用户名: 密码: 验证码:
基于四交群体的玉米耐密性及相关性状QTL定位与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高产是玉米育种的首要目标。种植密度的增加、株型的改善和穗部性状的优化是玉米产量提高的主要措施。利用玉米耐密型品种,依靠群体产量来提高单产是实现玉米再高产的保障,是满足未来玉米需求最经济最有效的增产途径,也是玉米品种选育及产业化发展的必然趋势和方向。本研究选用自交系郑58、PH6WC、豫87-1、自330构建一个四交(郑58/豫87-1//PH6WC/自330)作图群体,通过SSR标记分析,构建了玉米的四交遗传连锁图谱,在高、低两种密度下,对玉米耐密性及相关性状的QTL进行了定位分析。主要研究结果如下:
     1.利用耐密系数对我国15份骨干玉米自交系在高低2种密度下,进行耐密性鉴定表明,15份自交系的耐密系数变幅较大。耐密系数前5位的自交系依次为PH6WC>郑58>K12>掖478>沈137,这些自交系耐密性较强;耐密系数最后5位的依次为:自330<87–1<许178<综3<丹9046,这些自交系对密度反应比较敏感。对广州和三亚两个试验点下四交F2:3家系的耐密系数进行相关分析表明,两个环境的耐密系数呈极显著正相关(0.342**),表明基于产量计算的耐密系数衡量玉米耐密性是可行、可靠的。在两个试验点的高密度下,株高(0.131*,0.156*)、茎粗(0.1488*,0.152*)和叶向值(0.141*,0.132*)性状与耐密系数均达到显著性正相关;穗长(0.245**,0.161*)、行粒数(0.243**,0.237**)及百粒重(0.224**,0.168*)与耐密系数呈显著或极显著正相关,秃尖长(-0.138*,-0.143*)与耐密系数成显著负相关。因此,这些性状可以做为评价耐密性的重要次级指标。
     2.以郑58/豫87-1//PH6WC/自330的228个四交F1单株为作图群体,筛选出231对SSR引物基本符合所期望的1:1、1:2:1和1:1:1:1的各种分离比例,利用225个SSR标记在10对染色体上构建了覆盖玉米全基因组的分子标记遗传图谱,整个连锁图谱总长度1387.2cM,平均间距为6.19cM,10对染色体上标记平均间距在4.05~9.29cM之间,该图谱满足QTL初步定位的要求。
     3.基于四交群体以耐密系数作为评价耐密性的指标,应用区间作图法分析广州和三亚两个试验点的QTL,共检测到9个QTL,分别位于第3、4、7和8染色体上,单个QTL可解释的表型变异为5.2%~28.9%。发现1个在2个环境表现稳定的主效QTL位于第7染色体,落在同一标记区间,位于连锁群bin7.02-bin7.03位点;2个环境下检测到的第3染色体上的2个QTL,qDTC-E1-1和qDTC-E2-2都临近标记umc1399,而且连锁图上QTL位置非常接近,分别位于连锁群bin3.07-bin3.09和bin3.05-bin3.07位点。
     4.对耐密性相关的14个性状在两个试验点两个密度下进行QTL定位检测,共定位到184个QTL,单个QTL可以解释的表型变异范围为3.3%~28.9%。株型性状主要分布在第1、4、7、9染色体上;抗倒伏株型性状QTL主要分布在第1、3、8染色体上;穗部性状QTL主要分布在第4、6、7、8染色体上。部分染色体上部分区域出现QTL成簇分布,而有些区域检测到不同性状在同一位点存在重叠的QTL。
     检测到的QTL中有26个QTL至少在2种环境下被同时检测到。其中,同一试验点不同密度下共检测到7个稳定的QTL;同一密度下不同试验点下共检测到19个稳定的QTL。3个环境钝感QTL在3个环境下均被稳定检测到,第1染色体上检测到1个控制叶向值的环境钝感QTL qLO-E1-1(bin1.02);第5染色体上检测到1个控制雄穗分枝数的环境钝感QTL qTBN-E1-3(bin5.00-bin5.01);第3染色体上检测1个茎粗系数环境钝感QTL qSDC-E1-3(bin3.01-bin3.02)。本研究的结果有望为玉米耐密型育种及分子辅助选择提供一定的理论依据。
Yield still was the main target of corn breeding in China. Using density tolerance varietiesand relying on population production to improve yields was the most economical and effectiveway to complete higher yield. It was the inevitable trend and development direction of cornbreeding and industrialization in future. In this study, a four-way cross population was built withfour inbred lines (Zheng58, PH6WC,Yu87-1, Zi330).The genetic linkage map was constructed bySSR markers. The density tolerance and related traits QTL was detected in both high and lowdensity in two test point. The major results were as follows:
     1. The density tolerance of15inbred lines was indentified in the high and low density withdensity tolerant coefficient (DTC).The results showed the DTC of the15inbred lines have alarge amplitude value. The top5inbred lines with high density tolerant ranked as: PH6WC>Zheng58> K12> Ye478> Shen137,these inbred lines have strong density tolerance. The last5inbred lines with high density tolerant ranked as: Zi330<87-     2. A genetic linkage map containing231SSR markers was constructed based on an four-waycross F1population with228individuals. The map spanned a total of1387.2cM with an averageinterval of6.19cM, the average interval from4.05to9.29on the10chromosome. For the study of231markers, there are225markers in accordance with the rate of1:1or1:1:1:1or1:2:1in thesegregation population. A linkage groups were established, covering the whole10chromosomes.The map can meet the preliminary requirements for the QTL mapping.
     3. The DTC from the population of the four-way cross F2:3families were evaluated for QTL analysis, with the method of interval mapping,9QTL were indentified for DTC on chromosome3,4,7,8, and the phenotypic variance explained by each QTL ranged from5.2%to28.9%. A majorQTL was found on chromosome7fall on the same marker interval, located in bin7.02-bin7.03site, were detected in both Guang zhou and San ya environment stability. Two QTL detected onchromosome3in the two environment, qDTC-E1-1and qDTC-E2-2near the markerumc1399,these position in the linkage map is very close, located in bin3.07-3.09andbin3.05-bin3.07site of the linkage map, respectively.
     4. Hundred and eighty-four QTL for14traits related to the density tolerance were detectedin the two density and two test points. There were screened mainly distributed in4,6,7and8chromosome. The phenotypic variance explained by each QTL ranged from3.32%to28.9%.Planttype QTL were mainly located on chromosome1,4,7,9. Lodging resistance QTL were mainlydetected on chromosome1,3,8. Ear traits QTL were mainly distributed in4,6,7,8chromosome.Part of QTL clusters on the part of the region on partial region on chromosome.
     Twenty-six QTL were detected in at least two environment, in which7were detected underdifferent density,19stable QTL were detected under different test points,22major QTL hasphenotypic contribution rate greater than10%simultaneously detected in two or moreenvironment. Three environmental insensitive QTL were detected in4environments. Oneenvironmental insensitive QTL qLO-E1-1was found on chromosome1located bin1.02site,controlling the leaf orientation; environmental insensitive QTL qTBN-E1-3was detected onchromosome5located bin5.00-bin5.01site; environmental insensitive QTL qSDC-E1-3wasdetected on chromosome3located bin3.01-bin3.02site.The result of this study may provideuseful information for compact breeding and marker-assisted selection for maize.
引文
[1]柏大鹏,王琳,罗峥峰.2000年美国玉米育种的概况及先锋中国的试验进展[C].全国玉米科学学术报告会论文集,2000:61-63.
    [2]边大红.密度对玉米生长发育的影响及品种耐密性评价研究[D].保定:河北农业大学,2008:1-5.
    [3]陈国平,杨国航,赵明,等.玉米小面积超高产创建及配套栽培技术研究[J].玉米科学,2008,16(4):1-4.
    [4]陈举林.紧凑型玉米高产生理基础及高产栽培[J].玉米科学,1995,3(2):58-60.
    [5]陈庆华,邓尔超,王延波.玉米群体改良在创造新种质资源和选系中的效应与方法探讨[J].辽宁农业科学,1998,(2):3-8.
    [6]陈润玲,雷晓兵,梁晓伟.耐密型玉米自交系选育技术探讨[J].作物研究,2009,23(2):150-152.
    [7]陈圣,倪大虎,陆徐忠,等.分子标记辅助选择聚合Xa23,Pi9和Bt基因[J].生物学杂志,2009,26(3):7-9.
    [8]陈稳良,白琪林,石平,等.耐密型玉米育种探讨[J].山西农业科学2011,39(10):1040-1042.
    [9]陈彦惠,吴连成,吴建字,等.两种纬度生态条件下热带、亚热带玉米群体的鉴定[J]中国农业科学,2000,33:40-48.
    [10]戴景瑞.浅谈自交系的选育[J].作物杂志,1991,(3):11-12.
    [11]刁操铨主编.作物栽培学各论(南方本)[M].北京:中国农业出版社,1996.
    [12]佟屏亚.玉米新品种田间评价的形态指标[J].种子世界,2003(1):18-19.
    [13]佟屏亚.中国玉米生产的发展方向[J].农业科技通讯,2005,(8):11-13.
    [14]董淑静,许为钢.小麦条锈病抗性基因研究进展及分子标记辅助聚合育种[J].中国农学通报,2009,25(13):190-196.
    [15]董章辉,石玉真,张建宏,等.棉花纤维长度主效QTLs的分子标记辅助选择及聚合效果研究[J].棉花学报,2009,21(4):279-283.
    [16]樊景胜,阎淑琴,马宝新.对玉米的耐密性及选育耐密品种的探讨[J].玉米科学,2002,10(3):50-51,55.
    [17]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出社,2001:50-58.
    [18]冯春生,尹芝瑞,赵述文,等.耐密型玉米光合速率与产量的关系[J].核农学报,1994,8(2):80-86.
    [19]丰光,刘志芳,李妍妍,等.中国不同时期玉米单交种产量变化的研究中国农业科学2010,43(2):277-285.
    [20]丰光,李妍妍,景希强,等.玉米不同种植密度对主要农艺性状和产量的影响[J].玉米科学,2011,19(1):109-111.
    [21]郭江,郭新宇,郭程瑾,等.密度对不同株型玉米群体结构的调控效应[J].华北农学报,2008,23(1):149-153.
    [22]顾慰连等.顾慰连论文选集[M]沈阳:辽宁科技出版社,1992.
    [23]胡昌浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究I产量性状的演进[J].玉米科学,1998,6(2):44-48.
    [24]黄述祖.玉米茎秆抗倒性研究[J].山西农业科学,1992,(5):17-18.
    [25]蒋锋,刘鹏飞,王汉宁,等.玉米穗高系数的遗传分析与QTL定位研究[J].中国农业大学学报,2011,16(4):9-15.
    [26]蒋锋.陆地棉黄萎病抗性的遗传分析与QTLs定位[D]南京:南京农业大学,2008.
    [27]姜丽丽,樊明寿,郭九峰.干旱和灌概两种处理条件下玉米株高、产量的QTL分析[J].华北农学报,2007,22(4):86-90.
    [28]金明华,矫树凯.玉米自交系的耐密性及其与株型和配合力关系的研究[J].玉米科学,1995(1):22-27.
    [29]库丽霞.玉米株型相关性状分子遗传机理研究[D].郑州:河南农业大学,2010.
    [30]兰进好,李新海,高树仁,等.不同生态环境下玉米产量性状QTL分析[J].作物学报,2005,31(10):1253-1259.
    [31]李登海,张永慧,翟延举,等.玉米株型在高产育种中的作用I.株型的增产作用[J].山东农业科学,1993,(1):4-8.
    [32]李竞雄.玉米杂种优势研究回顾与展望[C].植物遗传理论与应用研讨会文集,1990:1-7.
    [33]李建生.玉米分子育种研究进展[J].中国农业科技导报,2007,9(2):10-13.
    [34]李少昆,赵明.玉米株型研究综述[J].玉米科学,1995,(4):7-11.
    [35]李贤唐.玉米四交群体株型及生育期相关性状的QTL分析[D]郑州:河南农业大学,2011.
    [36]刘帆,石海春,余学杰.玉米果穗主要性状与产量间的相关与通径分析[J].玉米科学,2005,13(3):17-20.
    [37]刘海燕,马宝新,孙善文,等.玉米杂交种耐密性与农艺性状关系的研究[J].黑龙江农业科学,2010(10):25–27.
    [38]刘纪麟.玉米育种学[M](第二版).北京:中国农业出版社,2004.257-258.
    [39]刘京宝,朱卫红,黄璐,夏来坤.玉米耐密育种技术研究进展[J].江西农业学报,2011,23(7):93-96.
    [40]刘建超,米国华,陈范骏.两种供氮水平下玉米穗部性状的QTL定位[J].玉米科学,2011,9(2):17-20.
    [41]刘开昌,王庆成,张秀清等.2001.玉米光合性能与耐密性关系的研究[J].山东农业科学,(6):25-28.
    [42]刘培利,林琪,隋方功,等.紧凑型玉米根系高产特性的研究[J].玉米科学,1994,(2):59-63.
    [43]刘鹏飞,张媛,蒋锋,等.玉米自交系的耐密性分析[J].湖北农业科学,2012,51(15):3171-3173.
    [44]刘绍隶,程绍义.紧凑型玉米株型及生理特性研究[J].1990,5(3):20-27.
    [45]刘伟,吕鹏,苏凯,等.种植密度对夏玉米产量和源库特性的影响[J].应用生态学报,2010,21(7):1737-1743.
    [46]刘勋甲,尹艳,郑用琏.分子标记在农作物遗传育种中的运用及原理.湖北农业科学,1998,(1):27-32.
    [47]刘志新.不同耐密性玉米的密植效应及耐密性遗传规律研究[D],沈阳:沈阳农业大学,2009:1-3.
    [48]刘宗华,汤继华,卫晓轶,等.氮胁迫和正常条件下玉米穗部性状的QTL分析[J].中国农业科学,2007,40(11):2409-2417.
    [49]路明,周芳,谢传晓,等.玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J].遗传,2007,29(9):1131-1138.
    [50]马金亮.利用玉米骨干系进行产量及相关性状的QTL分析[D].河南农业大学,2010.
    [51]马利,徐景梅,贾德涛.玉米高密度育种探讨[J].现代农业科技,2008,(2):154-156.
    [52]彭勃.玉米籽粒产量及其相关性状遗传基础的研究[D].北京:中国农业科学院,2010.
    [53]彭勃,王阳,李永祥,等.不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析[J].作物学报,2010,36(11):1832-1842.
    [54]钱能.陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D].南京:南京农业大学博士论文,2009,6.
    [55]秦鸿德,陆地棉产量品质性状QTL定位与分子标记辅助轮回选择.南京:南京农业大学博士论文,2007,11.
    [56]荣廷昭等.农业试验与统计分析.成都:四川科学技术出版社,1993.
    [57]石云素.玉米种质资源描述规范和数据标准.北京:中国农业出版社,2006:1-2.
    [58]师洪飞.黄淮海玉米育种的思考[J].玉米科学,2008,16(1):59-61.
    [59]孙发明,金应世.耐密型玉米自交系的培育与改良[J].延边农学院学报,1992(3):168-170.
    [60]孙发明,焦仁海,刘兴二,等.论春玉米区新的育种目标与策略—对郑单958、先玉335国审以后的思考[J].种子科技,2006,(2):44-46.
    [61]孙海艳,蔡一林,王久光,等.玉米株型性状的QTL定位[J].西南大学学报(自然科学版),2010,32(12):14-18.
    [62]宋日,吴春胜,马丽艳,等.松嫩平原平展型和紧凑型玉米品种根系分布特征[J].沈阳农业大学学报,2002,33(4):241-243.
    [63]苏成付,赵团结,盖钧镒.不同统计遗传模型QTL定位方法应用效果的模拟比较[J].作物学报,2010,36(7):1100-1107.
    [64]苏方宏.玉米的耐密性及耐密性育种[J].河北农业科学,1997,(2):14-16.
    [65]孙军玲,王秀娴.玉米商业育种目标及手段[J].内蒙古农业科技,2010,(6):92.
    [66]苏俊,钟占贵,张坪,等.玉米自交系的选育和改良与基础材料创新的研究[J].玉米科学,1995,(4):16-19.
    [67]谭巍巍,王阳,李永祥,等.不同环境下多个玉米穗部性状的QTL分析[J].中国农业科学,2011,44(2):233-244.
    [68]汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位[J].遗传学报,2005,32(2):203-209.
    [69]汤国民,龙丽萍,夏德君,等.玉米穗高系数对产量性状的影响[J].莱阳农学院学报,2002,19(2):95-97.
    [70]唐启义.DPS数据处理系统[M].第2版,北京:科学出版社,2010.
    [71]田新震,李新海,李明顺,等.优质蛋白玉米的分子标价辅助选择[J].玉米科学,2004,12(2):108-110,113.
    [72]万建民.作物分子设计育种.作物学报,2006,32:455-462.
    [73]王大春,玉米耐密性育种浅析,农业科技通讯(专题论述)[J].2007,(12):13-15.
    [74]王黄英,郭还威,何雪峰,等.玉米群体改良与常规育种相结合的研究[J].山西农业科学,1999,27(3):22-27.
    [75]王庆成,刘开昌,张秀清,等.玉米新杂交种的产量—密度方程与耐密性的研究[J].山东农业科学,1998(6):7-11.
    [76]王庆祥.玉米群体的自动调节与产量[J].作物学报,1987,13:281-288.
    [77]王庆成,牛玉贞,王忠孝,等.源-库比改变对玉米群体光合和其它性状的影响[J].华北农学报,1997,12(l):l-6.
    [78]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245.
    [79]王文娟,玉米耐密性育种浅析,农业科技通讯(粮食作物)[J].2011,(12):140-142.
    [80]王晓明刘建华李余良.广东杂交玉米新组合抗倒伏性能评价[J].广东农业科学,1999,(1):10-11.
    [81]王晓梅,崔坤,刘玉兰,等.不同密度玉米品种雌雄穗开花间隔与产量相关性的研究[J].吉林农业科学,2003,28(4):5-7.
    [82]王秀凤,景希强,葛立胜,等.耐密型玉米育种现状及选育途径探讨[J].杂粮作物,2010,30(1):4-6.
    [83]王宇菲,李平,付景昌.玉米栽培密度问题初探[J].杂粮作物,2008,28(3):172-173.
    [84]王永飞,马三梅,刘翠萍,等.遗传标记的发展和分子标记的检测技术.西北农林科技大学学报(自然科学版),2001,29(6):130-136.
    [85]王元东,段民孝,邢锦丰,等.玉米理想株型育种的研究进展与展望[J].玉米科学,2008,16(3):47-50.
    [86]邢锦丰,赵久然,黄长玲,等.密植育种法在选育玉米自交系中的应用[J].玉米科学,2008,16(2):54-55.
    [87]徐德林,蔡一林,吕学高,等.玉米株型性状的QTL定位[J].玉米科学,2009,17(6):27-31.
    [88]徐庆章,王庆成,牛玉贞,等.玉米株型与群体光合作用的关系研究[J].作物学报,1995,21(4):492-496.
    [89]薛吉全,梁宗锁,马国胜,等.玉米不同株型耐密性的群体生理指标研究[J].应用生态学报,2002,13(1):55-59.
    [90]姚杰.提高玉米育种创新能力加快新品种选育速度[J].作物杂志,2007,(5):1-4
    [91]于洪飞,戴俊英,沈秀瑛,等.玉米理想株型育种生理形态研究概况[J].玉米科学,1995,3(1):12-17.
    [92]于晓芳.玉米叶片水分利用效率及其相关性状的QTL定位及分析[D].内蒙古农业大学,2010
    [93]于永涛,张吉民,石云素,等.利用不同群体对玉米株高和叶夹角的QTL分析[J].玉米科学,2006,14(2):88-92.
    [94]夏海丰,高玮,王丕武,等.耐密型玉米育种浅析[J].安徽农业科学,2012,40(31):15180-15182.
    [95]闫海霞,柳家友,吴伟华.夏玉米主要穗部性状与单株产量之间的相关和通径分析[J].山东农业科学,2008,l:7-9,50.
    [96]严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析[J].遗传学报,2003,(10):913-918.
    [97]杨利华,张丽华,杨世丽,等.不同株高玉米果穗性状对种植密度的反应[J].河北农业大学学报,2008,31(l):12-15,19.
    [98]杨孝忱,高旭东,薛兵东,等.玉米的耐密性及耐密型品种的选育[J].种子世界,2010(1):31-32.
    [99]杨钊钊,李永祥,刘成,等.基于多个相关群体的玉米雄穗相关性状QTL分析[J].作物学报,2012,38(8):1435-1442.
    [100]岳辉,陈晓旭,王作英,等.玉米形态育种与高产耐密品种的相关性[A].2011年全国玉米遗传育种学术研讨会论文集[C].2011,135–136.
    [101]岳竞之,张莉,张春荣.夏玉米主要穗部性状结构分析和高产育种探索[J].玉米科学,2005,13(3):47-49,52.
    [102]臧士国.庄稼诊所-农作物的田间诊断与调控[M].北京:中国农业科技出版社,1995.
    [103]赵保献,梁晓伟,雷晓兵,等.赵合林耐密型玉米育种相关问题的思考[J].中国农学通报,2009,25(14):108-112.
    [104]赵久然,郭景伦,郭强,等.玉米不同品种基因型穗粒数及其构成因素相关分析的研究[J].农业新技术,1997,15(6):l-2.
    [105]赵久然,孙世贤.对“超级玉米”育种目标及技术路线的认识与思考[M].中国玉米品种科技论坛.北京:中国农业科学技术出版社,2007.
    [106]赵久然.进一步挖掘我国玉米增产潜力的主要措施[C].现代玉米发展论文集,北京:中国农业出版社,2007.
    [107]赵久然,孙世贤.对超级玉米育种目标及技术路线的再思考[J].玉米科学,2007,15(1):21-23.
    [108]赵久然,王荣焕.再议玉米耐密型品种的选育鉴定及配套栽培技术[J].玉米科学,2008,16(4):5-7.
    [109]赵明.耐密型玉米的研究进展[J].吉林农业科学,1993,(1):10-11,49.
    [110]赵树仁,叶青江,耐密型玉米品种选育方法,农业与技术[J].2008,28(5):112-114.
    [111]赵延明.玉米穗高系数遗传主基因及与环境互作效应分析[J].中国农学通报,2008,24(3):130-133.
    [112]张凤路,Kriubi D.玉米雌雄穗开花间隔与产量关系研究[J].作物学报,2002,1:76-78.
    [113]张建华,刘志增,祝丽英,等.不同密度下玉米DH群体果穗性状的QTL定位分析[J].河北农业大学学报,2009,5(32):1-4.
    [114]张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269.
    [115]张世煌,孙世贤.从品种试验看玉米育种面临的技术问题[J].作物杂物,2006,(2):10-12.
    [116]张世煌,徐志刚.耕作制度改革及其对农业技术发展的影响[C].北京:第一届玉米产业技术大会论文集,2008:1-4.
    [117]张守林.玉米的耐密性与耐密株型的性状选择,农业科技通讯,2010(4):113-115.
    [118]张伟强.玉米产量性状QTL定位与株型性状相关基因克隆[D].郑州:河南农业大学,2011.
    [119]张燕芝(译).玉米种植密度对人工遮光的反应[A].国外农学—杂粮作物.1993,(2).
    [120]张泽民,贾长柱.玉米株型对遗传增益的影响[J].遗传,1997,19(2):31-34.
    [121]张泽民,刘丰明,李雪英.河南省1963-1993年玉米杂交种籽粒产量及其组成性状的遗传增益[J].作物学报,1998,24(2):182-186.
    [122]张志军,刘文国,张建新,等.吉林省耐密型玉米育种现状及选育途径初探[J].玉米科学,2004,12(2):34-36.
    [123]郑洪建.玉米叶片保绿性遗传分析和QTL定位[D].上海:上海交通大学,2008.
    [124]郑祖平,黄玉碧,田孟良,等.不同供氮水平下玉米株型相关性状的QTL定位和上位性效应分析[J].玉米科学,2007,15:14-18.
    [125]朱宏宇,董成玉.关于发展密植玉米品种的探讨[J].辽宁农业科学,2008,(6):40-41.
    [126]祝丽英.玉米株型、穗部性状QTL鉴定和不育系遗传分析[D].保定:河北农业大学,2012.
    [127]朱军.复杂数量性状基因定位的混合线性模型方法[C].全国作物育种学术讨论会论文集,北京:中国农业科技出版社,1998:11-20.
    [128]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327-335.
    [129]周元昌,陈启锋,吴为人,等.作物QTL定位研究进展[J].福建大学学报,2000,29(2):138-144.
    [130] Andrade F H,Vega C,Uhart S,et al. Kernel number determination in maize[J]. CropScience,1999,(39):453-459.
    [131] Araus J L,Hogan K P. Comparative leaf structure and patterns of photoinhibition in twoneotropical palms in clearings and forest understory during the dry season [J]. AmerianJournal of Botany,1994,81(6):726-738.
    [132] Austin,D,Lee,M.Comparative mapping in F2:3and F6:7generations of quantitative traitloci for grain yield and yield components in maize [J].Theoretical and Applied Genetics.1996,92(7):817-826.
    [133] Blum A. Plant breeding for stress environments. Boca Raton,USA: CRC Press,988.
    [134] Broman, K W. The genomes of recombinant inbred lines[J].Genetics.2005,169:1133–1146.
    [135] Charmet G,Robert N,Perretant M R,et al., Marker-assisted recurrent selection forcumulating additive and interactive QTLS in recombinant inbred lines[J]. Theor Appl Genet,1999,99:1143-1148.
    [136] Chee P W, E M Elias,J A Anderson et al. Evaluation of a high grain protein QTL fromtriticum turgidum L. var. dicoccoides in an adapted durum wheat back ground [J]. CropScience,2001,41(2):295-301.
    [137] Dudley J W. Selection for find Puncture Tolerance in two maize PoPulation[J].CroP Sci,1994,34(6):173-175.
    [138] Duvick D N. Heterosis: Feeding PeoPle and Protceting natural resouces[C].The genetiesand Exploration of Heterosis in Crop. CIMMIYT,1997
    [139] Duvick D N. Heterosis: Feeding people and protecting natural resources [A]. Coors C J,Pandey S.
    [140] Genetics and Exploitation of Hetorosis in Crops[C]. Madison,WI,USA: CSSA,ASA.1999:19-29.
    [141] Duvick D N.Developing drought and low-N tolerant maize[M].E1Batan,Mexico:CIMMYT,1997:332-335.
    [142] Fulker D W and Cardon L R. A sib-pair approach to interval mapping of quantitative traitloci [J]. Genet,1994,4(6):1092-1103.
    [143] Guo J F,Su G Q,Zhang J P,et al. Genetic analysis and QTLmapping of maize yield andassociate agronomic traits under semi-arid land condition [J].African J Biotech,2008,12:1829-1838.
    [144] Ho J C,McCouch S R,Smith M E. Improvement of hybrid yield advanced backcross QTLanalysis in elite maize[J]. Theoretical and Applied Genetics,2002,105(2):440-448.
    [145] Johannsen.W. Elemente der exakten Erblichkeitslehre.Jena: GustaV Fischer.The quotationfrom Johannsen in M. Bacon's first letter can be found on pages,1909:123-124.
    [146] Kao C H, Zeng ZB.General formulas for obtaining the MLE and the asymptoticvariance-covariance matrix in mapping quantitative trait loci when using the EM algorithm[J].Biometrics,1997,53:359-370.
    [147] Kao C, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci [J].Genetics,1999,152:203-216.
    [148] Kosambi D D.The estimation of map distances from recombination values.Ann[J]. Eugen,1944,12:172-175.
    [149] Kruglyak,L. and Lander,ES. Anonparametric approach for mapping quantitative trait loci[J]. Genetics,1995,139,1421–1428.
    [150] Lander E C,Green P,Abrahamson J,et al. MAPMAKER: an interactive computer packagefor construction primary genetic linkage maps of experimental and natural populations[J].Genomics,1987,1:174-181.
    [151] Lander E S,Botstein S. Mapping mendelian factors underlying quantitative traits usingRFLP linkage maps[J]. Genetics1989,121:185-199.
    [152] Lee M,Sharopova N,Beavis WD,e tal. Expanding the genetic map of maize with theintermated B73Mo17(IBM) population [J]. Plant Molecular Biology.2002,48:453-461.
    [153] Li H,Ribaut J M,Li Z,et al. Inclusive composite interval mapping (ICIM) for digenicepistasis of quantitative traits in biparental populations[J]. Theoretical and Applied Genetics.2008,116:243-260.
    [154] Lu H J,Romero-Severson,R Bemardo.Chromosome regions assoeiated with segregationdistortion in maize[J].Theor APPl Genet.2002,105:622-628.
    [155] Lu M Y,Li X H,Shang A L,et al. Characterization of a set of chromosome single segment
    [156] Substitution lines derived from two sequenced elite maize inbred lines [J]. Maydica,2011,56:399-407.
    [157] Maliepaard C,Jansen J,Van Ooijen J W. Linkage analysis in a full-sib family of an outbreeding plant species: Overview and consequences for applications[J]. Genet Res.1997,70:237-250.
    [158] Mauricio Rodney.Mapping quantitative trait loci in plants: uses and caveats for evolutionarybiology[J].Nature Reviews Genetics,2001,(2):370–381.
    [159] Megyes A.Effeet of fertilization and plant density on the dry matter production of twomaize hybrids[J]. Cereal Research Communication.1999,27:438-443.
    [160] Messmer R,Fracheboud Y,Banziger M,et al. Drought stress and tropical maize: QTLs forleaf greenness,plant senescence,and root capacitance [J]. Field Crops Research.2011,124:93-103.
    [161] Messmer R, Fracheboud Y, BanzigerM, etal. Drought stress and tropical maize:QTL-by-environment interactions and stability of QTLs across environments for yieldcomponents and secondary traits [J]. Theor Appl Genet,2009,119:913-930.
    [162] McCouch S R, Cho Y G,Yano M, et al. Report on QTL nomenclature [J]. Rice GeneticsNewslettler,1997,14:11-13.
    [163] Mickelson S M,Stuber C S,Senior L,Kaeppler S M. Quantitative trait loci controlling leafand tassel traits in a B73Mo17population of maize[J]. Crop Sci.2002,42:1902–1909.
    [164] Modarres A M,R I Hamilton,M Dijak,et al. Plant population density effects on maizeinbred lines grown in short-season environments[J].Crop Science.1998,38(1):104-108.
    [165] Muaricio R. Mapping quantitative trait loci in Plants:Uses and caveats for evolutionarybiology[J]. Nature Reviews Geneties,2001,2:370-381.
    [166] Paterson A H,Lander E S,Hewitt J D,Peterson S,Lincoln S E,Tanksley S D. Resolutionof quantitative traits into Mendelian factors by using a complete linkage map of restrictionfragment length polymorphisms[J]. Nature,1988,335:721-726.
    [167] Paterson A H,DeVerna J W,Lanini B,et al. Fine mapping of quantitative trait loci usingselected overlapping recombinant chromosomes, in an interspecies cross of tomato [J].Genetics.1990,124(3):735-742.
    [168] Pepper G Z,Pearce R B,Mock J J.Leaf orientation and yield of maize[J]. Crop Science.1977,17(6):883-886.
    [169] Rao S Q,Xu S. Mapping quantitative trait loci for ordered categorical traits in four-waycrosses[J]. Heredity.1998,81:214-224.
    [170] Redina O E and M A Frohman Organization and alternative splicing of the murinephospholipase D2gene[J]. Biochem J.1998,331(3):845–851.
    [171] Ribaut J M,Ragot M. Marker-assisted selection to improve drought adaptation in maize:the backcross approach,perspectives,liminations,and laternatives[J].Journal of ExperimentalBotany2007,58:351-360.
    [172] Ritter E,Gebhardte et al. Estimatien of recombination Frequencies andconstruction ofRFLP lingkage maps in plants from crosses between heterozygous parants[J].Genetics,1990,125:645-654.
    [173] Saghai-Maroof M A,Biyashev R M,Yang G P. Extraordinarily polymorphic microsatelliteDNA in barley: species diversity,chromosomal location and population dynamics [J].Proceedings of the National Academy of Sciences of the USA.1994,91:5466-5470.
    [174] Sari-Gorla M,Krajewski P,Fonzo N D,Villa M,Frova C. Genetic analysis of droughttolerance in maize by molecular markers.II.Plant height and flowering. Theoretical andApplied Genetics,1999,99:289-295.
    [175] Sisco P H,Gracen V E,Everett H L,et al. Fertility restoration and mitochondrial nucleicacidsdistinguish at least five subgroups among cms-S cytoplasms of maize (Zea mays L)[J].Theoretical and Applied Genetics,1985,71:5-19.
    [176] Stuber C W,S E Lincoln,D W Wolff et al.Identification of genetie factor contributing toheterosis in a hybrid from two elite maize inbred line susing molecular markers[J]. Geneties.1992,132:823-839.
    [177] Stuber C W. Success in the use of molecular markers for yield enhancement incorn.Proc49th Annual Corn and Sorghum Industry Research Conf [J]. American Seed TradeAssoc.1994,49:232-234.
    [178] Tanksley S D,Ahn N,Causse M. RFLP mapping of the rice genome [A]. Proceeding ofSecond Internation Rice Genetics Symprosium. Rice Genetics Ⅱ [C]. Los Banos,Laguna:International Rice Reasearch Institute,1991:435-442.
    [179] Tollenaar M., Wu J. Yield improvement in temperate maize is attributable to greater stresstolerance[J]. Crop Science.1999,39:1597-1604.
    [180] TollenaarM. Lee E A.Yield Potential,yield stability and stress tolerance in maize[J]. FieldCrops Research.2002,88:161-169.
    [181] Tuberosa R,Saivi S,Sanguineti M, etal. Mapping QTL regulating morpho-physiologicaltraits and yield: case studies,shortcomings and perspectives in drought-stressed maize[J].Annals of Botany,2002,89:941-963.
    [182] Tuberosa R,Salvi S,Sanguineti M C,et al. Mapping QTL regulating morphophysiologicaltraits and yield: case studies,shortcomings and perspectives in drought-stressed maize [J].Annals of Botany.2002,89:941-946.
    [183] Tuberosa R,Salvi S,Giuliani S,etal. Genome-wide approaches to investigate and improvemaize response to drought[J]. Crop Science.2007,47:120-141.
    [184] Walker D,Boerma H R,All J,Parrott W.Combining cry1Ac with QTL alleles from PI229358to imProve soybean Tolerance to lepidopteran Pests[J].Molecular breeding,2002,9:43-51.
    [185] Walker D,Boerma H R,All J,Parrott W. Combining cry1Ac with QTL alleles fromPI229358to improve soybean Tolerance to lepidopteran pests[J]. Molecular Breeding,2002,9:43-51.
    [186] Wang S,Basten C J,Zeng Z B. Windows QTL Cartographer2.5Department of Statistics.Raleigh:North Carolina State University,2006.
    [187] Xie C Q and Xu S. Stretegies of marber-aided recurrent selection[J]. Crop Sci.1998,38:1526-1535.
    [188] Xu S. Mapping quantitative trait loci using four-way crosses[J]. Genet Res,1996,68:175-181.
    [189] Xu Y,Zhu L,Xiao J,Huang N,McCouch S R. Chromosomal regions associated withsegregation distortion of molecular markers in F2, backcross, doubled-haploid, andrecombinant inbred populations in rice (Oryza sativa L.)[J]. Mol Gen Genet.1997,253:535-545.
    [190] Yan J B,Tang H,Huang Y Q,et al. QTL analysis for plant height with molecular markersin maize[J]. Agricultural Sciences in China,2003,2(10):1069-1075.
    [191] Yano M,Sasaki T. Genetic and molecular dissection of quantitative traits in rice [J]. PlantMol Biol.1997,35:145-153.
    [192] Yano M,Katayose Y,Ashikari M,et a1. A major photoperiod sensitivity quantitative traitlocus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS[J]. PlantCell,2000.12:2473-2483.
    [193] Young N D,Tanlaley S D. Restiction fragment polymorphism maps and the concept ofgraphical genotypes [J]. Theoretical and Applied Genetics,1989,77:95-101.
    [194] Zhang L Y,Wang S Q,Li H H,et al. Effects of missing marker and segregation distortionon QTL mapping in F2populations [J]. Theor Appl Genet.2010,121:1071-1082.
    [195] Zeng Z B.Precision mapping of quantitative trait loci[J].Geneties.1994,136:1457-1468.
    [196] Zeng Z B.Theoretical basis of separation of multiple linked gene effeets on mappingquantitative trait loci [J].Proe.Natl.Aead.Sei.USA.1993,90:10972-10976.
    [197] Zheng K,Huang N,Bennett J.PCR--based marker-assisted selection in rice breeding[J].Discussion Paper Series.1995,102(12):1148-1152.
    [198] ZhouWC,Kolb F L,Bai G H.Validation of a major QTL for scab Tolerance with SSRmarker and use of marker-assisted selection in wheat[J]. Plantbreeding.2003,122:40-46.
    [199] Zhou W C,Kolb F L,Bai G H,Domier L L,Boze L K,Smith N J. Validation of a majorQTL for scab Tolerance with SSR markers and use of marker-assisted selection in wheat[J].Plant Breeding,2003,122:40-44.
    [200] Zhu J J,Wang X P,Sun C X,et al. Mapping of QTL Associated with Drought Tolerance ina Semi-Automobile Rain Shelter in Maize (Zea mays L.)[J].Agricultural Sciences in China.2011,10(7):987-996.
    [201] Zhuang J Y,H.-X. Lin,J Lu,et al. Analysis of QTLenvironment interaction for yieldcomponents and plant height in rice[J]. Theoretical and Applied Genetics.1997,95(5):799-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700