用户名: 密码: 验证码:
干旱和复水条件下甘蔗特异基因诱导表达及其克隆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是制约我国甘蔗生产的主要影响因子。选育抗旱能力强、地域适应性广的高产高糖新品种是解决季节性干旱给我国甘蔗生产带来不利影响的有效途径。挖掘抗旱力强、水分高效利用的基因并通过遗传转化进行分子育种是提高甘蔗抗旱能力研究的新方向。抗旱甘蔗品种既应具有在干旱胁迫状态下的耐受能力,还应具有干旱胁迫状态解除后恢复快速生长的能力,因此研究甘蔗对干旱和干旱后复水的生理和分子响应机理对如何提高甘蔗抗旱能力的遗传改良都具有同样重要的意义。
     甘蔗是高光效C4作物,具有耐旱、耐涝、耐瘠、抗病、高生物量等特性,是作物重要耐旱基因资源。为了研究甘蔗响应水分胁迫的生理和分子机理,挖掘甘蔗的耐早、水分高效利用及促进生长的基因,本研究选用优良抗旱育种杂交亲本GT11为试验材料,在渗透调节、保护酶活性、物质代谢和内源激素等几个方面探讨甘蔗伸长期在干旱及干旱后复水状态下生理响应;利用cDNA-AFLP和cDNA-SCoT两种基因差异分析方法分离和筛选甘蔗在干旱及干旱后复水诱导的差异表达基因,并对获得的部分特异基因片段进行克隆获得基因全长cDNA,为作物抗旱性的遗传改良提供相应的基因资源。主要研究内容和结果如下:
     1.在干旱胁迫下,甘蔗品种GT11伸长期在渗透调节、保护酶系统、物质代谢和内源激素等几个方面都做出积极的生理响应,表明了GT11在水分胁迫下可能有较强的适应能力。
     (1)干旱胁迫下,甘蔗的渗透调节物质可溶性糖和脯氨酸大量增加,P5CS活力增强,而可溶性蛋白质含量下降,ProDH活力受到限制。复水处理后,叶片中可溶性糖含量急剧下降后回调;脯氨酸含量很快下降;可溶性蛋白质含量快速回升;P5CS活力很快下降;ProDH活力急剧上升。
     (2)干旱胁迫下,甘蔗的丙二醛含量和超氧阴离子含量升高,保护系统酶POD、 CAT、SOD和GSH-R活力都在不同程度提高。复水处理后,丙二醛含量和超氧阴离子含量很快下降,保护系统酶SOD和GSH-R活力降低,CAT活性表现为先下降后升高。与对照相比,保护系统酶活力在复水前期保持较高活力水平。
     (3)干旱胁迫下,甘蔗的ABA含量随受干旱胁迫进程不断加大累积,PAO活力上升。复水处理后,ABA含量先上升后下降,PAO活力很快降低。
     2.使用cDNA-AFLP差异显示方法分离得到406个与水分胁迫相关TDFs,167个TDFs反向Northern印迹杂交验证为阳性。通过对27个TDFs进行克隆、测序、比对分析,涉及新陈代谢、能量代谢、转录调控、结合功能蛋白、环境互作等相关功能基因。
     3.使用cDNA-SCoT差异显示方法分离得到316个与水分胁迫相关TDFs,180个TDFs反向Northern印迹杂交验证为阳性。对177个TDFs进行克隆、测序、比对分析,其中107个TDFs在NCBI数据库有较高相似度已知功能基因,28个TDFs在NCBI数据库有相似性很高的未知功能基因和假想蛋白。135个TDFs可以分为14类:新陈代谢、能量代谢、运输途径、通信及信号转导、细胞循环及DNA加工、转录调控因子、蛋白质合成、蛋白质加工、结合功能蛋白、转座子、毒性及质粒蛋白、细胞分生物合成、防御和未分类蛋白。
     4.利用半定量RT-PCR对12个从cDNA-SCoT分离获得的TDFs进行表达验证分析,全部12个基因表达量都在一定程度上受到干旱诱导或干旱后复水的诱导。其中4个基因受到干旱胁迫诱导上调表达,为抗旱类基因;7个基因受复水诱导上调表达,为恢复生长调节类基因;1个基因在干旱和复水都被诱导上调表达,为双重功能基因。从12个基因的表达模式分类结果和该基因的生物学信息功能分析结果基本是一致的。
     5.以GT11的cDNA第一链为模板,采用同源克隆方法成功克隆到5个水分胁迫相关基因全长cDNA,分别为Sc-atpI基因、Sc-SUTl基因、Sc-SAMDC3基因、Sc-Tuba3基因和Sc-HSP70基因,并对这些基因的核苷酸序列及其编码氨基酸序列进行分析,结果表明5个基因在NCBI数据都有同源性很高的禾本科作物(玉米、高粱)基因。Sc-atpI基因、Sc-Tuba3基因、Sc-HSP70基因、Sc-SAMDC3基因为首次在甘蔗中克隆得到。
Drought is the main factor that restricts the sugarcane productivity in china. The breeding and selection for new sugarcane varieties with new high yield, high sucrose, drought-resistance and wide regional adaptability are the effective way to improve the cane productivity under seasonal drought in China. Transgenic sugarcane with high drought resistance and water use efficiency gene is a new methodology to improve the sugarcane drought resistance. Drought resistance of sugarcane includes the drought tolerance and the ability to recover the growth after stress relief. Therefore, studies on the physiological and molecular mechanisms of sugarcane in response to drought stress and re-watering will aid in the understanding of the genetic improvement involved in drought resistance.
     Sugarcane is C4crop with high photosynthetic efficiency and many advantageous characteristics, such as drought resistance, waterlogging tolerance, barren tolerance, disease resistance, high biomass and so on, which is an important genetic resource for crop improvement, In order to understand the physiological and molecular mechanisms of sugarcane in response to water stress, and find drought-tolerant genes, the strongly drought resistant sugarcane variety GT11, was used as the plant material. The physiological characteristics including the osmotic adjustment, protective enzyme activities, physiological metabolisms, and endogenous hormones, etc. were analyzed to investigate the physiological response to drought stress and re-watering in sugarcane. The differential genes induced under drought stress and re-watering, were isolated and screened using two methods of cDNA-AFLP and cDNA-SCoT. The full-length cDNAs from a part of specific differential genes were obtained by cloning, which could provide gene resources for genetic improvement of the crop drought resistance. The main research contents and results are as follows:
     1. Sugarcane variety, GT11showed the physiological reposes to water stress including osmotic adjustment, protective enzyme activities, substance and endogenous hormones metabolism, etc. during elongating stage, which indicated the strong ability of GT11to adapt to water stress.
     (1) Under drought stress, osmotic adjustment substances, soluble sugar and proline were largely accumulated and P5CS activity was increased, while the soluble protein content and ProDH activity were decreased in sugarcane leaves. After re-watering, the soluble sugar content in leaves was decreased sharply and then increased to the level closed to control, proline content and P5CS activity were decreased rapidly, on the contrary, the soluble protein and the ProDH activity increased fast.
     (2) Under drought stress, the contents of MDA and the superoxide anion were increased and the activities of protection enzymes including peroxidase, catalase, superoxide dismutase and glutathione reductase were increased in different levels. After re-watering, the contents of MDA and the superoxide anion were decreased rapidly, and the activities of peroxidase, superoxide dismutase and glutathione reductase were also decreased, then increased, and the catalase activity was first decreased and then increased.
     (3) Under drought stress, abscisic acid content was highly accumulated as the drought intensifying, and polyamine oxidase activity was enhanced in a certain range. After re-watering, abscisic acid content was increased first and then decreased, and polyamine oxidase activity was decreased rapidly.
     2. Four hundred and six TDFs were isolated through cDNA-AFLP analysis. One hundred and sixty-seven among them were verified as positive by reverse Northern blotting. Twenty-seven TDFs were cloned, sequenced, BLAST analyzed and classified by functional analysis as seven categories, including energy metabolism, transcription regulation, protein binding, environmental interaction and other functional genes.
     3. There were316TDFs isolated from the cDNA-SCoT analysis for the gene differential expression induced by water stress. Among them180of positive TDFs were obtained using reverse Northern blotting excluding the false positives. One hundred seventy seven of positive TDFs were cloned, sequenced, and the BLAST analyzed. There were107TDFs showed high similarity to the known genes in NCBI database,28TDFs showed high similarity genes to the hypothetical protein with unknown functions in NCBI database. Total one hundred thirty five TDFS were divide into fourteen catagories by functional analysis, which involved in metabolism, energy, transport, communication and signal transduction, cell cycle and DNA processing, transcription, protein synthesis, protein fate, binding function protein, transposable elements, viral and plasmid proteins, cell fate, defence, and unclassified proteins.
     4. Twelve TDFs isolated with cDNA-SCoT were selected and verlidated by semi-quantitative RT-PCR analysis. The results showed that the expressions of the twelve genes were induced by drought stress and re-watering. The expression patterns among of those genes could be classified into three types by functional analysis. Four genes are induced by drought stress, as the drought resistance gene; seven genes were up-regulated by re-watering, as growth regulatory genes; one gene was up-regulated by both droutht and re-watering, as a dual functional gene.
     5. Five differentially expressed genes were cloned by homology cloning method with the first cDNA strain from sugarcane variety GT11. The genes included ATP synthase CFO subunit IV (Sc-atpl), sucrose transporter1(Sc-SUTl), heat shock protein70(Sc-HSP70), S-adenosylmethionine decarboylase3(Sc-SAMDC3), and tubulin alpha-3chain (Sc-Tuba3). The sequences of nucleotide acids and amino acids, domain, hydrophobicity, multiple alignment and phylogenetic tress of these genes were analysised. The results showed that five genes from sugarcane had a high homology with other gramineous crops in NCBI database, such as maize and sorghum. Sc-atpl, Sc-Tuba3, Sc-HSP70and Sc-SAMDC3were first cloned from sugarcane.
引文
安泽伟,陈根辉,程汉,等.橡胶树冷应答转录组cDNA-AFLP分析[J].林业科学,2011,62-67
    边红武.脱水蛋白和CBF1转基因对植物抗旱性和抗冻性作用的研究[D].杭州:浙江大学博士学位论文,2003
    蔡昆争,吴学祝,骆世明.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J].植物生态学报,2008,32(2):491-500
    蔡丽艳,石凤翎,李志勇,等.苜蓿cDNA-AFLP反应体系的建立和优化[J].种子,2011,30(8):1-4,8
    曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007,116-118
    曹蕾,邢朝斌,陈龙,等.刺五加ATP合酶p亚基基因的克隆与序列分析[J].安徽农业科学,2012,40(2):646-647,654
    曹丽,孙振元,义鸣放,等.多年生黑麦草P5CS基因的cDNA克隆、表达及亚细胞定位[J].园艺学报,2010,37(9):1477-1484
    陈代华译.收获前干旱处理对甘蔗产量和品质的影响[J].甘蔗糖业(甘蔗分刊),1978,(4):56-61
    陈吉宝,景蕊莲,毛新国,等.普通菜豆P5CS基因的克隆、功能验证及单核苷酸多态性[J].作物学报,2008,34(7):1121-1127
    陈虎,何新华,罗聪,等.龙眼24个品种的SCoT遗传多样性分析[J].园艺学报,2010,37(10):1651-1654
    陈平华,陈如凯,许莉萍,等.甘蔗单花粉全基因组扩增(WGA)与SCoT分子标记研究[J].热带作物学报,2011,32(11):2069-2075
    陈庆山,杨春明,刘春燕,等RNA分子表达技术研究进展[J].东北农业大学学报,2005,36(2):235-240.
    陈香玲,李杨瑞,杨丽涛,等.低温胁迫下甘蔗抗寒相关基因的cDNA-SCOT差异显示[J].生物技术通报,2010,8:120-124
    陈志玲,刘娜,刘磊,等.微管骨架在棉纤维细胞伸长中的作用[J].首都师范大学学报(自然科学版),2007,28(1):50-541
    崔杰,徐德昌,李滨胜,等.甜菜ATP合酶β亚基基因atpB的克隆、序列分析及进化[J].植物 研究,2006,26(5):583-588.
    邓晓艳,刘江娜,李志博,等.棉花耐旱相关基因的cDNA-AFLP差异显示[J].2010,28(5):537-540
    丁菲,庞磊,李叶云,等.茶树海藻糖-6-磷酸合成酶基因(CsTPS)的克隆及表达分析[J].农业生物技术学报,2012,20(11):1253-1261
    丁岳炼,李红梅,林燕飞,等.半定量RT-PCR法分析水孔蛋白基因EgPIP1;3在洋桔梗切花中的表达[J].仲恺农业工程学院学报,2012,25(1):6-10
    杜润峰,郝文芳,王龙飞.达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应[J].草业学报,2012,21(2):51-61
    范雯雯,王志强,林同保,等.不同土壤肥力下旱后复水对冬小麦光合特性及水分利用效率的影响[J].麦类作物学报,2010,30(2):362-365
    冯远航,王罡,季静,等.枸杞LmPSCS基因的克隆及表达分析[J].中国生物工程杂志,2013,33(1):33-40
    宫丽丹,田耀华,龙云峰,等.持续干旱胁迫及复水对橡胶树渗透调节能力的影响[J].中国农学通报,2012,28(01):35-38
    谷辉辉,冯书营,潘卫东,等.杜氏盐藻叶绿体ATP合酶α亚单位基因启动子的克隆及初步功能分析[J].海洋科学,2011,35(9):18-23
    《广西甘蔗栽培》编写组编著.广西甘蔗栽培[M].南宁:广西科学技术出版社,1991,pp:201-202
    桂意云,杨荣仲,周会.干旱及复水条件下甘蔗的生理响应与抗旱性简易鉴定[J].广东农业科学,2009,9:19-20
    郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,2000,42(3):279-283
    郭蓓,胡磊,何欣,等.海藻糖-6-磷酸合成酶转基因烟草提高耐盐性的研究[J].植物学通报,2008,25(1):41-49
    郭相平,张烈军,王琴,等.作物水分胁迫补偿效应研究进展[J].河海大学学报,2005,33(6):634-637
    韩国辉,向素琼,汪卫星,等.柑橘SCoT分子标记技术体系的建立及其在遗传分析中的应用[J].园艺学报,2011,38(7):1243-1250
    韩世健,罗维钢,周洁琼,等.伸长后期干旱胁迫下不同甘蔗品种的抗旱差异评价[J].安徽农业科学,2012,40(35):17044-17047
    何靓.发菜麦芽寡糖基海藻糖水解酶基因的克隆及其在胁迫条件下的响应[D].上海:上海师范大 学硕士学位论文,2011
    何晓兰,侯喜林,吴纪中,等.三角叶滨藜甜菜碱醛脱氢酶(BADH)基因的克隆及序列分析[J].南京农业大学学报,2004,27(1):15-19
    何生根,黄学林,傅家瑞.植物的多胺氧化酶[J].植物生理学通讯,1998,34(3):213-218
    郝树荣,郭相平,王维木,等.胁迫后复水对水稻叶面积的补偿效应[J].灌溉排水学报,2005,24(4):19-21
    黄诚梅.甘蔗脯氨酸积累与△1-吡咯啉-5-羧酸合成酶(ScP5CS)基因克隆及转化研究[D].南宁:广西大学博士学位论文,2007
    黄胜雄,胡尚连,孙霞,等.慈竹β-tubulin基因片段的克隆及序列分析[J].福建林业科技,2009,36(1):7-10,42
    黄志,邹志荣,黄焕焕,等.甜瓜抗旱性相关基因MeP5CS的克隆、序列分析及表达[J].园艺学报,2010,37(8):1279-1286
    曾幼玲,幸婷,蔡忠贞,等.盐生植物盐爪爪甜菜碱醛脱氢酶基因的克隆及在盐胁迫下的BADH基因的表达[J].云南植物研究,2007,29(1):79-84
    蒋伟.玉米海藻糖-6-磷酸合成酶基因家族的功能验证和差异表达分析[D].成都:四川农大大学博士学位论文,2010
    蒋巧巧,龙桂友,李武文,等.SCOT结合克隆测序鉴别湖南甜橙变异类型[J].中国农学通报,2011,27(6):148-154
    金伟.水分胁迫对抗旱性不同甘蔗品种生态生理效应的影响[D].南宁:广西大学硕士学位论文,2012.
    贾晋,蔡禄,张鲁刚,等.盐爪爪耐盐相关基因的cDNA-AFLP分析[J].北植物学报,2011,31(2):280-285
    康宗利,杨玉红,张立军.植物响应干旱胁迫的分子机制[J].玉米科学,2006,14(2):96-100
    匡昭敏,朱伟军,丁美花,等.多源卫星数据在甘蔗干旱遥感监测中的应用[J].中国农业气象,2007,28(1):93-96
    赖呈纯,赖钟雄,方智振,等.龙眼胚性愈伤组织线粒体ATP合酶β亚基基因克隆及其在龙眼体胚发生过程中的表达分析[J].中国农业科学,2010,43(16):3392-3401
    李彩丽.毛竹细胞骨架微管蛋基因PeTuα3和PeTub3研究[D].北京:中国林业科学院博士学位论文,2012
    李粲,滕峥,刘开雨,等.甘蔗MAP激酶基因ScMAPK4克隆与生物信息学分析[J].南方农业学 报,2012,43(6):727-732
    李长宁.水分胁迫下外源脱落酸提高甘蔗抗旱性的机理研究[D].南宁:广西大学博士学位论文,2012
    李长宁,Manoj Kumar Srivastava,农倩,等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J].作物学报,2010,36(5):863-870
    李国印,阙友雄,许莉萍,等.甘蔗MYB2转录因子的电子克隆和生物信息学分析[J].生物信息学,2011,9(1):24-27
    李晓君,蔡文伟,张树珍,等.甘蔗锌指蛋白基因ShSAPl的克隆与表达模式[J].生物工程学报,2011,27(6):868-875
    李文君,范静华,赵南明,等.萝卜叶绿体ATP酶p亚基的cDNA克隆及序列特征[J].清华大学学报(自然科学版),2001,41(5):36-40
    李威,赵雨森,周志强,等.干旱和复水对东北红豆杉叶片叶绿素荧光特性和抗氧化酶活性的影响[J].中国沙漠,2012,32(1):112-116
    李杨瑞,马乌里,林炎坤.干旱条件下单用草甘膦或添加营养元素作为甘蔗化学催熟剂的效应[J].作物学报,2000,26(6):692-698
    李杨瑞,杨丽涛.20世纪90年代以来我国甘蔗产业和科技的新发展[J].西南农业学,2009,22(5):1469-1476
    李银心,常凤启,杜立群,等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性[J].植物学报,2000,42(5):480-484
    梁潘霞.硅提高甘蔗抗旱性的生理及分子机制研究[D].南宁:广西大学博士学位论文,2012
    梁强,叶燕萍,桂杰,等.喷施黄腐酸对干旱胁迫下甘蔗苗期叶绿素荧光参数及丙二醛的影响[J].广西植物,2009,29(4):527-532
    梁远标,谭中文.甘蔗不同基因型幼苗对干旱胁迫及复水的反应差异研究[J].甘蔗糖业,1996,2:11-19
    林凡云.糜子干旱复水的基因表达谱分析及相关基因克隆[D].杨凌:西北农林科技大学博士学位论文,2006
    林凡云,王士强,胡银岗,等.糜子SAMS基因的克隆及其在干旱复水中的表达模式分析[J].作物学报,2008,34(5):777-782
    林凡云,胡银岗,宋国琦,等.糜子干旱后复水过程中基因表达谱的初步分析[J].西北农林科技大学学报(自然科学版),2007,35(3):81-86
    林世锋,任学良,王轶,等.烟草3个甜菜碱醛脱氢酶基因的克隆及序列分析[J].华北农学报,2012,27(3):17-22
    林炎坤.常用几种蒽酮比色定糖法的比较与改进[J].植物生理学通讯,1989,(4):53-55
    刘粉霞.农杆菌介导的玉米遗传转化的建立及拟南芥CBF1转基因玉米的研究[D].成都:四川农业大学硕士学位论文,2003
    刘红云,梁宗锁,刘淑明,等.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J].西北林学院学报,2007,22(3):55-59
    刘佳琪,杨雪,李迪,等.胡杨甜菜碱醛脱氢酶基因的功能分化[J].生物工程学报,2012,28(3):329-339
    刘金仙,阙友雄,郭晋隆,等.甘蔗S-腺苷蛋氨酸脱羧酶基因Sc-SAMDC的克隆和表达分析[J].中国农业科学2010,43(7):1448-1457
    刘金仙,阙友雄,郭晋隆,等.甘蔗胚胎晚期丰富蛋白基因(LEA) cDNA全长克隆及表达特性[J].农业生物技术学报,2009,17(5):836-842
    刘金仙,阙友雄,郑益凤,等.甘蔗锌指蛋白基因的克隆和表达分析[J].农业生物技术学报,2009,17(4):707-712
    刘晶,周树峰,陈华,等.农杆菌介导的双价抗盐基因转化番茄的研究[J].中国农业科学,2005,38(8):1636-1644
    刘甜甜,于影,赵鑫,等.转LEA基因烟草的NaHCO3抗性分析[J].分子植物育种,2006,4(2):216-222
    刘瑞显,陈兵林,王友华,等.氮素对花铃期干旱再复水后棉花根系生长的影响[J].植物生态学报,2009,33(2):405-413
    刘洋,姚艳丽,林希吴,等.干旱胁迫对甘蔗近缘材料抗氧化系统酶活性的影响[J].西南农业学报,2012,25(3):852-855
    刘宗强,李就好,姚彦欣,等.调亏灌溉条件下甘蔗耗水规律试验研究[J].水资源与水工程学报,2011,22(4):173-175
    罗海斌,曹辉庆,魏源文,等.干旱胁迫下甘蔗苗期根系全长cDNA文库构建及EST序列分析[J].南方农业学报,2012,43(6):733-737
    罗晓丽,肖娟丽,王志安,等.菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析[J].生物工程学报,2008,24(8):1464-1469
    马廷臣.全基因组表达分析不同耐旱性水稻根系对不同强度干旱胁迫反应研究[D].武汉:华中农 业大学博士学位论文,2009
    马洪双,夏新莉,尹伟伦.建立胡杨抗逆研究的cDNA-AFLP反应体系[J].北京林业大学学报,2010,32(5):35-40
    裴金玲,杨红兰,李春平,等.转晚期胚胎发生丰富蛋白(LEA)基因棉花及抗旱性分析[J].分子植物育种,2012,10(3):331-337
    裴润梅,禤维言.南宁甘蔗田水分供需状况的分析[J].广西蔗糖,2000,21(4):9-13
    彭江,孙一铭,宋锋,等.尾巨桉3-羟基-3-甲基戊二酰CoA还原酶基因的克隆及表达分析[J].林业科学,2011,47(2):164-168
    钱刚,平军娇,张珍,等.3种棱型大麦中脱水素6 (DHN6)的性质、突变位点与蛋白质进化分析[J].基因组学与应用生物学,2011,30(3):322-329
    曲同宝,李鹏,王欢,等.甜菜碱合成酶基因转化羊草的研究[J].中国草地学报,2011,33(3):35-38
    戚继艳,阳江华,唐朝荣.植物蔗糖转运蛋白的基因与功能[J].植物学通报,2007,24(4):532-543
    沙伟,张梅娟.基于RNA-Seq技术的东亚砂藓干旱及复水基因表达谱分析[J].2012年全国苔藓植物学学术研讨会摘要集,中国四川成都,2012-8-20
    石磊,甘晓燕,陈虞超,等.梭梭甜菜碱醛脱氢酶基因克隆及序列分析[J].西北植物学报,2010,30(2):223-228
    苏永秀,李政,吕厚荃.水分盈亏指数及其在农业干旱监测中的应用[J].气象科技,2008,36(5):593-597
    谭中文,梁计南,梁远标.不同水分条件下甘蔗品种幼苗性状研究[J].中国糖料,1998(1):1-5
    唐广生.广西甘蔗研究所科研成果转化卓越[N].广西日报,2006-12-19
    田跃胜,许洁婷,唐克轩,等.枸杞甜菜碱醛脱氢酶基因全长cDNA的克隆与表达分析[J].扬州大学学报,2010,31(2):48-52
    王继华,张木清,曹干.甘蔗抗旱育种研究进展[J].广东农业科学,2010(12):34-35,51
    王梁燕,洪奇华,张耀洲.实时定量PCR技术及其应用[J].细胞生物学杂志,2004,26(1):62-67
    王蕊,李新国,李绍鹏,等.短期干旱胁迫和复水对巴西蕉幼苗生理特性的影响[J].热带作物学报,2010,31(8):1362-1366
    王荣,李红菊.半定量RT-PCR法在检测基因表达水平中的应用[J].阜阳师范学院学报(自然科学版),2007,24(1):49-52
    王文斌,王晓怡,张明辉,等.大豆(Glycine max (L.) Merr.)叶片抗氧化酶对干旱及复水的响应机制[J].山西农业大学学报(自然科学版),2012,32(3):193-197
    王志强,梁威威,范雯雯,等.不同土壤肥力下冬小麦春季干旱的复水补偿效应[J].中国农业科学,2011,44(8):1628-1636
    韦汉文,黄有总,方良宝,等.引进甘蔗新品种对干旱胁迫的生理响应及抗旱性评判[J].广西蔗糖,2010,1:7-11
    魏源文.乙烯利调控甘蔗基因的差异表达及甘蔗乙烯受体基因Sc-ERS的克隆研究[D].南宁:广西大学博士学位论文,2007
    吴甘霖,段仁燕,王志高,等.干旱和复水对草莓叶片叶绿素荧光特性的影响[J].生态学报,2010,30(14):3941-3946
    吴建明.赤霉素诱导甘蔗节间伸长的生理及分子生物学基础研究[D].南宁:广西大学博士学位论文,2009
    吴建明,李杨瑞,王爱勤,等.赤霉素诱导甘蔗节间伸长基因的cDNA-SCoT差异表达分析[J].作物学报,2010,36(11):1883-1890
    肖金平,陈俊伟,张慧琴,等.干旱胁迫下柑橘叶片基因表达谱的cDNA-AFLP分析[J].园艺学报,2011,38(3):417-424
    熊发前,蒋菁,钟瑞春,等.目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用[J].作物学报,2010,36(12):2055-2061
    徐博,任伟,徐安凯,等.朝鲜碱茅△1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆及表达分析[J].华北农学报,2011,26(6):20-26
    徐红霞,陈俊伟,谢鸣.脱水素在植物低温胁迫响应中的作用[J].西北植物学报,2009,29(1):199-206
    许锦彪,段彪,邵园元,等.水稻叶片cDNA-AFLP技术体系的建立和优化[J].种子,2012,31(6):35-39
    牙库甫江·阿西木,关波,张富春.植物基因表达转录分析中内参基因的选择与应用[J].生物技术通报,2011,7:7-11
    杨翠.基于SCoT标记分析甘蔗种质资源遗传多样性[D].福州:福建农林大学硕士学位论文,2010
    杨雪莲,朱友娟.植物干旱胁迫研究进展[J].农业工程,2012,2(11):44-45
    仪茜茜,杨锐,刘伟,等.紫菜HSP70基因真核表达载体的构建与转化[J].生物技术通报,2011,4:89-97
    张春宝,赵洪锟,李启云,等.野生大豆△1-吡咯琳-5-羧酸合成酶(P5CS)基因的克隆与序列分析[J].大豆科学,2008,27(6):915-920
    张娜,黄韫宇,冯洁,等.甘蓝脯氨酸脱氢酶基因克隆与RNAi表达载体构建[J].中国农业大学学报,2011,16(3):87-94
    张宏,陈锐,黄林周,等.陕229干旱复水诱导基因表达及小麦乙烯受体(TaERS)基因特征分析[J].农业生物技术学报,2012,20(5):497-505
    张积森,陈由强,李伟,等.甘蔗△’-吡咯啉-5-羧酸合成酶基因(P5CS)的克隆及其表达分析[J].热带作物学报,2009,30(9):1337-1344
    张砚.海藻糖合成酶基因转基因玉米的后代检测[D].成都:四川农大大学硕士学位论文,2009
    张木清,陈如凯,余松烈.水分胁迫下蔗叶多胺代谢变化及其同抗旱性的关系[J].植物生理学报,1994,22(3):327-332
    张木清,陈如凯,余松烈.水分胁迫下蔗叶活性氧代谢的数学分析[J].作物学报,1996,22(6):729-735
    张宪政.作物生理研究法[M].北京:农业出版社,1992,pp:21-28
    张晓娟,张林生,杨颖.水分胁迫下小麦类脱水素基因表达的半定量RT-PCR分析[J].西北植物学报,2007,27(11):2158-2162
    张跃强,李剑峰,王重,等.干旱胁迫下小麦幼苗基因表达谱的cDNA-AFLP分析[J].麦类作物学报,2012,32(2):240-244
    张振华,刘强,宋海星,等.K=,Ca2+和Mg2+对不同水稻(Oryza sativa L.)基因型苗期耐盐性的影响[J].中国农业科学2010,43(15):468-475
    赵长星,程曦,王月福,等.不同生育时期干旱胁迫对花生生长发育和复水后补偿效应的影响[J].中国油料作物学报,2012,34(6):627-632
    赵福庚,孙诚,刘友良,等.ABA和NaCl对碱蓬多胺和脯氨酸代谢的影响[J].植物生理与分子生物学学报,2002,28(2):117-120
    赵婷婷,王俊刚,冯翠莲,等.甘蔗蔗糖转运蛋白ShSUT4基因克隆及表达分析[J].热带作物学报,2012,33(2):310-315
    赵世杰,许长成.植物组织中丙二醛测定方法的改进[J].植物生理学通迅,2002,30(3):207-210
    赵咏梅,杨建雄,俞嘉宁,等.小麦耐逆基因raLEA2转化拟南芥的研究[J].西北植物学报,2006,26(1):1-6
    曾建威,吴卫,邹宇婷.持续干旱及复水对鱼腥草新品系W01-100生长和生理特性的影响[J].时珍国医国药,2012,23(6):1513-1515
    钟希琼,林丽超.甘蔗品种抗旱力与生理指标的关系[J].佛山科学技术学院学报(自然科学版), 2002,20(3):59-62
    朱理环,邢永秀,杨丽涛,等.干旱胁迫对苗期甘蔗叶片水分和叶绿素荧光参数的影响[J].安徽农业科学,2010,38(23):12570-12573
    周飞,崔连成,安玉甫,等.三黄鸡ST3Gal6基因的半定量RT-PCR及生物信息学分析[J].中国畜牧兽医,2012,39(3):51-54
    周桂.渗透胁迫和乙烯利处理对甘蔗蛋白质差异表达的影响[D].南宁:广西大学博士学位论文,2010
    周精华,邢虎成,揭雨成,等.苎麻△1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆和表达分析[J].作物学报,2012,38(3):549-555
    Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell,2003,15:63-78
    Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J]. Plant Cell,1997,9:1859-1868
    Almeida A M, Villalobos E, Araujo S S, et al. Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica, 2005,146:165-176
    Almeida A M, Silva A B, Araujo S S, et al. Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene:a special reference to photosynthetic parameters [J]. Euphytica, 2007,154:113-126
    Ashraf M, Akram N A, Al-Qurainy F, et al. Drought tolerance:roles of organic osmolytes, growth regulators, and mineral nutrients [J]. Advances in Agronomy,2011,111:249-296
    Atsushi S, Norio M. Genetic engineering of glycine betaine synthes is in plants:Current status and implications for enhancement of stress tolerance [J]. J Exp Bot,2000,51:81-88
    Bachem C W B, Vanderhoeven R S, Debruijn S M, et al. Visualization of differential gene expression using a novel method of RNA finger printing based on AFLP:analysis of gene expression during potato tuber development [J]. The Plant Journal,1996,9(5):745-753
    Bajguz A. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress [J]. Environmental and Experimental Botany, 2010,68:175-179
    Bartels D, Sunkars R. Drought and salt tolerance in plants. Critical Reviews in Plant Science,2005,24: 23-58
    Bernacchia G, Salamini F, Bartel D. Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum [J]. Plant physiol,1996,111:1043-1050
    Bhavna W, Manchikatla V R. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene [J]. Plant Science,2003, 164(5):727-734
    Bhyan S B, Minami A, Kaneko Y, et al. Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling [J]. Journal of Plant Physiology,2012,169:137-145
    Bleslky A J. Overcompensation by plant:herbivore optimization or red herring [J]. Evolu. Ecol.1993,7: 109-112
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding [J]. Anal Biochem,1976,72:248-254
    Cao L, Xing Z B, Chen L, et al. Cloning and Sequence Analysis of ATPase Beta Subunit Gene from Eleutherococcus senticosus [J]. Agricultural Science & Technology,2011,12(12):1787-1789, 1841
    Carjuzaa P, Castellion M, Distefano AJ, et al. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Wild.) embryos [J]. Protoplasma,2008,233:149-156
    Close T J. Dehydrins:a commonalty in the response of plants to dehydration and low temperature [J]. Physiol Plant,1997,100(2):291-296
    Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism:a simple, novel DNA marker technique for generating gene-targeted markers in plants [J]. Plant Mol Biol Rep,2009,27:86-93
    Cooper B. Collateral gene expression changes induced by distinct plant viruses during the hypersensitive resistance reaction in Chenopodium amaranticolor [J]. The Plant Journal,2001, 26(3):339-349
    Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family:highly homologous proteins with overlapping and distinct functions [J]. FEBS Lett,2007,581(19):3702-3710
    Delauney A J, Verma DPS. Proline biosynthesis and osmoregulation in plants [J]. Plant Journal,1993, 4(1):36-40
    Demirevska K, Simova-Stoilova L, Vassileva V, et al. Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties [J]. Plant Growth Regulation,2008,56:97-106
    Depuydt S, Hardtke C S. Hormone signalling crosstalk in plant growth regulation [J]. Current Biology, 2011,21:365-373
    Durbak A, Yao H, McSteen P. Hormone signaling in plant development [J]. Current Opinion in Plant Biology,2012,15:92-96
    Durrant W E, Row land O, Piedras P, et al. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles [J]. The Plant Cell,2000,12:963-977
    Franceschftti M, Hanfrey C, Scaramagli S, et al. Characterization of monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames [J]. Biochem J,2001, 353:403-409
    Foyer C H, Valadier M H, Migge A, et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves [J]. Plant Physiology,1998,117:283-292
    Fujiyoshi Y, Mitsuoka K, de Groot B L, et al. Structure and function of water channels [J]. Current Opinion in Structural Biology,2002,12:509-515
    Gao F H, Zhang H L, Wang H G, et al. Comparative transcriptional profiling under drought stress between upland and lowland rice (Oryza sativa L.) using cDNA-AFLP [J]. Chinese Sci Bull,2009, 54:3555-3571
    Gorji A M, Poczai P, Polgar Z. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato [J]. Am. J. Pot Res,2011,88:226-237
    Guang X Y, Jan A, Komatsu S. Functional analysis of OsTUB8, an anther-specific β-tubulin in rice [J]. Plant Science,2007,172:832-8381
    Guo D L, Zhang J Y, Liu C H. Genetic diversity in some grape varieties revealed by SCoT analyses [J]. Mol Biol Rep,2012,39:5307-5313
    Gutierrez L,Mauriat M, Pelloux J, et al. Towards a systematic validation of references in real-time RT-PCR [J]. The Plant Cell,2008,20(7):1734-1735
    Habu Y, FukadaTanaka S, Hisatomi Y, et al. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence [J]. Biochemical and Biophysical Communications,1997,234,516-521
    Hayzer D J, Leisinger T. The gene-enzyme relationships of proline biosynthesis in Escherichia Coli [J]. J Gen Microbiol,1980,118:287-293
    Henriquez M, Daayf F. Identification and cloning of differentially expressed genes involved in the interaction between potato and phytophthora infestans using a subtractive hybridization and cDNA-AFLP combinational approach [J]. Journal of Integrative Plant Biology,2010,52(5): 453-467
    Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, et al. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants [J]. Plant Science,2005,169(4):746-752
    Holmstrom K O, Welin B, Mandal A, et al. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants [J]. The Plant Journal,1994,6:749-758
    Huai J, Wang M, He J, et al. Cloning and characterization of the SnRK2 gene family from Zea mays [J]. Plant Cell Reports,2008,27:1861-1868.
    Huang C M, Yang L T, Li Y R, et al. Isolation and characterization of a gene encoding the △1-pyrroline-5-carboxylate synthetase in sugar(Saccharum officinarum L.) [J]. Guangxi Agricultural Sciences,2009,40 (2):113-119
    Huang D, Jaradat M R, Wu W, et al. Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis [J]. Plant Journal,2007,50:414-428
    Huang D, Wu W, Abrams S R, et al. The relationship of drought related gene expression in Arabidopsis thaliana to hormonal and environmental factors [J]. Journal of Experimental Botany,2008,59: 2991-2997
    Jaiti F, Verdeil J L, Hadrami I E. Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis [J]. Physiological and Molecular Plant Pathology,2009,74:84-90
    Javot H, Maurel C. The role of aquaporins in root water uptake [J]. Annals of Botany (London),2002, 90:301-313
    Jiang Q Q, Long G Y, Li W W, et al. Identification of genetic variation in Citrus sinensis from hunan based on start codon targeted polymorphism [J]. Agricultural Science & Technology,2011, 12(11):1594-1599
    Jonsson H, Krupinski P. Modeling plant growth and pattern formation [J]. Current Opinion in Plant Biology,2010,13:5-11
    Kaldenhoff R, Fischer M. Aquaporins in plants [J]. Acta Physiologica,2006,187(1/2):169-176
    Kamminaka H, Morita S, Tokumoto M, et al. Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses [J]. Free Radical Res,1999,31:219-225
    Kermode A R. Approaches to elucidate the basis of desiccation-tolerance in seeds [J]. Seed Sci Res, 1997,7:75-95
    Kishitani S, Takanami T, Suzuki M, et al. Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley [J]. Plant Cell Environ,2000,23(1):107-114
    Kiyosue T, Yoshiba Y, Yamaguchi K, et al. A nuclear gene encoding mitochondrial praline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but down regulated by dehydration in Arabidopsis [J]. Plant Cell,1996,8:1323-1335
    Koda Y. The role of jasmonic acid and related compounds in the regulation of plant development [J]. International Review of Cytology,1992,135:155-199
    Kuddus R H, Lee T H, Valdivea L A. A semi-quantitative PCR technique for detecting chimerism in hamster to rat bone marrow xeno transplantation [J]. J Immunol Methods,2004,285(1):245-251
    Kuhn C, Grof C P L. Sucrose transporters of higher plants [J]. Current Opinion in Plant Biology,2010, 13(3):288-298
    Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance [J]. Plant Physiol,2004,136(1): 2843-2854
    Legaria J, Rajsbaum R, MunozClares R A, et al. Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth. Expression in leaves under short-term exposure to osmotic stress or abscisic acid [J]. Gene,1998,218(1-2):69-76
    Liang J, Zhang J, Wong M H. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? [J]. Photosyn Res,1997,51:149-159
    Li Y R, Liao W Z, Yang L T, et al. Improving ripening and drought resistancein sugarcane by application of ethephon [A]. In Li YR and Solomon S. (Editors-in-Chief). Sustainablesugarcane and sugar production technology [M]. Beijing:China Agriculture Press,2004,374-377
    Li Y R, Solomon S. Ethephon:a versatile growth regulator for sugar cane industry [J]. Sugar Tech,2003, 5(4):213-223
    Liu Q, Kasuga M, Sakuma Y, et al. Two transduction factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabilopsis [J]. Plant Cell,1998, 10:1391-1406
    Luo R H, Li Y R, Lin Y K. Effects of foliar spray of ethephon at tillering stage on mesophyll cells and chloroplasts in sugarcane [A]. In Li Y R and Solomon S. (Editors-in-Chief). Sustainable Sugarcane and Sugar Production Technology [M]. Beijing:China Agriculture Press,2004,350-352
    Maldonado-Mendoza IE, Vincent R M, Nessler C L. Molecular characterization of three differentially expressed members of the Camptotheca acuminata 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family [J]. Plant Molecular Biology,1997,34(5):781-790
    Maurel C, Verdoucq L, Luu D T, et al. Plant aquaporins:membrane channels with multiple integrated functions [J].Plant Biology,2008,59(1):595-624
    McCue K F, Hanson A D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression [J]. Plant Mol Biol,1992,18(1):1-11
    Melchior W, Steudle E. Water transport in onion roots changes of axial hydraulic conductivities during root development [J]. Plant Physiology,1993,101:1305-1315
    Miller G, Honig A, Stein H, et al. Unraveling △1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes [J]. The Journal of Biological Chemistry,2009, 284(39):26482-26492
    Mineyuki Y. Plant microtubule studies:past and present [J]. J Plant Res,2007,120:45-51
    Molinari H B C, Marur C J, Filho J C B, et al. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) ove producting proline [J]. Plant Science,2004,167(6):1375-1381
    Molinari H B C, Marur C J, Daros E, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.):osmotic adjustment, chlorophyll fluorescence and oxidative stress [J]. Physiologia Plantarum,2007,130(2):218-229
    Murguia J R, Belles J M, Serrano R. A salt-sensitive 3'(2'), 5'-cbisphosphate nucleotidase involved in sulfate activation [J]. Science,1995,267 (5195):232-234
    Oliver M J, Wood A J, O'Mahony P. How some plants recover from vegetative desiccation:a repair based strategy [J]. Acta Physiologia Plantarum,1997,19:419-425
    Oono Y, Seki M, Nanjo T, et al. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca.7000 full-length cDNA microarray [J]. Plant Journal,2003,34:868-887
    Petters J, Gbel C, Scheel D, et al. A pathogen-responsive cDNA from potato encodes a protein with homology to a phosphate starvation-induced phosphatase [J]. Plant Cell Physiology,2002,43(9): 1049-1053
    Rathinasabapathi B, McCue K F, Gage D A, et al. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance [J]. Planta,1994,193(2):155-162
    Rekika D, Nachit M M, Araus J L, et al. Effects of water deficit on photosynthetic rate and osmotic adjustment in tetraploid wheats [J]. Photosynthetica,1998,35:129-138
    Riesmeier J W, Willmitzer L, Frommer W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast [J]. EMBO J,1992,11(13):4705-4713
    Riera M, Valon C, Fenzi F, et al. The genetics of adaptive responses to drought stress:Abscisic acid-dependent and abscisic acid-independent signalling components [J]. Physiologia Plantarum, 2005,123:111-119
    Rodrigues F A, DaGraca J P, DeLaia M.L,et al. Sugarcane genes differentially expressed during water deficit [J]. Biologia Plantarum,2011,55 (1):43-53
    Rolland V G. Semi-quantitative analysis of gene expression in cultured chondrocytes by RT-PCR [J]. Methods Mol Med,2004,100(1):69-78
    Sando T, Takaoka C, Mukai Y, et al. Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis [J]. Bioscience Biotechnology and Biochemistry, 2008,72(8):2049-2060
    Sayari A H, Bouzid R G, Bidan A, et al. Over-expression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants [J]. Plant Sci, 2005,169:746-752
    Schreiber L, Hartmann K, Skrads M, et al. Apoplastic barriers in roots:chemical composition of endodermal and hypodermal cell wall [J]. Journal of Experimental Botany,1999,50(337): 1267-1280
    Seo J S, An J H, Baik M Y, et al. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis [J]. J Microbiol Biotechnol, 2007,17:123-129
    Shan C, Liang Z. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress [J]. Plant Science,2010,178:130-139
    Shao H B, Liang Z S, Shao M A, et al. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage [J]. Colloids Surfaces,2005,42: 107-113
    Sharp R E. Interaction with ethylene:changing views on the role of abscisic acid in root and shoot growth responses to water stress [J]. Plant Cell and Environment,2002,25:211-222
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses [J]. Current Opinion in Plant Biology,2003,6:410-417
    Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress [J]. Plant Cell, 1990,2:502-512
    Srivastaval M K, Li C N,, Nong Q, et al. Effect of exogenous ABA application on chlorophyll fluorescence in sugarcane under water stress conditions [J]. Guangxi Agricultural Sciences,2009, 40(11):1411-1416
    Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proc Natl Acad Sci,1997,94:1035-1040
    Vander Biezen E A, Juwana H, Parker J E, et al. cDNA-AFLP display for the isolation o f Peronospor aparasitica genes expressed during infection in Arabidopsis thaliana [J]. Molecular Plan-t Microbe Interactions,2000,13(8):895-898
    Wang A M, Doyle M V, Mark D F. Quantitation of mRNA by the polymerase chain reaction [J]. Leukemia,2000,14(2):316-323
    Wang W, Vinocur B, Altman A. Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance [J]. Planta,2003,218:1-14
    Wang Y Y, Chen X. Wang W Q. Modified cDNA-AFLP technique screening drought stress-related genes of Cassava (Manihot esculanta Crantz).第十三届全国植物基因组学大会论文集,中国山东泰安,2012-08-19
    Wang Z Z, Zhang S Z, Yang B P, et al. Trehalose synthase gene mediated by agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane [J]. Sugar Tech,2005,7(1):49-54
    Watanabe K, Yamamoto T, Yamada T. Changes in seasonal evapotranspiration, soil water content, and crop coefficientsin sugarcane, cassava, andmaize fieldsin Northeast Thailand [J]. Agricultural Water Management,2004,67:133-143
    Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine aldehyde dehydrogenase,an enzyme implicated in adaptation to salinity and drought [J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(7):2745-2749
    Wood A J, Saneoka H, Rhodes D, et al. Betaine aldehyde dehydrogenase in Sorghum [J]. Plant Physiol., 1996,110:1301-1308
    Wu S X, Shen R R, Zhang X, et al. Molecular cloning and characterization of maltooligosyltrehalose synhases gene from Nostoc Flagelliforme [J]. Microbiol Biotechnol,2010,20:579-586
    Wu X L, Ding H B, Yue M, et al. Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens [J]. Appl Microbiol Biotechnol,2009,83(3):477-482
    Wu Y, Zhou H, Que Y X. et al. Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance [J]. Sugar Tech,2008,10(1):36-41
    Xiong F Q, Zhong R C, Han Z Q, et al. Star codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes [J]. Mol Biol Rep,2011,38:3487-3494
    Xu D, Duan X, Wang B, et al. Expression of a late Embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice [J]. Plant Physiology, 1996,110:249-257
    Yang R Z, Li Y R, Wang W Z, et al. Evaluation of cold tolerance of sugarcane under drought frost condition [J]. Agricultural Science & Technology,2011,12(9):1303-1307
    Yang S S, Cui L R. The action of aquaporins in cell elongation, salt stress and photosynthesis [J]. Chinese Journal of Viotechnology,2009,25(3):321-327
    Yao J Y, Yang L T, Fang W K, et al. Stimulatory effects of ethephon on photosynthesis of sugarcane under water-deficit conditions [A].In Li Y R and Solomon S. (Editors-in-Chief). Sustainable Sugar-cane and Sugar Production Technology [M]. Beijing:China Agriculture Press,2004.384-387
    Yu A L,Xu J S, Zhou H, et al. Cloning and sequencing of BADH gene from Maize (Zea mays) [J]. Mo lecular Plant Breeding,2004,2(3):365-368
    Zhang S Z, Yang B P, Feng C L, et al. Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L) [J]. Journal of Integrative Plant Biology,2006,48 (4):453-459
    Zhang S Z, Yang B P, Feng C L, et al. Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco [J]. J Intergrat Plant Bio,2005,47 (5):579-587
    Zhu L H, Xing Y X, Yang L T, et al. Effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling [J]. Agricultural Science& Technology,2010,11(5):17-21
    Zhu Y, Wei D, Zhang J, et al. Overexpression and characterization of a thermostable trehalose synthase from Meiothermus rubber [J]. Extremophiles.2010,14(1):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700