影响[J].中国农业通报,2008,24(8):192-195.
    [178] Karlen D L, Mausbach M J, Doran J W, et al. Soil quality: A concept, definition, and framework forevaluation[J]. Soil Science Society of America Journal,1997,61(1):4-10.
    [179]王茂胜,姜超英,潘文杰等.不同连作年限的植烟土壤理化性质与微生物群落动态研究[J].安徽农业科学,2008,36(12):5033-5034,5052.
    [180]张新慧,张恩和.不同茬口对当归根际微生物数量和产量的影响[J].中草药,2008,39(2):267-269.
    [181] Nayak D R, Babu Y J, Adhya T K. Long-term application of compost influences microbial biomass andenzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition [J]. SoilBiology and Biochemistry,2007,39(8):1897-1906.
    [182] Aon M A, Colaneri A C. II.Temporal and spatial evolution of enzymatic activities andphysico-chemical properties in an agricultural soil[J]. Applied Soil Ecology,2001,18(3):255-270.
    [183] Keeler B L, Hobbie S E, Kellogg L E. Effects of longterm nitrogen addition on microbial enzymeactivity in eight forested and grassland sites: implications for litter and soil organic matterdecomposition[J]. Ecosystems,2009,12:1-15.
    [184]傅慧兰,战景仁,周曰哲,杨振明.大豆连作对土壤纤维素酶活性的影响[J].大豆科学,1999,18(1):81-84.
    [185]朱新萍,梁智,王丽,徐万里,贾宏涛.连作棉田土壤酶活性特征及其与土壤养分相关性研究[J].新疆农业大学学报,2009,32(4):13-16.
    [186] Klose S, Tabatabai M A. Urease activity of microbial biomass in soils[J]. Soil Biology andBiochemistry,1999,31(2):205-211.
    [187]张淑香,高子勤,刘海玲.连作障碍与根际微生态研究Ⅱ.根系分泌物与酚酸物质[J].应用生态学报,2000,11(5):741-744.
    [188] Caldwell B A. Enzyme activities as a component of soil biodiversity: A review[J]. Pedobiologia,2005,49:637-644.
    [189]傅慧兰,邹永久,韩立梅,闫飞,刘金萍.大豆连作土壤障碍因素研究Ⅱ.连作土壤酶活性与肥力因素间的相关性分析[J].大豆科学,1996,15(4):332-339.
    [190] Bolton H, Elliott L F, Papendick R I, Bezdicek D F. Soil microbial biomass and selected soil enzymeactivities: effect of fertilization and cropping practices[J]. Soil Biology and Biochemistry,1985,17(3):297-302.
    [191] Nannipieri P, Grego S, Ceccanti B. Ecological Significance of Biologica Activity [M]. New York:Marcel Dekker,1990:25-58.
    [192] Chen Y Q, Dong Y H, Wang H, Huang G Y, Huo H Z. Effects of different agricultural managements oncharacteristics of soil microbial community under continuous cropped strawberry (Fragaria ananassaDuchesne)[J]. Agricultural Science&Technology,2011,12(6):870-875.
    [193]张华勇,尹睿,黄锦法,林先贵,曹志洪,王俊华.稻麦轮作田改为菜地后生化指标的变化[J].土壤,2005,37(2):182-186.
    [194] Gianfreda L, Bollag J M. Influence of natural and anthropogenic factors on enzymeactivity[M]//Stotzky G, Bollag J M (Eds.). Soil Biochemistry9, Marcel Dekker, New York,1996:123-193.
    [195]吕春花,郑粉莉,安韶山.子午岭地区植被演替过程中土壤养分及酶活性特征研究[J].干旱地区农业研究,2009,27(2):227-232.
    [196]刘建国,张伟,李彦斌,孙艳艳,卞新民.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J].中国农业科学,2009,42(2):725-733.
    [197]程智慧,陈学进,赖琳玲,滕林.设施番茄果实生长与环境因子的关系[J].生态学报,2011,31(3):0742-0748.
    [198]孔垂华,徐涛,胡飞,黄寿山.环境胁迫下植物的化感作用及其诱导机制[J].生态学报,2000,20(5):849-854.
    [199]闫飞,杨振明,邹永久.大豆连作障碍中的生化互作效应[J].大豆科学,1998,17(2):147-151.
    [200]阎飞,韩丽梅,杨振明.论大豆连作障碍中有关化感作用(Allelopathy)研究的若干问题[J].大豆科学,2000,19(3):269-273.
    [201]赵淑英,赵九洲,陈洁敏,杨方人.连作对大豆生理生化特性的影响[J].大豆科学,1995,14(2):113-118.
    [202]陶嘉龄.种子活力[M].北京:科学出版社,1991:108-110
    [203] Arnon D I. Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris L.[J]. PlantPhysiology,1949,24:1-15.
    [204]赵世杰,刘华山,董新纯主编.植物生理学试验指导[M].北京:中国农业科技出版社,1998.
    [205]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:164-169.
    [206]沈文飚,徐郎莱,叶茂炳,张荣铣.抗坏血酸过氧化物酶活性测定的探讨[J].植物生理学通讯,1996,32(3):203-205.
    [207]马瑞君,王明理,赵坤,郭守军,赵庆芳,孙坤.高寒草场优势杂草黄帚橐吾水浸液对牧草的化感作用[J].应用生态学报,2006,17(5):845-850.
    [208] Willamson G B, Richardson D. Bioassays for allelopathy: measuring treatment responses withindependent controls [J]. Journal of Chemical Ecology,1988,14(1):181-187.
    [209]马彦霞,郁继华,张国斌,胡志峰,张昌达.外源谷胱甘肽对自毒作用下辣椒幼苗生长的影响[J].甘肃农业大学学报,2009,44(5):30-34.
    [210] Takijima and Hayashi T. Studies on soil sickness in cmp:2. Substances exuded from root and thegrowth inhibiting activity of anutrient solution for crop cultivation[J]. Agri. Horic.,1959,34:1417-1418.
    [211] Hiragoshi I, Kuroda S, Nishikawa K. Studies on the autoxicant substances I:Inhibition of germinationand seedling growth by a residual nutrient solution for the gravel culture of pea[J].AgricultureHorticulture,1959,34:1419-1421.
    [212]韩丽梅,沈其荣,王树起,王旭明,杨振明.大豆根茬木霉腐解产物的鉴定及其化感作用的研究[J].应用生态学报,2002,13(10):1295-1299.
    [213] Ding J, Sun Y, Xiao C L, et al. Physiological basis of different allelopathic reactions of cucumber andfigleaf gourd plants to cinnamic acid[J]. Exp Botatt.,2007,58:3765-3773.
    [214]王芳,王敬国.茄子秸秆水提物自毒作用初探[J].中国生态农业学报,2005,13(2):51-53.
    [215] Sannigrahi A K, Chakrabortty S. Allelopathic effects of weeds on germination and seedling growth oftomato [J]. Allelopathy Journal,2005,16(2):289-294.
    [216]张恩平,衣宁宁,李亮亮,李天来,刘勇.番茄自毒物质对土壤养分的影响[J].西南农业学报,2010,23(3):820-823.
    [217]游佩进,王文全,张嫒,张子龙,庞玉新,崔秀明.三七根区土壤提取物对三七幼苗的化感作用[J].西南农业学报,2009,(2):308-310.
    [218]邹丽芸,喻景权.西瓜植株水浸提物对西瓜种子萌发的影[J].浙江农业科学,2004(4):181-182.
    [219]苏彩霞.番茄、茄子的根茬浸提液和腐解液对茄果类作物生长及其病害发生的影响[D].扬州:扬州大学,2004.
    [220]王广印,韩世栋,谢玉会,孙晓娜,周秀梅.辣椒植株水浸液对辣椒和番茄种子萌发的自毒作用[J].华北农学报,2009(3):127-131.
    [221] Blum, U. Allelopathic interactions involving phenolic acids [J]. J. Nemat.,1996,28:259-267.
    [222] Ramesh S, Hegde, Miller DA. Concentration dependency and stages of crop growth in alfalfaautotoxicity [J]. Agronomy Journal,1996,84:940-946.
    [223] Perez F J, Ormeno-Nunez J. Root exudates of wildoats: allelopathy effect spring wheat[J].Phytochemistry,1991,30(7):2199-2202.
    [224] Perez F J, Ormeno-Nunez J. Difference in hydroxamic acid content in root sandroot exudates of wheatand rye: possible role in allelopathy [J]. J chem Ecol.,1991,17(6):1037-1043.
    [225]林启寿.中草药成分化学[M].北京:科学出版社,1977,802-804.
    [226]黄新培.植物源信息素的研究[J].世界农业,1986(6):25-27.
    [227]平野俊.番茄弥地病にするの土壤学的研究[J].土肥,1940(11):521-530.
    [228] Kim Y S, Kil B S. Identification and growth inhibition of phytotoxic substande from tomato plant,Korean [J]. J. Botany.,1989,32(1):41-50.
    [229]周志红,骆世明,牟子平.番茄植株中几种化学成分的化感效应[J].华南农业大学学报,1998,19(3):56-60.
    [230]韩丽梅,沈其荣,鞠会艳,阎石,阎飞.大豆地上部水浸液的化感作用及化感物质鉴定[J].生态学报,2002,22(9):1425-1432.
    [231]张韵.黄瓜自毒物质对细胞生长的影响及缓解机制[D].浙江大学,2009.
    [232] Younis ME, Hasaneen MNA, Kazamel MS. Plant growth, metabolism and adaptation in relation tostress conditions. XXVII. Can ascorbic acid modify the adverse effects of NaCl and mannitol on aminoacids, nucleic acids and protein patterns in Vicia faba seedlings [J]. Protoplasma,2009,35:37-47.
    [233]庞勇,马锋旺,徐凌飞.抗坏血酸对苹果组培苗耐热性的生理效应[J].果树学报,2005,22:160-162.
    [234]张佩,周琴,孙小芳,王福政,江海东.抗坏血酸对锡胁迫下油菜幼苗生长的影响[J].农业环境科学学报,2008,27:2362-2366.
    [235]郑启伟,王效科,谢居清,冯兆忠,冯宗炜,倪雄伟,欧阳志云.外源抗坏血酸对臭氧胁迫下水稻叶片膜保护系统的影响[J].生态学报,2006,4:1131-1137.
    [236]郑炳松.现代植物生理生化研究技术[M].北京:气象出版社,2006:91-92,41-42.
    [237] Ellman G L. Tissue sulfhydryl groups[J]. Archives of Biochemistry and Biophysics,1959,82:70-77.
    [238] Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP. Root-secreted allelochemical in thenoxious weed Phragmites Australis deploys a reactive oxygen species response and microtubuleassembly disruption to execute rhizotoxicity[J]. Journal of Chemical Ecology,2007,33:1898-1918.
    [239]王贺正,马均,李旭毅,李艳,张荣萍,汪仁全.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学,2007,40(7):1379-1387.
    [240]马彦霞,郁继华,张国斌,曹刚.壳聚糖对水分胁迫下辣椒幼苗氧化损伤的保护作用[J].中国农业科学,2012(5):274-276.
    [241]刘传平,郑爱珍,田娜,沈振国.外源GSH对青菜和大白菜镉毒害的缓解作用[J].南京农业大学学报,2004,27(4):26-30.
    [242]赵娟,施国新,徐勤松,王学,许丙军,胡金朝.外源谷胱甘肽(GSH)对水鳖Zn2+毒害的缓解作用[J].热带亚热带植物学报,2006, l4(3):213-217.
    [243] Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology: is astress-response concept valid[J]. Journal of Experimental Botany,2004,55:1955-1962.
    [244] Tiburcio AF, Campos JL, Figueras X and Besford RT. Recent advances in the understanding ofpolyamine functions during plant development[J]. Plant Growth Regul.,1993,12:331-340.
    [245] Holappa LD, Clum U. Effects of exogeously applied ferulic acid, a potential allelopathic compound, onleaf growth, water utilization, and endogenous abscissic acid leves of tomato, cucumber, and bean[J].Chem. Ecol.,1991,17:865-886.
    [246] Holappa LD, Walker-Simmons MK. The wheat abscisic acidresponsive protein kinase mRNA,PKABA1, is up-regulated by dehydration,cold temperature,and osmotic stress[J].Plant Physiology,1995,108,1203-1210.
    [247]陈珈,朱美君.玉米根微粒体ABA结合蛋白的性质及逆境胁迫的影响[J].植物生理学报,1996,22(2):63-68.
    [248]农业部农药检定所.农药电子手册[EB/OL].北京:农业部农药检定所,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700