用户名: 密码: 验证码:
2.0TCI高速直喷柴油机混合气形成及燃烧过程控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内的能源危机和环境污染问题的日益严重,人们对于发动机在节约能源和控制污染物排放方面的要求日趋严格。柴油机因具有良好的经济性、动力性和可靠性,以及较高的热效率和较低的CO、HC排放而逐渐被广泛应用,轿车柴油机化也是未来汽车行业的发展趋势。由于柴油机高的颗粒物(PM)和NOx排放对环境造成了一定程度的污染,因此世界各国在大量采用柴油机的同时相继制定了越来越严格的排放法规,迫使对柴油机采取更为先进的控制技术来控制污染物的生成。
     柴油机特有的燃烧方式所决定的特殊的放热规律是缸内燃油燃烧的根本体现,其直接影响柴油机的动力性、经济性和排放特性。所以内燃机要实现高效率低排放,最根本的有效途径是控制燃烧放热规律。而燃烧放热规律主要受到缸内气流运动特性与喷雾特性两方面的影响,所以两者的优化匹配是控制柴油机燃烧放热规律的主要目标。为此,本文提出了以目标放热规律为控制目标的柴油机燃烧过程的控制方法,并结合燃油喷雾与燃烧室内气流运动的匹配关系,通过对缸内混合气浓度场分布和放热规律的控制,探索实现目标放热规律的有效途径,以达到高效低排放的燃烧过程。
     不同燃烧室结构形状及其参数,决定了燃烧室内特有的气流特性及其燃烧规律。如何评价分析燃烧室内的气流特性,对正确把握燃烧室内微观的两相流场特性对混合气形成和燃烧过程以及目标放热规律影响的研究具有重要的意义。对于缩口直喷型燃烧室,因为喷雾夹角、喷射压力、缩口处形状、凸台形状等因素的不同,单纯的用喷射提前角的概念不能直观的描述喷雾与燃烧室形状的匹配,因此提出了喷雾与燃烧室形状相关联的喷雾匹配角参数。
     所以,论文首先根据燃烧室结构的评价方法对不同燃烧室形状对气流运动特性的影响进行了分析,由此设计确定了一种燃烧室结构形状,然后根据喷雾匹配角定义涉及的关键参数,来分析喷雾匹配角变化对燃烧放热规律以及排放的影响,这对于评价喷雾与燃烧室形状的匹配具有普遍性的意义。喷雾与燃烧室结构匹配研究结果表明,适当降低压缩比虽然有利于降低NOx排放,但不能兼顾高低速性能,而且不能同时兼顾节能;高压缩比虽然有利于改善发动机节能和高速性能,但不利于NOx排放。在一定的压缩比条件下,通过燃烧室底部凸台形状的合理设计,可有效地组织和控制燃烧室内的气流特性,有利于控制放热规律;有平顶且斜面形状为双曲面的燃烧室,不仅有效抑制预混合燃烧过程,促进扩散燃烧,而且对高速适应性很好,可兼顾发动机高低速性能;喷雾匹配角的变化对放热规律重心影响不大,对放热持续期的影响呈现不同的抛物线规律,抛物线的形状跟发动机转速相关,且在不同的转速区存在放热持续期的最大值,对燃烧过程初期的放热速率影响很大,对扩散燃烧阶段影响相对较小,同时还受发动机转速的影响;通过喷雾夹角来改变喷雾匹配角时,对燃烧的初期放热影响较小,对扩散燃烧阶段影响较大,而喷油器垫片厚度引起的喷雾匹配角的变化,对燃烧的初期放热影响较大,对扩散燃烧阶段影响较小;匹配最佳的喷雾匹配角可以控制预混合燃烧和扩散燃烧的放热速率,从而降低燃烧噪声,同时降低NOx排放,改善燃油经济性;缸内气流运动强度与气流运动的分布对放热规律的影响存在以发动机转速为基准的平衡,随发动机转速的变化呈现此消彼长的规律。
     柴油机燃烧放热规律同时影响发动机动力性、经济性和排放特性。为此,在分析了混合气形成对燃烧放热规律影响的基础上,从燃烧过程对排放特性的决定性作用出发,讨论了排放的限制对燃烧过程控制提出的约束条件,这不仅为以后进一步降低排放提供了新的控制方法,而且对目标放热规律的分析也提出了新的依据。研究过程中发现柴油机这种缸内直喷的燃烧模式,其混合气非均匀分布的特性,不仅影响其燃烧放热规律,而且直接影响NO的生成规律。试验与仿真研究结果表明,在柴油机速燃期开始之前温度基本上都低于2000K,此时主要生成快速NO;而在速燃期燃气温度上升到2000K以上,此时由于温度与混合条件的复合作用,快速NO与Zeldovich NO都会生成;在扩散燃烧中后期,缸内温度很高,且基本不存在混合气较浓区域,所以认为只生成Zeldovich NO,不会生成快速NO。在整个燃烧过程中相对理论混合气较稀薄区,NO的生成与温度密切相关;而相对理论混合气浓的区域,快速NO的生成对温度的依赖性很小。尽管快速NO的生成量较小,但是其生成过程的化学反应的中间产物会大大增加Zeldovich NO生成的可能性。所以,NO的控制要从混合气浓度的控制也就是混合气的混合速率以及温度的控制即混合气反应的速率两方面共同考虑,两者缺少任何一方都会导致对NO控制方面的片面性。由基于试验和仿真计算结果所制取的NO和碳烟生成区域的-T图中可以看出,在当量比为1.5~3的范围内,当温度为1800K时就已经有快速NO的生成,随温度的升高NO的产生区域的当量比逐渐下降,直到当量比下降到1.2附近、温度达到最高2400K~2500K,此时NO主要为Zeldovich NO,其在总NO的生成量中占的比例也最大。在当量比为3附近的区域既有快速NO的生成,又有碳烟的生成,所以为了实现NOx与碳烟的同时降低,要尽量避免高浓度区域和高温区域的叠加产生。
     在分析以上混合气形成的动态特性对放热规律和NO生成影响的基础上,提出了目标放热规律的概念,以此为依据对发动机各个工况下的燃烧放热规律进行了分析,通过各方面特性的要求提出了目标放热规律在各工况下的目标值,并从控制混合气形成的角度出发提出了为达到目标放热规律所采取的措施。结果表明,目标放热规律的确定可以发挥出一台发动机的性能极限,以达到高效低排放的目的。目标放热规律的实现需要对现行的硬件设备和控制策略进行详细的分析,在设备能够发挥的极限性能的范围内对两者进行良好的匹配。目标放热规律可以划分为预混合燃烧和扩散燃烧阶段。预混合燃烧阶段的主要控制参数有缸内压力升高率和最高燃烧温度。预混合燃烧过程中缸压的变化,不仅影响燃烧噪声水平,同时也影响NOx的排放。故用压力升高率和缸内最高燃烧温度来限制放热规律中的预混合燃烧阶段,不仅限制了燃烧噪声水平、改善了发动机工作粗暴程度,同时也抑制了NOx的排放。针对燃烧放热规律中的扩散燃烧阶段,其燃烧持续期影响了缸内高温的持续期,对NOx排放物的生成起了重要作用,同时扩散燃烧持续期还直接影响了发动机的燃油消耗率。所以NOx排放量和燃油消耗率两方面的权衡关系决定了目标放热规律的目标值,在NOx排放允许的条件下,可以适当的放宽缸内燃烧温度的限制,加速扩散燃烧的速率,达到更佳的燃油经济性。由于硬件设备的技术水平限制,发动机不可能发挥出其最大性能,但从目标放热规律的角度可以看出,在新技术的支持下,完全可以在发动机的各个特性之间取得最优化的匹配,达到高效低排放的极限,这就对设备的开发提出了新的要求。
Nowadays with the growing energy crisis and environmental pollution problemsworldwide, people are becoming more stringent requirements for the engine in energy savingand control of pollutant emissions. The diesel engine has many advantages: such as economypowerful and reliability, as well as higher thermal efficiency and lower CO, HCemissions.Therefore it was widely used gradually, and the dieselization on cars will be thedevelopment trend.But there are some shortcomings,high particulate matter (PM) and NOxrestrict its development,the two emissions had caused a certain damage on the environment,Soall the countries have formulated a large number of diesel engine emission regulations in theincreasingly application,especially limiting NOxemissions without Changing the particulatematter limitation,forcing the diesel engine to take more advanced control technology to controlthe generation of pollutants.
     For the diesel engine, its specific exothermic ways determined by the Special combustionstyle is the expression of fuel combustion in the cylinder which has a direct impact on theengine power, economy and emissions characteristics. So if we want to achieve high efficiencyand low emissions, the key point is to control heat release rate actively.While the heat releaserate was effected by inner flow characteristics and the spray characteristics. so the main goal isto optimal match the two main objectives.According to this,the paper proposes a method ofactive control combustion process by controling the target exothermic rate, so combined thefuel injection system with the inner air movement, to control the heat release rate andconcentration field distribution, and achieve high efficiency and low emissions combustionprocess.
     Different shapes of combustion chamber and other parameters determine the special flowcharacteristics and the combustion rule. The way that we analyze the flow characteristics incombustion chamber have important significances on grasping the micro flow characteristics, the formation of mixture and the combustion process. When we talk about shrinkage mouthcombustion, we can’t descript the match of spray and the combustion shape intuitively with thesole concept of injection advance angle because of the difference of factors such as spray angel,injection press, the shape at shrinkage mouth and the convex platform shape. As a result, weintroduce the spray wall parameter which reflates the relation between spray and combustionshape. Firstly we analyze the impacts of different combustion shapes on flow characteristic onthe basis of the evaluation method of combustion structure. Secondly we analyze how thechange which is aroused by different impact factors of spray wall angle influence thecombustion heat release rule and the emissions. All these have universal significance on thematch of spray and the combustion shape. The result shows that, though reducing thecompression ratio is beneficial for reducing the NOxemission, it can’t apply to high low speedperformance and energy conservation; though high compression ratio can improve high lowspeed performance and realize energy conservation, it is not beneficial for NOxemission. Thatis to say adjusting the compression ratio only can’t apply to energy conservation and reducingemissions perfectly. Under the certain compression ratio conditions, we can organize andcontrol the flow characteristics in combustion chamber effectively through designing the properconvex platform shape. This is beneficial for controlling the heat release rule. The combustionchamber with flat top and concave shape of slope not only can inhibition the pre-mix processeffectively and promote diffusive combustion, but also can adjust to high speed perfectly andapply to high low speed performance. The change of spray matching angle has little impact onthe center of heat release rate. The impact of heat release duration presents difference parabolicrule which is related to engine speed. And there is a maximum of heat release duration indifference speed zone. The change of spray matching angle has great impact on initial heatrelease and little impact on diffusive combustion and is affected by engine speed. The change ofspray axis has little impact on initial heat release but great impact on diffusive combustion. Onthe contrary, the change of the spray axis’s relative position at the axis of cylinder direction hasgreat impact on initial heat release and little impact on diffusive combustion. We can control therate of pre-mixture combustion and diffusive combustion, to realize lower specific fuelconsumption and reduce NOxemission by matching best spray matching angle. The effect onheat release rule of airflow movement strength in cylinder and the distribution of airflow movement exist a weight balance on the basis of engine speed and present a trading off andtaking turns rule with the change of engine speed.
     The target value of the target release rate is limited by power, economy and emissions atthe same time, basing on the analysis of the gas mixture on the impact of the Combustion Law,especially on the detailed analysis of the law of NO emissions,is the to consider the importantrole of prompt NO on the NO generation, not only providing a new control method to furtherreduce the emissions of NO, but a new requirement on the analysis of the target heat releaserate. The results show that the temperature before the start of combustion period in the dieselengine is substantially all below2000K, the fast No are mainly generated this time; the gastemperature of the rapid combustion period is more than2000K, due to the composite effect ofthe temperature and mixing conditions this time, the prompt NO and Zeldovich NO willgenerate; in the late diffusion combustion period, the cylinder temperature is very high, themixed gas doctrinal area does not exist basically, so only the Zeldovich NO generates this time,not the prompt NO. In the rarefied zone relative to theoretical air-fuel mixture in the wholecombustion process, the generation of NO and temperature are closely related; while in therelative theoretical mixed gas concentration area, the generation of NO has little dependence ontemperature. Despite the small amount of the formation of prompt NO, but the generatedintermediate product of the chemical reaction of the process would greatly increase thelikehood of Zeldovich NO formation. Control of NO from the mixed gas concentration control,that is, the mixing rate of the gas mixture and temperature control, that is, the reaction rate ofthe gas mixture, the absence of any party will result in the one-sidedness of NO control. It canbe seen in the equivalent ratio of within the range of1.5to3, the prompt NO would generate atthe temperature of1800K, with the rising of temperature, the NO generation region theequivalent ratio would decreased gradually, until when the ratio decreased in the vicinity of1.2,when the temperature reached in the vicinity of the highest2400K~2500K, the NO ismainly Zeldovich NO, the proportion in the generation amount of the total NO largest. In theequivalence ratio of3and its vicinity region both prompt NO generation, another of sootgenerated, so in order to achieve reduced NOx and soot while, to avoid the superimposition ofthe high concentration region and the high-temperature region is generated.
     On the basis of analysis of the effect of dynamic characteristics of the mixture formation on heat release law and NO generation, proposed the concept of a target heat release rate. asbased on that analyzed the heat release rate on various operating conditions. Found the targetvalue of the target heat release rate on various operating conditions according the requirements,and researched the measures to achieve the target heat release rate from the perspective ofcontrolling the mixture formation. The results show that, the engine can achieve performancelimitation under the target heat release rate, so achieving high efficiency and low emissions.The realization of target heat release rate need a good match between the current hardware andcontrol strategies. The target heat release rate can be divided for premixed combustion stageand diffusion combustion stage. The main control parameters of pre-mixing combustion stageinclude the rate of cylinder pressure rise and the maximum combustion temperature. Thechange of in-cylinder pressure in pre-mixed combustion process not only affects the level ofcombustion noise, but also affects the emission of NOx. So controlling the pre-mixingcombustion stage with the rate of pressure rise and the in-cylinder maximum combustiontemperature, in fact, not only limits the level of combustion noise, also restrains the emission ofNOx. The combustion duration in the diffusion combustion stage affected the duration of thecylinder high temperature, and plays an important role in the generation of NOx emissions, alsodirectly affects the engine's fuel consumption rate. So both NOx emissions and fuelconsumption rate determines the target value of the target heat release rate. If the NOxemissions is permitted, the limitations of the cylinder combustion temperature can beappropriate reduced, so that the rate of diffusion combustion is accelerate and to achieve themore fuel economy. Due to the limitation of the hardware technical level, the engine isimpossible to play the maximum performance, but from the perspective of the target heatrelease rate, optimizational match can be achieved between the various characteristics of theengine completely in support of the new technology so as to achieve high efficiency and lowemissions limit, which put forward new demands to development of equipment.
引文
[1]汽车蓝皮书.《中国汽车产业发展报告》(2008).社会科学文献出版社,2008.4
    [2] baike.baidu.com/view/1494637.htm,低碳经济,2010-1-8
    [3] BP(British Petroleum)世界能源统计2009报告分析[R].2009
    [4] IEA2009年发布的世界能源展望报告[R].2009
    [5]李骏.汽车发动机节能减排先进技术[M].北京:北京理工大学出版社,2011.
    [6] BP世界能源统计年鉴,2010.
    [7] J.Gary System, Andreas M.Lippert, The Drive for Energy Diversity and Sustainability: The Impact onTransportation Fuels and Propulsion System Portfolios,28thInternational Vienna Motor Symposium2007.
    [8] R.Sausen,J.Hendricks,Impact of Transport on Climate,27thInternational Vienna Motor Symposium2006.
    [9]沈中元.中国汽车领域的节能潜力(日本能源经济研究所)[J].国际石油经济,2006.
    [10]国务院发展研究中心,中国汽车工程学会,大众汽车集团.中国汽车产业发展报告(2008)[M].北京:社会科学文献出版社.
    [11]尧命发.柴油机有害排放物控制技术的新发展,内燃机工程[J].1997年第18卷第三期:39-45
    [12] R.Allansson, et al.The Development and In-Field Performance of Highly Durable Particulate ControlSystems[C].SAE Paper2004-01-0072,2004
    [13]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001
    [14]李勤.现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998.12
    [15]汽车驶入哥本哈根时代[EB/OL].河南日报(2010-1-6)
    [16]刘忠长.车用柴油机电控高压喷油系统与欧Ⅲ排放标准,车用发动机[J].2004年第4期
    [17] R.Allansson, et al.The Development and In-Field Performance of Highly Durable Particulate ControlSystems[C].SAE Paper2004-01-0072,2004
    [18]旻苏.机动车排放标准体系分析[J].世界标准化与质量管理,2006.6第6期:29-33
    [19]聂崇训.欧美柴油机排放标准参考[J].工程机械.2003.3:54-57
    [20]车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)[S](GB17691-2005)
    [21] S.P.Edward, F.Wirbeleit. Strategic analysis of technologies for future truck engines[C].SAE Paper2000-01-3458,2000
    [22] Marcos G.Ortiz, Roychelle Ingram-Ogunwumi et al.Analysis of Different Heavy Duty DieselOxidation Catalysts Configurations[C].SAE Paper2004-01-1419,2004
    [23]刘宜,周校平,乔信起,黄震.我国柴油机迎接欧Ⅲ排放限值的技术准备[J].内燃机工程,2005年26(2):P54-57.
    [24]徐家龙,藤泽英也.电装公司柴油机共轨系统产业化之路[J].现代车用动力,2009(3).
    [25]藤泽英也,等.最新电控汽油喷射[M].林学东,译.北京:北京理工大学出版社,1998.
    [26]徐家龙,藤泽英也.21世纪的汽车发动机[J].汽车技术,2000(1).
    [27]董尧清.我国中重型车用柴油机实现欧Ⅲ排放法规的技术路径[J].汽车技术,2005年5期
    [28]刘晓红.车用柴油机电控高压喷油系统与欧Ⅲ排放标准[J].机械管理开发,2006年4月
    [29] P. Richards and B. Terry, et al.Demonstration of the Benefits of DPF/FBC Systems on London BlackCabs[C].SAE Paper2003-01-0375,2003
    [30] P. Richards, et al.Results from a Million km, Heavy-Duty Truck Trail, Using FBC RegeneratedDPFs[C].SAE Paper2004-01-0074,2004
    [31] Hisaki T, Jinichi M, et al.DPR Developed for Extremely Low PM Emissions in ProductionCommercial Vehicles[C].SAE Paper2004-01-0824,2004
    [32] Akihama,K.,Takatori,Y.,Inagaki,K.. Mechanism of the Smokeless Rich Diesel Combustion byReducing Temperature[C].SAE Paper2001-01-0655,2001
    [33] Kamimoto,T.and Bae M..High Combustion Temperature for the Reduction of Particulate in DieselEngines[C].SAE Paper880423,1988
    [34] Lutz.A.E., Kee R.J. and et al.Fortran Program for Predicting Homogenous Gas Phase ChemicalKinetics with Sensitivity Analysis[C].SAND87-8248,1994
    [35]韩东,吕兴才,黄震.柴油机低温燃烧的研究进展[J].车用发动机,第2期(总第174期),2008年4月:5-9
    [36]苏万华.高密度-低温柴油机燃烧理论与技术的研究与进展[J].内燃机学报,2008,26(增刊):1-8
    [37]许俊峰,李玉峰,李丽莉等.高速4气门直喷柴油机可变进气涡流的研究[J].内燃机学报,2001,19(5):400-404.
    [38]方俊华.进气涡流对车用柴油机变工况微粒排放的影响[D].南京大学,2000.
    [39]林学东,刘忠长,刘巽俊等.采用可变进气涡流机构改善柴油机的性能[J].农业机械学报,1999,30(5):5-8.
    [40]吴志军,黄震,李军等.四气门柴油机的可变涡流进气系统的试验研究[J].内燃机工程,2001,22(3):74-79.
    [41]王桂华,陆家祥,顾宏中等.柴油机电控燃油喷射系统工作过程仿真计算[J].上海交通大学学报,2000,34(4):466-468.
    [42]何志霞,李德桃,胡林峰等.柴油机燃油喷射系统模拟计算的发展与分析[J].内燃机工程,2004,25(2):50-53,74.
    [43]张华林.新型中速柴油机燃油喷射系统改型设计与性能优化分析[D].武汉理工大学,2010.
    [44]邵杰.高压缸内直喷发动机燃油喷射系统综述[J].汽车电器,2012,(3):6-7.
    [45]蔡遂生,常久鹏,雷保军等.共轨蓄压式电控泵喷嘴系统的实验研究[J].北京理工大学学报,2000,20(6):672-676.
    [46]杨时威,吴长水,冒晓建等.电控单体泵燃油喷射系统控制方法研究[J].内燃机工程,2008,29(3):6-11.
    [47]邹龙,杨海龙.高压共轨、单体泵和泵喷嘴燃油喷射系统分析[J].柴油机设计与制造,2007,15(3):1-5.
    [48]郁国军,焦玉琴,王孝等.泵喷嘴柴油机ECU油量控制试验研究[J].铁道机车车辆,2011,31(z1):267-270.
    [49]仇滔,刘兴华,刘福水等.电控单体泵燃油系统凸轮型线优化研究[J].内燃机学报,2008,26(5):476-479.
    [50]王裕鹏,刘福水,刘兴华等.单缸电控单体泵低压油路供油特性[J].农业机械学报,2011,42(5):24-29.
    [51]赵长禄,谭建伟,张付军等.电控单体泵式(EUP)柴油机喷油系统的研究[J].内燃机工程,2004,25(2):79-83.
    [52]王育辉,高国珍,骆旭薇等.电控高压共轨柴油机匹配的研究[J].内燃机工程,2006,27(3):69-72.
    [53]彭毅刚,唐航波,龚元明等.高压共轨电控柴油机试验台架系统的设计[J].内燃机工程,2005,26(3):49-52.
    [54]金其学,吴定才.浅探电控高压共轨技术应用与发展[C].//2009年四川省第九届汽车学术交流年会论文集.2009:214-216.
    [55]刘雄,张惠明,纪丽伟等.电控高压共轨喷油系统的标定和应用[J].天津大学学报,2005,38(4):313-317.
    [56]庄福如,潘铁政,吴小勇等.柴油机共轨压电晶体喷油器及驱动电路的研究[J].现代车用动力,2008,(3):11-16.
    [57]苏瑜,周文华,庄福如等.高压共轨柴油机压电喷油器的驱动响应特性[J].江南大学学报(自然科学版),2009,8(2):202-206.
    [58]何正胤.压电晶体喷油器及驱动策略的研究[D].浙江大学机械与能源工程学院,2008.
    [59]陈帅,庄福如,王旭永等.压电式共轨喷油器总成的试验研究[J].现代车用动力,2011,(3):8-11.DOI:10.3969/j.issn.1671-5446.2011.03.003.
    [60]王军,张幽彤,熊庆辉等.压电式喷油器两次喷射问隔时间分析及影响[J].兵工学报,2011,32(8):913-917.
    [61]陈林,李建秋,杨福源等.压电晶体柴油喷油器的驱动控制方法[J].汽车安全与节能学报,2010,01(2):152-157.
    [62]王九如,龚笑舞.采用压电晶体技术的第二代共轨喷油系统[J].内燃机燃油喷射和控制,2001,(4):28-35,39.
    [63]黄炳华,王兆海.共轨柴油喷射系统及其在轿车上的应用[J].深圳职业技术学院学报,2007,6(4):7-11.
    [64] Mamoru Oki, Shuichi Matsumoto,Yoshio Toyoshima et al.180MPa Piezo Common RailSystem[C].Emission: New Diesel Engines and Components and CI Engine Performance for Use withAlternative Fuels (SP-2014) SAE:2006-01-0274
    [65] Hyun Kyu Suh, Sung Wook Park, Chang Sik Lee et al. Effect of piezo-driven injection system on themacroscopic and microscopic atomization characteristics of diesel fuel spray[J].Fuel86(2007)2833–2845
    [66] Politecnico di Torino, Dipartimento di Energetica, II Facolt′a di Ingegneria et al.A Linear opticalsensor for measuring needle displacement in common-rail diesel injectors[J].Sensors and Actuators A134(2007)366–373.
    [67] Hyundai-Kia Motor Company,Jangdeok-dong, Hwaseong-si et al.A method for combustion phasingcontrol using cylinder pressure measurement in a CRDI diesel engine[J].Mechatronics17(2007)469–479.
    [68] Sa1Dong, Sangnok Gu,Ansan, Gyeonggi Do et al.A study on the spray structure and evaporationcharacteristic of common rail type high pressure injector in homogeneous charge compression ignitionengine[J]. Fuel84(2005)2341–2350.
    [69] R. Payri, F.J. Salvador, J. Gimeno, L.D. Zapata et al.Diesel nozzle geometry influence on sprayliquid-phase fuel penetration in evaporative conditions[J].Fuel87(2008)1165–1176.
    [70]朱坚,黄晨,尧命发.燃烧室几何形状对柴油机燃烧过程影响的数值模拟研究[J].内燃机工程,2007.28(2):14-18
    [71] Arturo de Risi, Teresa Donateo et al. Optimization of the Combustion Chamber of Direct InjectionDiesel Engines[C]. SAE Paper,2003-01-1064
    [72] Caroline L. Genzale, Rolf D. Reitz and Mark P. B. Musculus. Effects of Piston Bowl Geometry onMixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty DieselEngine[C]. SAE Paper,2008-01-1330
    [73]林学东等.车用柴油机低排放缩口燃烧系统的优化.吉林大学学报(工学版),2007.Vol.37No.1:54~59
    [74]林学东等.车用柴油机缩口型燃烧系统参数优化试验研究.农业机械学报,2004.Vol.35No.1:41~43
    [75] Caroline L. Genzale, Rolf D. Reitz and David D. Wickman. A Computational Investigation into theEffects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in aHeavy-Duty Diesel Engine[C].SAE Paper,2007-01-0119
    [76] Keiya NISHIDA, Wu ZHANG and Tetsuya MANABE. Effects of Micro-Hole and Ultra-HighInjection Pressure on Mixture Properties of D.I. Diesel Spray[C].SAE Paper,2007-01-1890
    [77] Youngmin Woo, Youngjae Lee and Yunyoung Kim et al. Effects of Spray Characteristics withDifferent Geometrieson the Performance of a DI Diesel Engine[C]. SAE Paper,2008-01-2468
    [78] Jian Gao, Yuhei Matsumoto and Makoto Namba et al. Group-Hole Nozzle Effects on MixtureFormation and In-cylinder Combustion Processes in Direct-Injection Diesel Engines[C]. SAE Paper,2007-01-4050
    [79]林学东等.高压共轨喷射的高速直喷柴油机混合气形成及燃烧过程.吉林大学学报(工学版),2009.Vol.39No.6:1446~1451
    [80]张哲,马朝臣,邓康耀等.VGT可调机构配合间隙优化研究[J].内燃机学报,2006,24(6):548-553.
    [81]王忠,历宝录,徐凌等.VGT涡轮增压整车性能瞬态参数采集系统[J].江苏大学学报(自然科学版),2005,26(3):217-221.
    [82]郭林福,马朝臣,施新等.VGT对柴油机经济性和动力性影响的试验研究[J].内燃机学报,2004,22(2):116-121.
    [83]朱昌吉.车用柴油机电控EGR系统设计及性能研究[D].长春:吉林大学,博士学位论文,2005年12月
    [84]韩永强,刘忠长,等.增压中冷车用柴油机EGR率阶跃工况响应[J].燃烧科学与技术,2007年第13卷第3期
    [85]朱昌吉,刘忠长,许允.瞬态工况下EGR率测量方法的研究[J].内燃机学报,2006,24(3):276-279
    [86] Yongqiang Han, Zhongchang Liu et al.EGR Response in a Turbo-charged and After-cooled DI DieselEngine and Its Effects on Smoke Opacity[C].SAE Paper2008-01-1677,2008
    [87]庄兵,罗福强等.内燃机废气再循环(EGR)率评价方法研究[J].农机化研究,2006(8):206-208
    [88] Malin Alriksson,Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels ofEGR[C].SAE Paper2005-01-3836,2005
    [89] Hisaki T, Jinichi M, et al.DPR Developed for Extremely Low PM Emissions in ProductionCommercial Vehicles[C].SAE Paper2004-01-0824,2004
    [90] Akihama,K.,Takatori,Y.,Inagaki,K.. Mechanism of the Smokeless Rich Diesel Combustion byReducing Temperature[C].SAE Paper2001-01-0655,2001
    [91] Kamimoto,T.and Bae M..High Combustion Temperature for the Reduction of Particulate in DieselEngines[C].SAE Paper880423,1988
    [92] Lutz.A.E., Kee R.J. and et al.Fortran Program for Predicting Homogenous Gas Phase ChemicalKinetics with Sensitivity Analysis[C].SAND87-8248,1994
    [93]韩东,吕兴才,黄震.柴油机低温燃烧的研究进展[J].车用发动机,第2期(总第174期),2008年4月:5-9
    [94]苏万华.高密度-低温柴油机燃烧理论与技术的研究与进展[J].内燃机学报,2008,26(增刊):1-8
    [95] P. G. Aleiferis, A. G. Charalambides, et al.Modeling and Experiments of HCCI Engine Combustionwith Charge Stratification and Internal EGR[C].SAE Paper2005-01-3725,2005
    [96] Ryo Hasegawa, et al. HCCI Combustion in DI Diesel Engine[C].SAE Paper2003-01-0745,2003
    [97] James P. Szybist and Bruce G. Bunting.Cetane Number and Engine Speed Effects on Diesel HCCIPerformance and Emissions[C].SAE Paper2005-01-3723,2005
    [98] D. Yap, A. Megaritis, S. Peucheret and M.L. Wyszynski. Effect of Hydrogen Addition on Natural GasHCCI Combustion[C].SAE Paper2004-01-1972,2004
    [99] H. Zhao, Z. Peng and T. Ma.Investigation of the HCCI/CAI Combustion Process by2-D PLIFImaging of Formaldehyde[C].SAE Paper2004-01-1901,2004
    [100] Hideyuki Ogawa, Noboru Miyamoto, et al.Combustion in a Two-stage Injection PCCI Engine WithLower Distillation-temperature Fuels[C].SAE Paper2004-01-1914,2004
    [101] Tomohiro Kanda, Takazo Hakozaki.PCCI Operation with Early Injection of Conventional DieselFuel[C].SAE Paper2005-01-0378,2005
    [102] Yasutaka Kitamura, Sung-Sub Kee, et al.Study on NOx Control in Direct-Injection PCCI CombustionFundamental Investigation Using a Constant-Volume Vessel[C].SAE Paper2006-01-0919,2006
    [103]张晓宇,苏万华,裴毅强. Bump环强化柴油混合过程的数值模拟研究[J].内燃机学报,2005.23(1):1-9
    [104]赵昌普,苏万华,汪洋等.“Bump燃烧室”内新概念稀扩散燃烧混合气形成机理的研究[J].燃烧科学与技术,2004.10(4):327-335
    [105]裴毅强,苏万华,张晓宇等. BUMP燃烧室的稀扩散燃烧机理[J].燃烧科学与技术,2006.12(1):41-45
    [106]何旭,刘卫国,商希彦等.柴油机TR燃烧系统的数值模拟[J].内燃机工程,2006.27(4):4-7
    [107]杨德胜,高希彦,周文彬.柴油机TR燃烧系统的性能研究[J].内燃机学报,2005.23(1):28-31
    [108]谭丕强,陆家祥,邓康耀等.喷油提前角对柴油机排放影响的研究[J].内燃机工程,2004.25(2):9-11
    [109]曲栓,邓康耀,石磊等缸内喷射CO2对柴油机均质压燃影响的初步研究.内燃机学报,2007.25(6):488~492
    [110]方俊华,黄震,乔信起进气中CO2浓度对预混合燃烧和排放影响的试验和模拟研究.工程热物理学报,2005.26(4):709-712
    [111] L.GASNOT,P.DESGROUX,J.F.PAUWELS,and L.R.SOCHET. Detailed Analysis of Low-pressurePremixed Flames of CH4+O2+N2: A Study of Prompt-NO. Combustion and Flame,117(1999):291~306
    [112] K. Verbiezen, A.J. Donkerbroek, R.J.H. Klein-Douwel etl. Diesel combustion In cylinder NOconcentrations in relation to injection timing. Combustion and Flame,151(2007):33~346
    [113] Bradley A. Williams, James W. Fleming. Experimental and modeling study of NO formation in10torr methane and propane flames:Evidence for additional prompt-NO precursors. Proceedings of theCombustion Institute,31(2007):109~1117
    [114] Bradley A. Williams, Jefrey A. Sutton1, James W. Fleming. The role of methylene in prompt NOformation. roceedings of the Combustion Institute,32(2009):343~350
    [115] Gregory P. Smith. Evidence of NCN as a flame intermediate for prompt NO. Chemical PhysicsLetters,367(2003):541~548
    [116] A.A. Konnov. Implementation of the NCN pathway of prompt-NO formation in the detailed reactionmechanism. Combustion and Flame,156(2009):2093~2105
    [117]刘永峰,电控缸内直喷发动机着火与碳烟生成机理[M].北京:机械工业出版社.
    [118] Arturo de Risi, Teresa Donateo et al. Optimization of the Combustion Chamber of Direct InjectionDiesel Engines[C]. SAE,2003-01-1064
    [119]林学东.发动机原理[M].北京:机械工业出版社,2008
    [120]奥圭一など,“デイーゼル機関の燃焼と排出ガス特性に及ぼす多段噴射の効果とそのメカニム”自動車技術論文集,Vol.38, No.4,91~96,2007
    [121]袁方恩,林学东,田维等.缩口燃烧室中气流特性与燃油喷雾匹配对柴油机燃烧及排放的影响[J].吉林大学学报(工学版),2011,41(3):629-634.
    [122]林学东,袁方恩,高莹等.高压共轨直喷式柴油机混合气浓度场对快速NO生成影响的研究[J].内燃机工程,2012,33(3):33-39,44.
    [123] Jeffrey A. Sutton, James W. Fleming. Towards accurate kinetic modeling of prompt NO formation inhydrocarbon flames via the NCN pathway[C]. Combustion and Flame154(2008)630–636
    [124]田维,高速直喷柴油机混合气形成动态特性及其对燃烧过程的影响[D].长春:吉林大学,博士学位论文,2010年4月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700