用户名: 密码: 验证码:
锂陶瓷增殖剂Li_4SiO_4表面释氚行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氘氚聚变能是解决未来人类能源问题的重要途径之一。核聚变学科涉及很多科学、工程技术和材料问题,其中氚自持是氘氚聚变堆的核心问题之一。由于氚在自然界中仅痕量存在,聚变堆中除了运行初期必须向聚变堆环形真空室提供预留的氘氚气体外,稳态运行后,聚变堆所需的燃料氚必须由聚变高能中子通过铍、铅等材料倍增后辐照含有锂物质构成的包层材料来产生。掌握含锂增殖剂的释氚行为及机理是设计氚提取回路并实现氚自持的研究基础,也是研究难点。基于此,本文对我国聚变堆固体锂陶瓷增殖剂的主要候选材料Li4SiO4的释氚行为展开了研究,重点研究晶粒表面反应对Li4SiO4释氚行为的影响。
     本文通过离线释氚实验研究了晶粒表面吸附/解吸反应以及同位素交换反应对Li4SiO4释氚行为的影响,并根据实验数据分析了各表面反应同时存在情况下的竞争机制及优先反应类型。在此基础上分析并解释了文献中数据出现较大差异的原因,为氚提取回路的设计提供了实验基础和理论依据。由于载气流速和升温速率会影响释氚温度,因此如无特殊说明,本文的实验数据都是在载气流速为50mL/min,升温速率为5℃/min条件下获得的。主要结论如下:
     (1)对于Li4SiO4来说,除了少量自由氚气之外,氚扩散至晶粒表面后主要以-OT形式存在。既可以通过-OT/-OH的再结合/解吸反应释放氚水(410℃以下),也可以通过O-T键的断裂后形成的T离子的再结合反应释放氚气(563℃和722℃)。前者释放温度低于后者。样品自身释放氚气的实验现象的发现完善了锂陶瓷增殖剂表面释氚过程的认识。此类实验研究在文献中鲜有报道。样品自身释放氚气的实验现象仅出现在表面“干燥”的样品。Li4SiO4样品吸水后,表面上H2O/-OH浓度增加,使得氚水解吸反应优于氚气解吸反应发生,因而降低了释氚温度以及氚气释放比例。
     (2) Li4SiO4是吸水能力较强的锂陶瓷增殖剂,存在多个吸附H2O/-OH的位点,根据样品预处理条件以及存放条件的不同,表面既有物理吸附水,也有化学吸附水。物理吸附水通过H20同位素交换反应影响释氚温度,化学吸附水通过-OH/-OT再结合/解吸反应影响释氚行为。Li4SiO4表面存在多个H2O/-OH的位点导致出现多个氚水解吸峰,随Li4Si04表面吸附水分的不同而不同。本文对Li4SiO4释氚表面反应动力学研究表明,Li4SiO4表面的氚水解吸反应为二级反应,每种解吸位点对应着不同的活化能。对释氘实验中各释氚峰温对应的活化能进行了计算。
     (3)载气中H2主要通过H2同位素交换反应和H2在Li4SiO4表面生成水的反应影响锂陶瓷增殖剂的释氚化学形态和温度。H2同位素交换反应仅在400℃以上出现,但仍然低于通过T2/HT再结合/解吸反应释放氚气的温度(563℃和722℃),因此载气中加H2可降低氚气释放温度。H2在Li4SiO4表面生成水的反应峰值温度出现在668℃。
     (4) Li4SiO4样品表面上吸附水分导致的氚水解吸反应以及载气中加H2后的氢同位素交换反应对锂陶瓷增殖剂释氚的影响存在竞争机制。前者(反应温度在410℃以下)优于后者(反应温度在440℃以上)进行。因此Li4SiO4样品吸水后,载气中加H2对释氚化学形态的影响显著降低。相关机理解释在文献中鲜有报道。这一认识对于氚提取回路的设计十分重要。
     本文首次较为深入地研究了样品吸附水分对Li4SiO4释氚行为影响及其与载气中H2效应竞争反应机制。在此基础上归纳了不同表面条件下的释氚行为特征,计算了表面释氚动力学参数。研究结果表明,表面反应对释氚结果影响较大。本文的研究为解释文献中锂陶瓷增殖剂释氚行为不同的现象提供了重要的实验依据。文献中鲜有系统研究。本文的研究结果进一步加深了对释氘机理的理解,为氚提取回路的设计提供了重要的研究数据。
Deuterium/tritium fusion energy is a key way for solving energy issue in the future. Nuclear fusion including many science, engineering and technology issues, tritium self-sustainment is a key issue among them for a deuterium/tritium fusion reactor. Since there is only trace of tritium exists in the nature, except for deuterium/tritium gas that is supplied to the circular vacuum vessel at its initial operation phase, tritium fuel required by fusion reactor must be self supplied by irradiating lithium containing material with neutron during the reactor's stable operation stage. Understanding tritium release behavior and mechanism of lithium containing breeder is the research foundation for designing tritium extraction loop and realizing tritium self-sustainment, it is also a research difficulty. Thus, this paper focused on studying tritium release behavior on Li4SiO4which is the main solid lithium ceramic breeders in China. Great differences in tritium release chemical forms and temperatures of Li4SiO4in references indicate that diffusion is not the unique factor affecting tritium release behavior. On the contrary, these results imply that surface reactions have great effects on tritium release behavior of Li4SiO4. Consequently, this paper focused on studying effects of surface reactions on tritium release behavior on LiSiO4.
     Effects of surface reactions on tritium release behavior on Li4SiO4are studied through out-of-pile tritium release experiments in this paper, including adsorption/desorption reactions as well as isotope exchange reaction. Competition mechanism and reaction priority is analyzed according to experimental data. And the reasons for getting different tritium release results in references are analyzed and explained basing on the research results of this paper. The research results will be useful for designing tritium extraction loop. Since gas flow rate and temperature ramping rate can affect tritium release temperature, experimental data in this paper are obtained under conditions of50mL/min and5℃/min, except for special indication.
     The main conclusions are as follows:
     (1) For the orthosilicate, except for "free" tritium gas released at room temperature, tritium exists mainly in the form of-OT, which can be released either in the form of tritiated water through recombination/desorption reaction of-OT/-OH or in the form of tritium gas through recombination/desorption reaction of two hydrogen isotope ions by breaking O-H bonds, which would not happen on the sample with high water concentration. The former released at lower temperature than the latter. Discovery of direct release of tritium gas from Li4Sio4complements knowledge of tritium release mechanisms, which were rarely mentioned in the published references. It was found that releasing of tritium gas only occurred on "dried" samples. After adsorbing water on the surface of Li4SiO4, the concentration of H2O/-OH on the surface of Li4Sio4increases, which makes the-OH/-OT recombination/desorption reaction or H2O isotope exchange reaction precede with priority and tritium release in the form of tritiated water, thus fractions of gaseous tritium decrease.
     (2) Li4Sio4is a material with large water uptake capability. Multi adsorption sites, including physic-and chemi-adsorbed sites exist on the surface of Li4SiO4, which can be changed according to pretreatment conditions and storage conditions. Physic-adsorbed water would affect tritium release temperature through H2O isotope exchange reaction. Chemi-adsorbed water would affect tritium release behavior through-OH/-OT recombination/desorption reaction. Multi-adsorption site of H2O/-OH on the grain surface of Li4SiO4result in multi desorption temperature peaks of tritiated water, which would change according to adsorbed water on the surface. Research of reaction dynamics on the grain surface indicate that desorption reaction of tritiated water on the surface is the second order reaction, each desorption site corresponds to different activation energy which were calculated in this paper according to experimental results.
     (3) For H2doping sweep gas, both of H2isotope exchange reaction and water formation reaction with H2gas occur, which are called H2effects in this paper. The lower threshold value for H2isotope exchange reaction between H2molecule and surface tritium appears above400℃, which is lower than that of HT/T2recombination/desorption reaction (563℃and722℃), which indicate that adding H2in the sweep gas would decrease gaseous tritium release temperature. Temperature peak of water formation reaction by adding H2gas in the sweep gas appears at668℃.
     (4) When both of H2O and H2effects exist, H2O effects occur at temperature lower than H2isotope exchange reaction, which makes tritiated water released with priority to tritium gas. Thus, effects of H2isotope exchange reaction on tritium release behavior would be reduced after adsorbing water on Li4SiO4samples. Understanding the mechanism affecting H2effects is important for designing tritium extraction loop and such research has rarely studied in the previous work.
     This paper studied effects of surface adsorbed water on tritium release behaviors. Competition mechanisms between H2O effects and H2effects are also studied and analyzed. Results in this work indicate that tritium release is strongly affected by surface effects, at least for wet orthosilicate. Tritium gas release data at high temperatures (563℃and722℃) were got firstly in this paper, which were not seen in the literatures. Basing on these researches, tritium release characteristics under different surface conditions of the sample are generalized and reasons for getting different tritium release results in the literatures are analyzed. In addition, reaction kinetics characteristics on the surface of Li4SiO4were calculated in this paper. Researches in this paper deepened understanding of tritium release mechanism and provided valuable experimental data for designing Chinese TBM blanket and tritium extraction loop. Obtained data in this paper also provide valuable input characteristics (activity energies) for modeling tritium transport process in the lithium ceramic breeders and thus serve better to the deuterium and tritium fuel cycle system design.
引文
[1]冯开明,ITER实验包层计划综述.核聚变与等离子休物理,2006,26(3):161-169.
    [2]S.Tanaka, M.Yamawaki, and K.Yokoo, Hydrogen transports through gas/liquid Li,7Pb83 interface and metal membrane contacting the alloy. J. Nucl. Mater.,1992,191-194:209-213.
    [3]G.Thevenot, F.Lefevre, and J.Estrade, LIPSIE device:Pb-17Li irradiation in water loop with on-line tritium measurements. J. Nucl. Mater.,1992,191-194:226-230.
    [4]Barker, M.G. and M.J. Capaldi, The solubility of aluminium in Pb-17Li. J. Nucl. Mater.,1994, 210:254-257.
    [5]A.Futterer, M., et al., Tritium Confinement Reqirements for the water-cooled Pb-17Li Blanket for Demo,,. Fusion Technol.,1995,28:614-618.
    [6]A.Suzuki, T.Terai, and S.Tanaka, Tritium release behavior from Li2BeF4 molten salt by permeation through structural materials,,. Fusion Eng. Des.,2000,51-52 863-868.
    [7]朱德琼,陈晓军,and彭述明,固体氚增殖剂的制备及性能综述.材料导报,2008,22(9):72-76.
    [8]H.Wedemeyer, H.Werle, and E.Gunther, Influence of grain-size and carbonate impurities on the tritium release from lithium orthosilicate. J. Nucl. Mater.,1992,191-194:240-242.
    [9]J.P.Kopasz, C.A.Seils, and C.E.Johnson, Tritium release from lithium aluminate:can it be improved? J. Nucl. Mater.,1992,191-194:231-235.
    [10]N.Roux, C.Johnson, and K.Noda, Properties and performance of tritium breeding ceramics. J. Nucl. Mater.,1992,191-194:15-22.
    [11]Yamaki, D., S. Tanaka, and M. Yamawaki, Effects of oxygen potential on tritium release from Li20. J.Nucl. Mater.,1992,191-194:204-208.
    [12]E.Roth, et al., Tritium recovery from a breeder material:Gamma lithium aluminate. J. Nucl. Mater., 1986,141-143:275-281.
    [13]J.P.Kopasz, SW.Tam, and C.E.Johnson, Modeling of tritium behavior in ceramic breeder materials. J.Nucl. Mater.,1988 155-157 500-506.
    [14]Federici, G. and C.H. Wu, Modeling of plasma hydrogen isotope behavior in porous materials (graphites/carbon-carbon composites). J.Nucl. Mater.,1992,186:131-152.
    [15]G.Federici, C.H.W., A.R.Raffray, M.C.Billone, Modeling of tritium release from ceramic breeders:Status and some implications for next-step devices. J. Nucl. Mater,1992,187:1-31.
    [16]Kopasz, J.P., C.A. Seils, and C.E. Johnson, Spatial tritium transport in single-crystal lithium aluminate. Journal of Nuclear Materials 1994,212-215:912-916.
    [17]沈文德,曹小华,and姜亦祥,混合堆产氚演示回路及其氚释放实验.核动力工程,1994,15(6).
    [18]曹小华,聚变裂变混合堆的氚工艺和氚增殖剂研究.核物理动态,1995,12:33-36.
    [19]A.R.Raffray, et al., Tritium-producing blanket for fusion engineering facility Fus. Eng. Des.,1989, 8:101-107.
    [20]Baba, A., Study on release behavior of tritium from solid breeder materials, P.D. dissertation, Editor.
    [21]C.E.Johnson and G.W.Hollenberg, Recent advances in the development of solid breeder blanket materials J. Nucl. Mater.,1984,122& 123:871-881.
    [22]Fischer, A.K. and C.E. Johnson, Thermodynamics of the Li2O fusion reactor breeder. Journal of Nuclear Materials,1984,126:268-275.
    [23]G.W.Hollenberg and D.L.Baldwin, The Effect of Irradiation on Four Solid Breeder Materials. J. Nucl. Mater.,1985,133&134:242-245.
    [24]Kudo, H. and K. Okuno, Kinetics and Mechanism of tritium release from Neutron-irradiated Li2O. J. Nucl. Mater.,1985,133&134:192-195.
    [25]BILLONE, M.C., The Influence of Surface Desorption on Tritium Recovery and Inventory in Fusion Solid Breeders J. Nucl. Mater.,1986,141-143:316-320.
    [26]K.Noda, et al., Mechanical properties of lithium oxide at high temperatures. J. Nucl. Mater.,1986, 141-143:353-356.
    [27]Kurasawa, T., et al., In-pile test of tritium release from tritium breeding materials. DE88 007760, 1986.
    [28]T.Kurasawa, H.Watanabe, and G.W.Hollenberg, The Time Dependence of In-situ tritium release from lithium oxide and lithium aluminate (VOM-22H Experiment). J. Nucl. Mater.,1986, 141-143:265-270.
    [29]WERLE, H., et al., THE LISAl EXPERIMENT:IN-SITU TRITIUM RELEASE INVESTIGATIONS. J. Nucl. Mater.,1986,141-143:321-326.
    [30]Aquaro, D., et al., Adaptation of the HCPB DEMO TBM as breeding blanket for ITER:Neutronic and thermal analyses. Fusion Eng. Design 2007, doi:10.1016/j.fusengdes.2007.05.046.
    [31]陈刚,et al., LiAlO2细粉料的制备及反应机理研究无机化学学报,2002,18(2):219.
    [32]Okuno, K. and H. Kudo, Tritium diffusivity in lithium-based ceramic breeders irradiated with neutrons. Fusion Eng. Des.,1989,8:355-358.
    [33]J.P.Kopasz, J.M.Miller, and C.E.Johnson, Tritium release from lithium titanate, a low-activation tritium breeding material. J. Nucl. Mater.,1994,212-215:927-931.
    [34]Tanifuji, T., et al., Tritium release behavior from neutron-irradiated Li2TiO3 single crystal J.Nucl.Mater.,1998,258-263:543-548.
    [35]Munakata, K., et al., Tritium release from lithium silicate pebbles produced from lithium hydroxide. Fusion Eng. Des.,2008,83:1317-1320.
    [36]Nishikawa, Y., M. Oyaidzu, and A. Yoshikawa, Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3. J.Nucl. Mater.,2007, 367-370:1371-1376.
    [37]Fischer, A.K., Temperature programmed desorption from LiAlO2 treated with H2. J. Nucl. Mater., 1992,191-194:236-239.
    [38]N.Roux, et al., Summary of experimental results for ceramic breeder materials. Fusion Eng. Des., 1995,27:154-166.
    [39]J.P.Kopasz, C.E.Johnson, and D.L.Baldwin, Performance of ceramic breeder materials in the SIBELIUS experiment. J. Nucl. Mater,,1995,219259-264.
    [40]C.E.Johnson, D.L.Baldwin, and J.P.Kopasz, Tritium release from beryllium discs and lithium ceramics irradiated in the SIBELIUS experiment. J. Nucl. Mater,,1994,212-215:966-970.
    [41]H.R.Ihle, R.-D.Penzhorn, and P.Schuster, The thermochemistry of lithium silicates in view of their use as breeder materials. Fus. Eng. Des.,1989,8:393-397.
    [42]L.Montanaro, A.Negro, and J.P.Lecompte, Lithium metazirconate for nuclear application:physical and mechanical properties. J. Nucl. Mater.,1995,30:4335-4338.
    [43]Laan, J.G.v.d., et al., Ceramic breeder research and development:progress and focus. J. Nucl. Mater.,2000,283-287:99-109.
    [44]M.C.Billone, Thermal and tritium transport in Li2O and Li2ZrO3. J. Nucl. Mater.,1996, 233-237:1462-1466.
    [45]T.Hatano, M.Enoeda, and S.Suzuki, Effective thermal conductivity of a Li2TiO3 Pebble Bed for a DEMO Blanket. Fusion Sci. Technol,2003,44:94-98.
    [46]Billone, M.C., et al, ITER Data Base Report, ANL/FPP/TM, Editor.1993. p.263.
    [47]Gan, Y. and M. Kamlah, Identification of material parameters of a thermo-mechanical modet for pebble beds in fusion blankets. Fusion Eng. Des.,2007,82:189-206.
    [48]Gan, Y. and M. Kamlah, Thermo-mechanical analyses of HELICA and HEXCALIBER mock-ups J. Nucl. Mater.,2009,386-388:1060-1064.
    [49]Gan, Y. and M. Kamlah, Thermo-mechanical analyses of pebble beds in HELICA mock-up experiments. Fusion Eng. Des.,2008,83:1313-1316.
    [50]Y.X.Gan, C.Chen, and Y.P.Shen, Three-dimensional modeling of the mechanical property of linearly elastic open cell foams. International Journal of Solids and Structure,2005, 42:6628-6642.
    [51]G.Piazza, et al., Post-irradiation examinations of Li4SiO4 pebbles irradiated in the EXOTIC-8 experiment. J. Nucl. Mater,2004,329-333:1260-1265.
    [52]G.Schumacher, et al. Improvement of the mechanical stability of lithium orthosilicate pebbles. Fus. Eng. Des,1991,17:31-36.
    [53]P.Gierszewski, et al. Ceramic pebble bed development for fusion blankets. Fusion Eng. Des,1995, 27:167-178.
    [54]N.Roux, et al. Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket. J. Nucl. Mater,1996,233-237:1431-1435.
    [55]N.Roux, et al. The SIBELIUS experiment:a study of the irradiation behavior of beryllium/ceramic and beryllium/steel compacts. J. Nucl. Mater,1991,179:827.
    [56]邢忠虎,单斜相偏锆酸钾陶瓷氚增殖剂材料研究.核动力工程,1999,20(1):25.
    [57]Gao, X, et al. Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method. J. Nucl. Mater,2012,424:210-215.
    [58]王和义,罗阳明,and赵君科,锆酸锂陶瓷粉末的研制,中国工程物理研究院核物理与化学研究所,Editor.1992.
    [59]Hirano, S.-i., J.Am.Ceram. Soc.,1987,70(3):171.
    [60]C.Alvani, Fusion Technol.,1986,10:106.
    [61]罗阳明,et al.,高分子型表面活性剂在Li4SiO4粉末制备过程的作用.1994.
    [62]罗阳明,et al.,溶胶-凝胶法制备Li4SiO4,超细粉的研究,1994.
    [63]傅依备,et al.,氚固体增殖剂偏铝酸锂多孔陶瓷研究.高技术通讯,1996.
    [64]D.Cruz and S.Bulbulian, Synthesis of lithium silicate tritium breeder powders by a modified combustion method. J. Nucl. Mater.,2003,312:262-265.
    [65]Johnson, C.E., K. Noda, and N.Roux, Ceramic breeder materials:Status and needs. J. Nucl. Mater., 1998,285-263:140-148.
    [66]陈晓军,高小铃,and王和义,锂陶瓷微球湿法制备技术.2008年9月.
    [67]王和义,et al.,溶胶-凝胶法制备锆酸锂陶瓷微球.高技术通讯,1997,8:53-57.
    [68]王和义,et al.,球形氚增殖剂的研制,in 内部资料.1992.
    [69]王和义and傅依备,偏铝酸锂陶瓷小球的制备与性能.硅酸盐通报,1999,6:68-72.
    [70]王和义,et al.,锆酸锂陶瓷小球的研制,in 内部资料.1994.
    [71]Wang, H., Z. Junke, and L. Yangmin, Fabrication of γ-LiAlO2 spherical ceramics by a planet-type rotation process. J. Nucl. Mater,,1994,208:195.
    [72]陈晓军,高小铃,and王和义,锂陶瓷微球湿法制备技术.四川省核学会放射化学与化工2008年学术交流会,2008年9月,四川宜宾.
    [73]H.Moriyama, K.Iwasaki, and Y.Ito, Transport of tritium in liquid lithium. J. Nucl. Mater.,1992, 191-194:190-193.
    [74]Bertone, P.C., The Kinetics that Govern the Release of Tritium from Neutron-Irradiated Lithium Oxide. J.Nucl. Mater.,1988,151:281-292.
    [75]Tanifuji, T., et al., Tritium release from neutron-irradiated Li2O sintered pellets:porosity dependence. J.Nucl. Mater.,2000,283-287:1419-1423.
    [76]A.Badawi, A.R.Raffray, and M.A.Abdou, Modeling and analysis of time-dependent tritium transport in lithium oxide. J. Nucl. Mater.,1999,273(79-94).
    [77]M.Nishikawa, et al., Release behavior of bred tritium from LiAlO2. J. Nucl. Mater.,2004, 335:70-76.
    [78]Munakata, K., et al., Effect of water vapor on tritium release from ceramic breeder material. Fusion Eng. Des.,2003,69:27-31.
    [79]Munakata, K., et al., Comparison of modelling of tritium release from ceramic breeder materials. Fusion Eng. Des.,2005,75-79:673-678.
    [80]Kang, Y. and T. Terai, Tritium transport behavior in the molten lithium-tin alloy. Journal of Physics and Chemistry of Solids,2005 66:615-618.
    [81]曹小华,用于聚变堆的固体增殖剂造氚热回路,中国工程物理研究院核物理与化学研究所调研报告,Editor.1988年2月.
    [82]沈文德,曹小华,and 姜亦祥,混合堆产氚演示回路及其氚释放实验,in 中物院核物理与化学研究所技术总结报告.1993年3月.
    [83]曹小华,et al.,固体增殖剂堆内产氚实验阶段总结,in 中物院科学技术报告.1992年11月.
    [84]T.Kurasawa, et al., In-pile tritium release behavior from lithium aluminate and lithium orthosilicate of the VOM-23 experiment. J. Nucl. Mater.,1988,155-157 544-548.
    [85]O.D.Slagle, et al., In situ tritium recovery from Li2O irradiated in fast neutron flux--BEATRIX-Ⅱ temperature change specimen. J. Nucl. Mater.,1992,191-194:214-218.
    [86]H.Werle, et al., The LISA-2 experiment:In-situ tritium release from lithium orthosilicate (Li4SiO4). J. Nucl. Mater.,1988,155-157:538-543.
    [87]M.Briec, et al., In and out-of-pile tritium extraction from samples of lithium aluminates. J. Nucl. Mater.,1986,141-143:357-363.
    [88]D.L.Baldwin and G.W.Hollenberg, Measurements of tritium and helium in fast neutron irradiated lithium ceramics using high temperature vacuum extraction. J. Nucl. Mater.,1986, 141-143:305-310.
    [89]G.W.Hollenberg, et al., The FUBR-1B experiment--Irradiation of lithium ceramics to high burnups under large temperature gradients. J. Nucl. Mater.,1986,141-143:271-274.
    [90]H.Kwast, et al., In-pile tritium release from LiAlO2, Li2SiO3 and Li2O in EXOTIC experiments 1 and 2.J. Nucl. Mater.,1986,141-143:300-304.
    [91]R.G.Clemmer, et al., The TRIO experiment. Argonne National Laboratory, Oak Ridge National Laboratory, Celanese Research Company, Science Applications Inc.,1984, ANL-84-55, DE85 008345.
    [92]R.G.Clemmer, et al., The TRIO-01 Experiment:In-situ Tritium Recovery Results. J. Nucl. Mater., 1984,122 & 123:890-895.
    [93]Clemmer, R.G. and H. Werle, THE LISA-1 AND TRIO IN-PILE TESTS. DE87004957,1987.
    [94]S.Casadio, et al., Tritium release kinetics from Li2TiO3 pebbles as prepared by soft-wet-chemistry J. Nucl. Mater.,2004,329-333:1252-1255.
    [95]Tsuchiya, K., et al., In-situ tritium release behavior from Li2TiO3 pebble-bed. Fus. Eng. Des.,2001, 58-59:679-682.
    [96]Moritani, K., T. Magari, and H. Moriyama, Tritium release kinetics of lithium silicates with irradiation defects. Fusion Eng. Des.,1998,39-40:675-683.
    [97]Alvani, C., S. Casadio, and S. Casadio, Kinetics of tritium release from irradiated Li2TiO3 pebbles in out-of-pile TPD tests. Fus. Eng. Des.,2003,69275-280.
    [98]Tanifuji, T., D. Yamaki, and S. Jisukawa, Tritium release from neutron-irradiated Li2O sintered pellets:fluence dependence. J. Nucl. Mater.,2002,307-311:1456-1460.
    [99]J.P.Kopasz, S.W.Tam, and C.E.Johnson, Enhanced tritium transport and release by solids modification. J. Nucl. Mater,,1991,179-181:816-819.
    [100]Fischer, A.K., Temperature Programmed Desorption from LiAlO2 Treated with H2 Oct.28,1991.
    [101]Pfeiffer, H., J. Sanchez-Sanchez, and L.J. Alvarez, Lithium and tritium diffusion in lithium oxide (Li2O), a molecular dynamics simulation J. Nucl. Mater,,2000,280:295-303.
    [102]F.Botter, et al., Progress in the knowledge of the mechanism of tritium release from lithium ceramics. Fus. Eng. Des.,1991,17:49-54.
    [103]Grishmanov, V., et al., Influence of radiation defects on tritium release parameters from Li2O. Fusion Eng. Des.,1998,39-40:685-691.
    [104]G.Kizane, et al., Tritium localisation and release from the ceramic pebbles of breeder. J. Nucl. Mater.,2004,329-333:1287-1290.
    [105]Moritani, K. and H. Moriyama, In situ luminescence measurement of irradiation defects in ternary lithium ceramics under ion beam irradiation. J. Nucl. Mater,,1997,248:132-139.
    [106]Tanifuji, T, D. Yamaki, and S. Jitsukawa, Tritium release from neutron-irradiated Li2O sintered pellets:isothermal annealing of tritium traps. J. Nucl. Mater,,2004,329-333:1266-1269.
    [107]M.Oyaidzu, et al., Correlation between annihilation of irradiation defects and tritium release in neutron-irradiated lithium zirconate. Fus. Eng. Des.,2006,81:583-588.
    [108]Oyaidzu, M., Y. Morimoto, and H. Kodama, Correlation between annihilation of radiation defects and tritium release in Li2TiO3. J. Nucl. Mater,,2004,329-333:1313-1317.
    [109]H.Kudo and K.Okuno, Kinetic studies of the tritium release process in neutron-irradiated Li2O and LiOH. J. Nucl. Mater,,1981,101:38-43.
    [110]Okuno, K. and H. Kudo, Chemical states of tritium and interaction with radiation damages in Li2O crystals. J. Nucl. Mater,,1986,138:31-35.
    [111]der, J.G.v., et al., EXOTIC-7:irradiation of ceramic breeder materials to high lithium burnup. J. Nucl. Mater.,1996,233-237:1446-1451.
    [112]T.Kinjyo, M.Nishikawa, and M.Enoeda, Estimation of tritium release behavior from solid breeder materials under the condition of ITER test blanket module. J. Nucl. Mater.,2007, 367-370:1361-1365.
    [113]T.Kurasawa, et al., In-pile tritium release behavior from lithium aluminate and lithium orthosilicate of the VOM-23 experiment. J. Nucl. Mater.,1988,155-157:544-548.
    [114]Baba, A., M. Nishikawa, and T. Eguchi, Isotope exchange reaction on Li2ZrO3. J. Nucl. Mater., 1997,250:29-35.
    [115]傅依备,et al.,在线产氚回路及其在混合堆包层研究中的应用.高技术通讯,1995,6:52-54.
    [116]Yamaki, D., A. Iwamoto, and S. Jitsukawa, Improvement of the model for surface process of tritium release from lithium oxide. J. Nucl. Mater.,2000,283-287:1414-1418.
    [117]Taniguchi, M. and S. Tanaka, Ab initio Hartree-Fock study on surface desorption process in tritium release, J. Nucl. Mater,1998,258-263:531-536. J. Nucl. Mater,,1998, 258-263:531-536.
    [118]Johnson, C.E., J. P.Kopasz, and S.-W. Tam, Advanced understanding of the tritium recovery process from the ceramic breeder blanket. J. Nucl. Mater,,1997,248:91-100.
    [119]Johnson, C.E., Tritium behavior in lithium ceramics. J. Nucl. Mater.,1999,270:212-220.
    [120]Kawamura, Y, et al., Formation of water in lithium ceramics bed at hydrogen addition to purge gas. J. Nucl. Mater.,1996,230:287-294.
    [121]Nishikawa, M., et al.. Formation of water in a Li2O bed at hydrogen addition to purge gas. J. Nucl. Mater.,1990,174:121-123.
    [122]M.Tetenbaum and C.E.Johnson, Partial pressures of H2O above the diphasic Li2O(s)-LiOH (s,l) system. J. Nucl. Mater.,1984,126:25-29.
    [123]M.Yamawaki, et al., Sweep gas chemistry effect on lithium transport from ceramic breeder blanket materials. J. Nucl. Mater.,1997,247:11-16.
    [124]Penzhorn, R.-D., H.R. Ihle, and P.Schuster, The thermochemistry of the reaction of lithium orthosilicate with hydroegen. J. Nucl. Mater,1994,212-215:868-871.
    [125]Tanaka, S., et al., In situ observation of surface -OH and -OD on lithium oxide. J. Nucl. Mater., 1995,218:335-338.
    [126]M.Yamawaki, et al., Effect of sweep gas chemistry on vaporization of Li4SiO4. J. Nucl. Mater., 1995,223:80-83.
    [127]Y.Kawamura, M.Nishikawa, and K.Tanaka, Adsorption characteristics of water vapor on Li4Si04 J. Nucl. Mater.,1994,208:308-312.
    [128]Kudo, H., The Rates of Thermal Decomposition of LiOH(s), LiOD(s) and LiOT(s). J. Nucl. Mater.,1979,87:185-188.
    [129]Y.Narisato, et al.. Enhancement of isotope exchange reactions over ceramic breeder material bv deposition of catalyst metal. J. Nucl. Mater,,2004,329-333:1370-1373.
    [130]Munakata, K., A. Koga, and Y. Yokoyama, Isotope Exchange Reaction over improved Ceramic Tritium Breeder With Catalytic Function. Fus. Eng. Des.,2002,41:1064-1068.
    [131]K.Munakata, et al., Effect of catalytic metals on tritium release from ceramic breeder materials. J.Nucl. Mater.,2002,307-311:1451-1455.
    [132]Munakata, K., et al., Tritium release from catalytic breeder materials. J. Nucl. Mater.,2001, 58-59:683-687.
    [133]Munakata, K., A. Baba, and T. Kawagoe, Enhancement of tritium release from ceramic breeders with impregnated catalytic additives. Fus. Eng. Des.,2000,49-50:621-628.
    [134]W.Breitung and H.Werle, Experimental evidence for tritium release-controlling processes in lithium silicates. J. Nucl. Mater,1991,179-181:847-850.
    [135]G.Federici, C.H.W., A.R.Raffray, M.C.Billone, Modeling of tritium release from ceramic breeders:Status and some implications for next-step devices. Journal of Nuclear Materials 187(1992)1-31,1992,187:1-31.
    [136]R.A.Verrall. Comparison of diffusion and desorption controlled tritium release in constant temperature, Post-irradiation annealing tests, in Proceedings of the international workshop on ceramic breeder blanket interactions. November 22-23,1991. Clearwater Florida:Argonne National Laboratory, Argonne, Illinois Clearwater Florida.
    [137]S.W.Tam and V.Ambrose, Tritium transport in lithium ceramics porous media. J. Nucl. Mater,, 1992,191-194:253-257.
    [138]Yamaki, D., S. Tanaka, and M. Yamawaki, Modeling of the surface reaction of tritium release from lithium ceramics. J. Nucl. Mater,,1994,212-215:917-922.
    [139]Yamaki, D. and S. Jitsukawa, Model calculation of tritium release behavior from lithium titanate. J. Nucl. Mater.,2006,81:589-593.
    [140]M.C.Billone, et al., Tritium retention and release analysis for U.S.-ITER Blanket ANL/CP-70627. 1991.
    [141]H.Okabe, et al., Modeling of tritium release from ceramic breeder materials by focusing on transport process in breeder grain. J. Nucl. Mater.,2004,329-333:1309-1312.
    [142]E.Proust, et al., Preliminary interpretation of the LIBRETTO-2 experimental results in terms of tritium permeation barrier efficiency. J. Nucl. Mater,,1992,191-194:186-189.
    [143]杨本福,et al.,锂陶瓷V-LiAlO2放氚行为研究.原子能科学技术,1999,33(5):441-445.
    [144]杨本福,曹小华,and罗顺忠,用热解吸法研究锂陶瓷中氚扩散行为.核技术,2001,24(4):321-326.
    [145]D.Vollath, H.Wedemeyer, and E.Gunther, Improved methods for fabrication of lithium silicates. J. Nucl. Mater.,1985,133-134:221-225.
    [146]Tang, T., Synthesis and Characterization of Lithium silicate powders. Fusion Engineering and design. Fus. Eng. Des.,2009,84:2124-2130.
    [147]吕国强,et al., Li4SiO4吸收CO2的实验研究.工业加热,2007,36(5):4-6.
    [148]王银杰,其鲁,and代克化,Na掺杂对硅酸锂吸收CO2性能的影响.物理化学学报,2006,22(7):860-863.
    [149]王银杰,其鲁,and江卫军,高温下硅酸锂吸收CO2的研究.无机化学学报,2006,22(2):268-272.
    [150]A.Suzuki, et al., Sweep gas chemistry effect on vaporization of LiAlO2. J. Nucl. Mater.,1996, 233-237:1452-1456.
    [151]Piazza, G., F. Scaffidi-Argentina, and H. Werle, Post-irradiation examinations of Li4SiO4 pebbles irradiated in the EXOTIC-7 experiment J. Nucl. Mater.,2000,283-287:1396-1400.
    [152]A.Abramenkovs, et al., Basic study of influence of radiation defects on tritium release processes from lithium silicates. J. Nucl. Mater.,1997,248:116-120.
    [153]Kang, C., et al., Out-of-pile tritium release study on Li4Si04 pebbles from TRINPC-I experiments. J. Nucl. Mater.,2011,412(1):62-65.
    [154]Breitung, W., M. Briec, and H. Werle, Tritium release from lithium silicate. Fus. Eng. Des.,1989. 8:323-328.
    [155]BRIEC, M., et al., IN-PILE TRITIUM EXTRACTION FROM SAMPLES OF LITHIUM ALUMFNATE. J. Nucl. Mater.,1988,155-157:549-552.
    [156]J.A.Sawicki, Depth profiling of tritium near the surface of lithium ceramics by low-energy nuclear reactions. J. Nucl. Mater.,1986,141-143:327-333.
    [157]V.Schauer and G.Schumacher, Study of adsorption and desorption of water on Li4Si04. J. Nucl. Mater.,1989,167:225-230.
    [158]Hanada, T., et al., Effect of surface water on tritium release behavior from Li4Si04. Fus. Eng. Des.,2010,85:998-1001.
    [159]Ortiz-Landeros, J., et al., Towards understanding the thermoanalysis of water sorption on lithium orthosilicate (Li4SiO4). Thermochimica Acta,2011,515:73-78.
    [160]K.Fischer, A. and C.E. Johnson, Thermodynamic and Kinetic Observations on LiAlO2:adsroption, dissolution, and Evolution of water vapor. J. Nucl. Mater.,1988,155-157:466-470.
    [161]N.C.Debnath and A. B.Anderson, Water adsorption on an iron oxide surface. Surface Science, 1983,128:61-69.
    [162]Tanaka, S. and M. Taniguchi, Tritium release from Li2O studied by infrared absorption spectroscopy. J. Nucl. Mater.,1997,248:101-105.
    [163]Kawagoe, t., et al., Surface inventory of tritium on Li2Ti03. J. Nucl. Mater.,2001,297:27-34.
    [164]Yamaki, D., S. Tanaka, and M. Yamawaki, Modeling of surface reaction in tritium release from lithium ceramics and its comparison with transient experiments. Fusion Eng. Des.,1995, 28:286-291.
    [165]Egashira, M., M. Nakashima, and S. Kawasumi, Temperature Programmed Desorption study of water adsorbed on metal oxides.2. Tin Ooxide Surfaces. J.Phys. Chem.,1981,85:4125-4130.
    [166]Zarins, A., et al., Accumulation of radiation defects and products of radiolysis in lithium orthosilicate pebbles with silicon dioxide additions under action of high absorbed doses and high temperature in air and inert atmosphere. J. Nucl. Mater.,2012,429:34-39.
    [167]J.M.Miller, S.R.Bokwa, and R.A.Verrall, Post-irradiation tritium recovery from lithium ceramic breeder materials. J. Nucl. Mater.,1986,141-143:294-299.
    [168]Tanaka, S., A. Kawamoto, and M. Yamawaki, In-situ tritium release experiments from solid breeding materials (TTTEx)-- tritium diffusion coefficients and surface reaction on lithium aluminate. Fus. Eng. Des.,1989,8:155-160.
    [169]Terai, T., et al., Modeling of tritium recovery from CTR solid breeder. Fus. Eng. Des.,1989, 8:349-354.
    [170]W.Breitung, et al., Out-of-pile tritium extraction from lithium silicate. J. Nucl. Mater.,1988, 155-157:507-512.
    [171]Nakazawa, T., et al., Ab initio study on isotope exchange reactions of H2 with surface hydroxyl groups in lithium silicates. J. Nucl. Mater,,2002,307-311:1436-1440.
    [172]Kurasawa, T., et al., In-pile test of tritium release from tritium breeding materials (VOM-21H experiment)-tritium release and behavior from lithium oxide. DE88 007760,1986.
    [173]Yamaki, D., S. Tanaka, and M. Yamawaki, Study on surface reaction in tritium release from solid breeding materials by using hydrogen isotopes. Fus. Eng. Des.,1991,17:37-41.
    [174]Kinjyo, T. and M. Nishikawa, Tritium Release Behavior from Li4SiO4. Fusion Science and Technology 2004,46(4):561-570.
    [175]T.Kinjyo, et al., Introduction of tritium transfer step at surface layer of breeder grain for modeling of tritium release behavior from solid breeder materials. Fus. Eng. Des.,2006,81:573-577.
    [176]Taniguchi, M., S. Tanaka, and V. Grishmanov, Fusion Technol.,1995,28:1224.
    [177]Yamaki, D., S. Tanaka, and M. Yamawaki, J. Nucl. Mater.,1994,212-215:917.
    [178]H.Kwast. Tritium recovery from ceramic breeder materials, in Japan-US workshop P195 and international energy agency specialist's workshop. Oct.26-29,1992. University of Tokyo, Hongo, Tokyo, Japan.
    [179]H.Kwast. Tritium release behaviour of lithium ceramics, in Proceedings of the international workshop on ceramic breeder blanket interactions. November 22-23,1991. Clearwater Florida: Argonne National Laboratory, Argonne, Illinois
    [180]Kopasz, J.P., A.K. Fischer, and C.E. Johnson, DESORPTION ACTIVATION ENERGIES FOR TRITIUM RELEASE FROM CERAMIC BREEDERS.1989, DE89 014667.
    [181]P.A.Redhead, Thermal desorption of gases. Vacuum,1962,12(4):203-211.
    [182]King, D.A., Thermal Desorption From Metal Surfaces:a Review. Surf. Sci.,1975,47:384-402.
    [183]SMITH, A.W. and S. ANOFF, THERMODESORPTION OF GASES FROM SOLIDS. J.Phys. Chem.,1958,62:684-686.
    [184]Tanifuji, T., et al., Tritium Release from Neutron-Irradiated Li20; Constant Rate Heating Measurements. J. Nucl. Mater.,1980,95:108-118.
    [185]Skokan, A., et al., Preparation, Phase Relationships and First Irradiation Results of Lithium Orthosilicate Doped with Al3+ and P5+ Ions.15th Symp. on Fusion Technology, Sept.1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700