用户名: 密码: 验证码:
中低放射性废物改进型γ扫描技术及活度重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核能工业发展和放射性同位素日趋广泛应用,各种放射性废物大量产生和堆积。目前,我国核电运行以来产生的放射性废物大量贮存在核电厂的废物暂存库内,若不能得到及时处置,将可能成为影响核电安全运行的隐患。除此之外,国防产生的放射性废物、核设施退役产生的放射性废物如何安全处置也是一个迫切需要解决的问题。在对放射性废物最终处置之前,必须对放射性废物中的核素组成与活度进行准确鉴别与测量,为其暂存、运输和最终处置提供科学依据。
     由于中低放废物的特殊性,目前普遍采用无损分析方法(Non-DestructiveAssay,NDA)对废物桶进行测量。NDA方法又包括:无源和有源的γ射线分析法、无源和有源的中子分析法、量热分析法。其中γ射线分析法利用样品本身发射的γ射线来对样品进行定量分析,且不会产生二次放射性废物,是应用最为广泛的NDA方法之一。废物桶的γ射线扫描技术经历了分段γ扫描技术(Segmented GammaScanning,SGS)和层析γ扫描技术(Tomographic Gamma Scanning,TGS)两个阶段。对比SGS技术与TGS技术,SGS测量过程简单、速度快,但测量非均匀样品时具有较大的误差;TGS可以比较精确地获得桶内物质与放射性核素的分布,但复杂的测量过程难以满足大规模探测要求。
     针对上述问题,本文以研究更加快速准确的中低放射性废物活度探测技术为目的,对改进型SGS技术和TGS技术开展了研究,主要研究内容和成果包括:
     (1)双探测器改进型SGS技术理论及测量系统的建立
     传统的SGS技术采用桶内每层介质与放射性核素都均匀分布的假设,因此在对非均匀分布的样品进行测量时会出现较大的误差。本文提出的双探测器改进型SGS技术采用桶内每层介质均匀分布的假设,但是认为放射性核素以等效的环形线源的形式存在,通过两个探测器在不同位置测到的计数率分析得到该层内核素的等效半径。通过公式推导详细说明了该改进型SGS技术的理论基础,并详细介绍了其活度重建算法及测量系统布置。
     (2)双探测器改进型SGS技术的模拟及实验验证
     采用MCNP(Monte-Carlo N Particle)程序对不同密度的均匀介质单点源以及多点源、非均匀介质单点源的情况进行了模拟测量,并对模拟数据进行了重建分析。对于均匀介质,在最极端的单点源情况下,双探测器改进型SGS对137Cs的活度重建结果的相对误差为:密度为0.3g/cm3时在±10%范围内,0.6g/cm3时在±15%范围内,1.0g/cm3时在±20%范围内,1.5g/cm3时在±25%范围内。同时,对一非均匀单点源样品也进行了实验测量。模拟测量数据和实验测量数据的重建结果均表明,双探测器改进型SGS技术比SGS技术具有更高的测量精度。
     (3)基于动网格的TGS图像重建研究
     针对目前TGS技术中网格划分较粗,分辨率较低的问题,提出采用动网格进行TGS图像重建,并进一步提出了一种适合于TGS重建的自适应动网格加密算法,在点源附近区域采用小尺寸网格对“热点”进行准确定位,对不存在核素或者核素活度较低的区域采用大尺寸网格。采用MCNP程序对一非均匀介质的点源样品进行了TGS模拟扫描,对模拟数据的重建结果表明:采用动网格进行TGS发射重建能够在对“热点”核素进行准确定位和减少网格数量的同时减小发射重建活度误差,提高TGS的测量精度。
     (4)基于动网格发射重建的TGS测量优化研究
     针对目前TGS测量时间过长而尚未大规模工业应用的问题,提出了减少扫描次数并利用动网格进行发射重建的解决方法。为验证该方法的可行性并确定测量优化方案,针对旋转24次平移4次的TGS原始扫描方案,设置了四种减少转动或(和)平动次数的简化测量方案,采用MCNP程序对均匀介质和非均匀介质两种样品按照各种扫描方案进行了模拟扫描,并采用固定网格进行透射重建,采用固定网格和动网格分别进行发射重建,进而研究各种简化方案的重建误差变化情况。对各测量方案下的216个单点源以及100组多点源工况的重建误差进行统计分析后对比发现:由旋转24次平移4次的标准扫描方案简化到旋转12次平移4次后,再采用动网格进行发射重建,测量精度不会明显改变,但简化后测量次数减少一半,能够明显缩短TGS的测量时间。
Large amounts of low and intermediate level radioactive waste (LILW) will beproduced and piled up with the nuclear power industry development and the increasingwidespread application of radioisotopes. Currently, a large number of radioactive wastegenerated in the operation of nuclear power plant are stored in the temporary repository,and it may affect the safe operation of nuclear power if the nuclear waste can not gettimely disposal. In addition, the safe disposal of radioactive waste from national defenseindustry and decommissioning of nuclear facilities is also an urgent problem. Thedistribution of the radionuclide composition and activity must be accurately measuredbefore the final disposal of LILW to provide a scientific basis for its storage,transportation and final disposal.
     Due to the particularity of LILW, non-destructive assay (NDA) method iscommonly used to measure the waste drums. The γ-ray analysis method is based on theγ-ray emitted by the sample itself and does not produce the secondary radioactive waste,so it is one of the most widely-used NDA method. The γ-ray scanning technique forwaste drums has undergone two stages: Segmented Gamma Scanning (SGS) andTomographic Gamma Scanning (TGS). The SGS measurement process in simple and fast,but with a large measurement error; TGS can obtain the distribution of the material andradionuclides in the waste drum accurately, but it is difficult to meet the requirements oflarge-scale detection because of its complexity and long time of the measurement process.
     The research of improved SGS (ISGS) and TGS method is carried out in this paper,aiming at the more rapid and accurate detection technique for LILW. The main contentsand results are as follows:
     (1) The establishment of the theory and measurement system of ISGS
     The traditional SGS assume that the matrix and radioactive sources are distributeduniformly in each vertical segment, resulting in a large error in measuring thenon-uniform sample. The ISGS proposed in this paper assume the uniform matrix in eachsegment, but the radioactive sources exist in the form of an equivalent ring source, andthe equivalent radius is analyzed by the count rates of two detectors at different positions.The theoretical basis of the ISGS is described in detail by formula derivation, and theactivity reconstruction algorithm and measurement system layout are also presented.
     (2) Simulation and experimental verification of ISGS
     The simulation measurements of the cases of single source in homogeneous matrix,multiple sources in homogeneous matrix and single source in heterogeneous matrix arecarried out by using MCNP code. For the homogeneous matrix, in the most extreme caseof a single point source, the relative errors of reconstruction activity results of ISGS arein the range of±10%at the density of0.3g/cm3,±15%at the density of0.6g/cm3,±20%at the density of1.0g/cm3, and±25%at the density of1.5g/cm3. Meanwhile, theexperimental measurement of a heterogeneous sample is also carried out. Thereconstruction results of simulation measurement data and experimental data both showthat the ISGS has a higher accuracy than SGS.
     (3) Study of TGS image reconstruction using dynamic grids
     In order to solve the problem of coarse grids and low resolution in TGS, usingdynamic grids in TGS image reconstruction is proposed. A adaptive grid refinementstrategy which is suitable for TGS reconstruction is developed in order to locate smallsize grids in the vicinity of the point source for accurate positioning of the ‘hot spots’ and locate big size grids in the area of no or low radioactivity. The simulation measurementsof a heterogeneous matrix with point sources are carried out by using MCNP code. Thereconstruction results of simulation measurement data demonstrate that dynamic grids inemission reconstruction outperform the fixed grids in terms of the accuracy and 'hotspots' positioning with fewer grids in most cases.
     (4) Study on the optimization of TGS detection by using dynamic grids in theemission reconstruction
     Reducing the scan times and using dynamic grids in emission reconstruction isproposed to solve the problem of the long measurement time of TGS. To verify thefeasibility of the solution and find the optimal scan scheme, we set five differentsimplified scan schemes which reduce the rotation or (and) translation number based onthe original scan scheme of24rotating times and4translation times. The simulationmeasurements of a homogeneous sample and a heterogeneous sample with point sourcesare carried out by using MCNP code, and the transmission reconstruction is implementedby fixed grids, the emission reconstruction is implemented by fixed grids and dynamicgrids respectively to compare the activity reconstruction error of all the scan schemes.The statistical results of the reconstruction error of216single point sources and100multiple point sources indicate that simplification of TGS scan process from24rotatingtimes and4translation times to12rotating times and4translation times will lead to littlechange of the emission reconstruction error if dynamic grids are applied, but thissimplification will lead to a obvious reduction of TGS scan time.
引文
[1]国家质量监督检验检疫总局,GB/T4960.8-2008核科学技术术语第8部分:放射性废物管理,2008
    [2]罗上庚,放射性废物处理与处置,北京:中国环境科学出版社,2007
    [3]罗上庚,放射性废物概论,北京:原子能出版社,2003
    [4]国家环境保护局,GB9133-1995放射性废物的分类,1996
    [5]潘自强,我国放射性废物管理中一些值得重视问题的讨论,“21世纪初辐射防护论坛”第四次会议暨低中放废物管理和放射性物质运输学术研讨会,北京,2005.6
    [6]国家技术监督局,GB11928-1989低、中水平放射性固体废物暂时贮存规定,1990
    [7]国家技术监督局,GB14589-1993核电厂低、中水平放射性固体废物暂时贮存技术规定,1994
    [8]国家发展和改革委员会,核电中长期发展规划(2005-2020年),北京:国家发展和改革委员会,2007
    [9]国家质量监督检验检疫总局,GB14500-2002放射性废物管理规定,2003
    [10]郭喜良,徐春艳,杨卫兵等,国外低中水平放射性废物包检测实践及启示,辐射防护,2011,31(3):184-192
    [11]Reily D, Ensslin N, Smith H, et al. Passive Nondestructive Assay of NuclearMaterials, Los Alamos National Laboratory,1991
    [12]Becker G, Mcllwain M, Connoly M. Transuranic and Low-Level Boxed WasteForm Nondestructive Assay Technology Overview and Assessment, Idaho NationalEngineering and Environmental Laboratory,1999
    [13]杨明太,核材料的非破坏性分析,核电子学与探测技术,2001,21(6):501-504
    [14]S. Niese, W. Boden. Scaling factors for activated corrosion products inlow-level-waste from power reactors, Journal of Radioanalytical and NuclearChemistry,1995,198(1):161-167
    [15]P. Ormai, A. Fritz, J. Solymosi, et al. Inventory determination of low andintermediate level radioactive waste of paks nuclear power plant origin, Journal ofRadioanalytical and Nuclear Chemistry,1996,211(2):443-451
    [16]T. Kim, K. Kim, C. Yun, et al. Estimation method for determination of radioactivitywithin LILW for land disposal, WM’05Conference, February27-March3,2005,Tucson,AZ
    [17]黄来喜,何文新,陈德淦,大亚湾核电站放射性固体废物管理,辐射防护,2004,24(3-4):211-226
    [18]Parker J L. The use of calibration standards and the correction for sampleself-attenuation in gamma-ray nondestructive assay. Los Alamos NationalLaboratory Document, LA-10045, Rev.1986
    [19]G.A. Sheppard, T.H. Prettyman, E.C. Piquette. Accounting for segment correlationsin segmented gamma-ray scans, Los Alamos National Laboratory Document,LA-UR-94-2561,1994
    [20]Bruce Gillespie, Michael Zebarth. Comparison of a variety of gamma attenuationcorrection techniques for different waste matrices.14th Annual Symposium onSafeguards and Nuclear Management, May1992, Salamanca, Spain
    [21]H. Zhu, S. Croft, R. Venkataraman, S. Philips. An MCNP Based Method toDetermine the Matrix Attenuation Correction Factors for a Gamma Box Counter.48th INMM Meeting,2007
    [22]T.H. Prettyman, J.K. Sprinkle, Jr, et al. A weighted least-squares lump correctionalgorithm for transmission-corrected gamma-ray nondestructive assay, Los AlamosNational Laboratory Document, LA-UR-93-2632,1993
    [23]T.H. Prettyman, J.K. Sprinkle, Jr, et al. Performance of an advanced lumpcorrection algorithm for gamma-ray assays of plutonium, Los Alamos NationalLaboratory Document, LA-UR-94-2477,1994
    [24]Hsue S T, Stewart J E. Guide to nondestructive assay standard preparation, criteria,availability and practical considerations, Los Alamos National LaboratoryDocument, La-13340-Ms,2000
    [25]G.A. Sheppard, E.C. Piquette. Point-source calibration of a segmented gamma-rayscanner, Los Alamos National Laboratory Document, LA-UR-94-2482,1994
    [26]Liang, J. H., Jiang, S. H., Chou, G. T.,et al. A theoretical investigation of calibrationmethods for radwaste radioactivity detection systems. Applied Radiation andIsotopes.1996,47(7),669-675
    [27]Liang, J. H., Jiang, S. H., Chou, G. T.,et al. Parametric study of shell-source methodfor calibrating radwaste radioactive detection systems. Applied Radiation andIsotopes.1998,49(4),361-368.
    [28]M. Bruggeman, J. Gerits, R. Carchon. A minimum biased shell-source method forthe calibration of radwaste assay systems. Applied Radiation and Isotopes,1999,51(3):255-259
    [29]S. Croft, R.D. McElroy. The calibration of segmented gamma scanning using rodsources, WM'05Conference, February27-March3,2005, Tucson, AZ
    [30]A. Bosko, G. Geurkov, S. Croft, R. Venkataman. Advanced Approach forcalibration of the segmented gamma scanner for the radioassay of drummed waste.2006IEEE Nuclear Science Symposium Conference Record:212-213
    [31]D. Nakazawa, F. Bronson, S. Croft, et al. The Efficiency Calibration ofNon-Destructive Gamma Assay Systems Using Semi-Analytical MathematicalApproaches. WM2010Conference, March7-11,2010, Phoenix, AZ
    [32]M. Toma, O. Sima, C. Olteanu. Experimental and simulated studies for thecalibration of a radioactive waste assay system, Nuclear Instruments and Methodsin Physics Research A,2007,580(1):391-395
    [33]WM2200series segmented assay system, CANBERRA,USA,http://www.canberra.com/products/780.asp
    [34]WM2110series Q2low level waste assay systems, CANBERRA,USA,http://www.canberra.com/products/779.asp
    [35]IQ3automated low level waste system, CANBERRA,USA,http://www.canberra.com/products/776.asp
    [36]Bücherl T, Kaciniel E, Lierse Ch, Synopsis of gamma scanning systems, EuropeanNetwork of Testing Facilities for the Quality Checking of Radioactive WastePackages, Report WG-A-01,1998
    [37]A. G. Espartero, G. Pina, J. A. Suarea. Development and application of aradioactivity characterization system for low-level radioactive waste, NuclearInstruments and Methods in Physics Research A,1999,422:790-794
    [38]Jon R. Hurd, Steven M. Long, Thomas E. Sampson. Bias investigation of a55-gallon drum-sized segmented gamma scanner. Los Alamos National Laboratory,LA-UR-93-2624,1993
    [39]Tran Quoc Dung, Calculation of the systematic error and correction factors ingamma waste assay system, Ann. Nucl. Energy,1997,24(1):33–47
    [40]R.J. Estep, T.H. Prettyman, G.A. Sheppard. Tomographic gamma scanning (TGS) tomeasure inhomogeneous nuclear material matrices from future fuel cycles. LosAlamos National Laboratory, LA-UR-93-1637,1993
    [41]Tran Quoc Dung, Some theoretical results of gamma techniques for measuringlarge samples, Nucl. Instrum. Methods A,1998,416:505-515
    [42]S. Kawasaki, M. Kondo, S. lzumi, and M. Kikuchi. Radioactivity Measurement ofDrum Package Waste by a Computed-Tomography Technique, Appl. Radiat.Isotopes,1990,41(10-11):983-987
    [43]R.J. Estep, K. Sherwood. A prototype tomographic gamma scanner for assaying208-liter drums, Los Alamos National Laboratory, LA-UR-91-61,1991
    [44]Prettyman, T.H., Gardiner, R.P., Russ, J.C., Verghese, K. A combined transmissionand scattering tomographic approach to composition and density imaging. AppliedRadiation and Isotapes,1993,44(10-11):1327-1341
    [45]Robert J. Estep, A preliminary design study for improving performance intomographic assays, Los Alamos National Laboratory, LA-12727-MS,1994
    [46]R.J. Estep, T.H. Prettyman, G.A. Sheppard. Reduction of TGS image reconstructiontimes using separable attenuation coefficient models, Winter meeting of theAmerican Nuclear Society (ANS), San Francisco, CA (United States),29Oct-1Nov,1995
    [47]R.J. Estep, T.H. Prettyman, G.A. Sheppard. Comparison of attenuation correctionmethods for TGS and SGS Do we really need selenium-75, Los Alamos NationalLaboratory, LA-UR-96-2575,1996
    [48]T.F. Wang, H.E. Martz, G.P. Roberson, et al. Three dimensional imaging of amolten-salt-extracted plutonium button using both active and passive gamma-raycomputed tomography. Nuclear Instrument and Methods In Physics Research A,1994,353:672-677
    [49]Jessie A. Jackson, Dennis Goodman, G. Patrick Roberson, Harry E. Martz. AnActive And Passive Computed Tomography Algorithm With A ConstrainedConjugate Gradient Solution, Lawrence Livermore National Laboratory,UCRL-JC-130818
    [50]R.J. Estep, T.H. Preeyman, G.A. Sheppard. Tomographic gamma scanning to assayheterogeneous radioactive waste. Nuclear Science and Engineering,1994,118(3):145-152
    [51]Jacobsson S, Hakansson A, Andersson C, et al. A Tomographic Method forVerification of the Integrity of Spent Nuclear Fuel. ISSN1104-1374, ISBNSKI-R-98/17--SE. Swedish Nuclear Power Inspectorate,1998
    [52]P. Ei er, E. Merz, R. Odoj, Determination of the nuclide inventory of radioactivewaste barrels by using a tomographic method, Proc. Int. Symp. on ComputerizedTomography for Industrial Applications,8-10June,1994, Berlin, DGZfp
    [53]Tran Ha Anh, Tran Quoc Dung. Evaluation of performance of gamma tomographictechnique for correcting lump effect in radioactive waste assay, Annals of NuclearEnergy,2001,28(3):265-273
    [54]C. Robert Coutant, V. Moulin, R. Sauze, et al, Estimation of the matrix attenuationin heterogeneous radioactive waste drums using dual-energy computed tomography,Nuclear Instruments and Methods in Physics Research A,1999,422:945-956
    [55]Palacios J. C., Longoria L. C., Santos J., Perry R. T., A PC-based discretetomography imaging software system for assaying radioactive waste containers,Nuclear Instruments and Methods in Physics Research A,2003, Vol.508,500–511
    [56]D.C. Camp, H.E. Martz, G.P. Roberson, et al. Nondestructive waste-drum assay fortransuranic content by gamma-ray active and passive computed tomography.Nuclear Instruments and Methods in Physics Research A,2002,495:69-83
    [57]T.H. Prettyman, R.A. Cole, R.J. Estep, G.A. Sheppard. A Maximum-likelihoodreconstruction algorithm for tomographic gamma-ray nondestructive assay. NuclearInstruments and Methods in Physics Research A,1995,356:470-475
    [58]Thomas L. Burr, David J. Mercer, Thomas H. Prettyman. Comparison of bayesianand classical reconstructions of tomographic gamma scanning for assay of nuclearmaterials. Los Alamos National Laboratory, LA-UR-98-2380,1998
    [59]R.J. Estep, TGS_FIT: Image reconstruction software for quantitative low-resolutiontomographic assays, Los Alamos National Laboratory, LA-12497-MS,1993
    [60]T.H. Prettyman, D.J. Mercer. Performance of analytical methods for tomographicgamma scanning. Los Alamos National Laboratory, LA-UR-97-1168,1997
    [61]Robert J. Estep, Connie Buenafe, Sheila Melton. Integration of TGS and CTENassays using the CTEN FIT analysis and databasing program. Los Alamos NationalLaboratory, LA-UR-00-2162,2000
    [62]T.H. Prettyman, S.E. Berrs, R.J. Estep, et al. Field experience with a mobiletomographic nondestructive assay system. Los Alamos National Laboratory,LA-UR-95-3501,1995
    [63]David J. Mercer, Stephan E. Betts, Thomas H.Prettyman, et al. Tomographicgamma scanning of uranium-contaminated waste at rocky flats. Los AlamosNational Laboratory, LA-UR-98-2922,1998
    [64]J.P. Lestone, T.H. Preetyman, J.D. Chaves. Performance of atomographic-gamma-scanner on RETFS waste containing macroscopic lumps ofplutonium. Los Alamos National Laboratory, LA-UR-00-3086,2000
    [65]ANTECH Ltd. Automated Data Review And Technical Supervisor For TheTomographic Gamma Scanner(TGS),2002
    [66]WM2900TGS Tomographic gamma scanner,CANBERRA,USA,http://www.canberra.com/products/1117.asp
    [67]Tran Quoc Dung. New measuring technique for assay of radioactive materials inwaste drums, Progress in Nuclear Energy,1998,33(4):403-420
    [68]Tran Ha Anh, Nguyen Duc Thanh and Tran Quoc Dung, Evaluation of performanceof a new measuring technique for assay of radioactive waste, Ann. Nucl. Energy,2005,32(13):1516-1523
    [69]Y.F. Bai, E. Mauerhofer, D.Z. Wang, R. Odoj, An improved method for thenon-destructive characterization of radioactive waste by gamma scanning, Appl.Radiat. Isotopes.2009,67(10):1897-1903
    [70]白云飞,中低放射性废物危险元素探测方法研究,博士学位论文,上海交通大学,2010
    [71]Thomas Krings, Eric Mauerhofer. Reconstruction of the activity of point sourcesfor the accurate characterization of nuclear waste drums by segmented gammascanning, Applied Radiation and Isotopes,2011,69(6):880-889
    [72]Thomas Krings, Eric Mauerhofer. Reconstruction of the isotope activity content ofheterogeneous nuclear waste drums, Applied Radiation and Isotopes,2012,70(7):1100-1103
    [73]Chin Jen Chang, Samin Anghaie. Iterative reconstruction and statisticaloptimization for the nondestructive assay of distributed gamma source in a largenuclear waste container, IEEE transactions on nuclear science,1998,45(2):146-153
    [74]Alessandra Cesana, Mario Terrani, Giancarlo Sandrelli. Gamma activitydetermination in waste drums from nuclear plants, Applied Radiation and Isotopes,1993,44(3):517-520
    [75]Tran Quoc Dung. Modification to the technique using two detectors for assay ofradioactive waste drums.1997, Ann. Nucl. Energy,24(8):645-657
    [76]Tran Quoc Dung, Nguyen Duc Thanh, Luu Anh Tuyen, et al. Evaluation of agamma technique for the assay of radioactive waste drums using two measurementsfrom opposing directions, Applied Radiation and Isotopes,2009,67(1):164-169
    [77]Tran Quoc Dung. A simple gamma technique for the assay of radioactive wastedrums, International Journal of Nuclear Energy Science and Technology,2010,5(4):290-297
    [78]Tran Quoc Dung, Nguyen Duc Thanh, Luu Anh Tuyen, et al. Experimental study ofsystematic errors of gamma technique for assay of radioactive waste drums,http://www-pub.iaea.org/MTCD/publications/PDF/P1360_ICRR_2007_CD/papers/D.%20Tran.pdf
    [79]朱荣保,谭亚军,袁晓鑫等,大型高分辨分段γ扫描装置的研制,原子能科学技术,1994,28(1):16-24
    [80]谭亚军,朱荣保,吴昕等,分段γ扫描装置数据获取与处理软件系统的研制,原子能科学技术,1994,28(1):26-31
    [81]吕峰,曹斌,辛标等,分段γ扫描自吸收校正法分析残渣和废物中的铀、钚含量,原子能科学技术,1998,32(5):445-449
    [82]张怀礼,吴继宗,石有卿等,铀冶金炉渣的破坏性分析及对NDA分析仪器SGS和AWCC的校验,原子能科学技术,1998,32(3):269-273
    [83]吕锋,曹斌,辛标等,可移动式高分辨率分段γ扫描现场测量装置的研制,原子能科学技术,1998,32(3):239-244
    [84]周志波,桶装核废物快速检测方法研究,硕士学位论文,中国原子能科学研究院,2007
    [85]周志波,何丽霞,邵婕文等,放射性废物快速非破坏性检测装置算法研究,原子能科学技术,2008,42(2):144-148
    [86]何丽霞,王仲奇,隋洪志等,分段γ扫描系统物理设计的改进,中国原子能科学研究院年报,2006,285
    [87]何丽霞,吕峰,赵学军等,分段γ扫描标样的非破坏性分析法检验,原子能科学技术,2007,41(2):248-251
    [88]郜强,王仲奇,王奕博等,分层γ扫描层间串扰影响研究,原子能科学技术,2011,45(2):212-216
    [89]王仲奇,宗波,郜强等,分层γ扫描定量分析层内放射性非均匀分布影响分析,原子能科学技术,2012,46(1):103-108
    [90]邓景珊,李泽,甘霖等,分层γ扫描方法测量球形容器核材料滞留量,核电子学与探测技术,2007,27(5):895-900
    [91]肖雪夫、夏益华、吕峰等,用于固体放射性废物无损定量测量的TGS图象重构技术,辐射防护,2001,21(1):1-10
    [92]肖雪夫,夏益华,吕峰等,蒙特卡罗方法选择TGS准直器的最佳形状,原子能科学技术,1998,32(3):201-207
    [93]张全虎,隋洪志,吕峰等,层析γ扫描透射图像重建方法,原子能科学技术,2004,38(2):162-165
    [94]张全虎,隋洪志,吕峰等,Monte-Carlo统计迭代图像重建算法,原子能科学技术,2003,37(6):555-557
    [95]ZHANG Quanhu, HUI Weihua, WANG Dong, et al. A novel algorithm fortransmission image reconstruction of tomogrphic gamma scanners, Nucl Sci Tech,2010,21:177-181
    [96]张全虎,层析γ扫描重建技术的研究,博士学位论文,中国原子能科学研究院,2003
    [97]隋洪志,何丽霞,周志波等,γ无损测量技术在放射性废物检测中的应用,2007年核化工三废处理处置学术交流会,厦门
    [98]成雨,翁文庆,白云飞等,层析γ扫描技术效率矩阵计算模型分析与修正,上海交通大学学报,2008,42(9):1471-1473
    [99]钱楠,王德忠,白云飞等,HPGe探测器死层厚度及点源效率函数研究,核技术,2010,33(1):25-30
    [100]翁文庆,王德忠,张勇等,用多个能量探测方法校正层析γ扫描透射图像重建中射线线衰减系数,辐射防护,2008,28(1):24-28
    [101]翁文庆,王德忠,张勇等,层析γ扫描透射图像重建算法研究,核技术,2008,31(5):396-400
    [102]阮兆林,黄宪果,邢世雄,废物包装体核素分析方法研究,核电子学与探测技术,2001,21(4):310-313
    [103]邓景珊,春山满夫,高漱操等,透射式CT与自射线式CT检测核废物桶蒙特卡罗模拟,原子能科学技术,2001,35(6):551-555
    [104] Ramkumar Venkataraman, Marcel Villani, Stephan Croft, et al. An integratedtomographic gamma scanning system for non-destructive assay of radioactivewaste. Nuclear Instruments and Methods in Physics Research A,2007,579:375-379
    [105] ICIS Integrated Crate Interrogation System (ICIS)http://www.canberra.com/products/waste_safeguard_systems/gamma-neutron-waste-systems.asp
    [106] Troiani Francesco, Cherubini Nadia, Dodaro Alessandro, et al. L/ILW WasteCharacterization by the ENEA multi-technique gamma system SRWGA,Proceedings of the International Conference on Radioactive Waste Managementand Environmental Remediation,2003,2:871-875
    [107] Dodaro Alessandro, Frazzoli Franco Vittorio, Remetti Romolo, Segmentedgamma scanning of conditioned radioactive wastes: Development, experimentalvalidation, and application of an angular scanning procedure for hot-spotcharacterization, Nuclear Technology,2003,144(1):130-140
    [108] Marc Molinari, Barry H Blott, Simon J Cox, et al. Optimal imaging withadaptive mesh refinement in electrical impedance tomography, PhysiologicalMeasurement,2002,23(1):121-128
    [109] Marc Molinari, Simon J Cox, Barry H Blott, et al. Adaptive mesh refinementtechniques for electrical impedance tomography, Physiological Measurement,2001,22(1):91-96
    [110] Min Chan Kim, Kyung Youn Kim, Kyung Jin Lee, et al. Electrical impedanceimaging of phase boundary in two-phase systems with adaptive mesh regenerationtechnique, International Communications in Heat and Mass Transfer,2005,32(7):954-963
    [111] Huaxiang Wang, Lei Tang, Zhang Cao. An image reconstruction algorithmbased on total variation with adaptive mesh refinement for ECT, FlowMeasurement and Instrumentation,2007,18(5-6):262-267
    [112] Hongqing Zhu, Huazhong Shu, Jian Zhou, et al. Conditional entropymaximization for PET image reconstruction using adaptive mesh model,Computerized Medical Imaging and Graphics,2007,31(3):166-177
    [113] Jovan G. Brankov, Yongyi Yang, Miles N. Wernick. Tomographic imagereconstruction based on a content-adaptive mesh model, IEEE transactions onmedical imaging,2004,23(2):202-212
    [114] Daifa Wang, Xiaolei Song, Jing Bai, Adaptive-mesh-based algorithm forfluorescence molecular tomography using an analytical solution, Optics Express,2007,15(15):9722-9730
    [115] Vadim Y Soloviev, Lada V Krasnosselskaia, Dynamically adaptive meshrefinement technique for image reconstruction in optical tomography, AppliedOptics,2006,45(12):2828-2837
    [116] Shepp L A, Vardi Y. Maximum likelihood reconstruction for emissiontomography, IEEE Trans Med Imag,1982, MI-1:113-122
    [117] H. M. Hudson, R. S. Larkin, Accelerated image reconstruction using orderedsubsets of projection data, IEEE Trans Med Imag,1994,13:601-609
    [118] J. A. Fessler, A. O. Hero, Space-alternating generalizedexpectation-maximization algorithm, IEEE Trans Signal Proc,1994,42(10):2664-2677
    [119] J. A. Fessler, A. O. Hero, Penalized maximum-likelihood image reconstructionusing space-alternating generalized EM algorithms, IEEE Trans Imag Proc,1995,4(10):1417-1429
    [120] P. J. Green, Bayesian reconstructions from emission tomography data using amodified EM algorithm, IEEE Trans Med Imag,1990,9(1):84-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700