用户名: 密码: 验证码:
基于风险的球柱组合壳结构性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶与海洋工程结构物在建造、运输与安装、运行以及拆除等阶段,都将承受各种各样的突发性、偶然性因素的影响,使得结构系统面临着被破坏的风险。现有的确定性结构设计方法和基于可靠性的结构设计方法,对建造工艺和使用环境诸多等因素考虑并不十分完善,因此需要研究基于风险的结构性能分析。对作为单壳体潜艇耐压船体的球柱组合壳结构,由于具有超长舱和大分舱的特点,球壳和柱壳之间的相互作用影响了组合壳的结构性能规律。因此本文在球柱组合壳结构的力学性能、系统可靠性及优化、基于风险的结构设计三个方面,采用理论分析与模型试验相结合的方法开展了研究,主要内容如下:
     (1)考虑组合壳连接处的变形协调条件,建立了球柱组合壳结构的力学模型,通过解析方法分析了结构参数的变化对组合壳强度的影响,阐明了组合壳结构的性能规律。并采用简化边界模型分析了组合壳结构的边缘效应问题。对于球柱组合壳结构的稳定性,忽略连接处的转角协调,构建了满足位移协调的组合壳结构位移函数,将球柱组合壳结构的总势能分为外力功、薄膜应变能和弯曲应变能,推导了球柱组合壳结构整体稳定性的计算公式。
     (2)为了验证球柱组合壳结构理论分析的结果,设计了不同参数的3个球柱组合壳结构模型。进行静水压力试验,通过实测应变分析了模型在试验载荷下的应力分布规律以及结构参数的影响,并与理论分析的结果进行比较,验证了结构参数对边缘效应的影响规律。
     (3)通过分析球柱组合壳结构的不确定因素,确定了失效模式、结构参数随机变量分布和统计特征,建立了失效模式的可靠性模型。通过二维联合概率密度函数,推导了两个相关失效模式的联合失效概率计算公式,进而给出考虑失效模式相关性的球柱组合壳串联结构系统失效的全概率公式,并采用蒙特卡罗模拟验证了系统可靠度计算的正确性。采用多岛遗传算法对组合结构进行了基于可靠性的优化设计。
     (4)通过分析耐压结构计算载荷的安全系数问题,首次提出了下潜超深风险的概念。综合考虑社会、环境、个人、经济对下潜超深风险的要求,制定了“成本—效益”的结构设计准则。通过极值分布函数计算了下潜超深风险的发生概率,对不同的下潜超深选取99%的可靠度进行了球柱组合壳的可靠性优化设计,给出了每种方案的安全成本(结构重量)。依据结构的设计准则结合分析安全成本与发生概率,做出适当的结构设计决策并构建了一个基于风险的结构设计基本框架。
Ship and ocean engineering structures suffer from a variety of sudden and accidentalfactors in the stage of construction, transportation, installation, operation and demolition,which makes the structure system face the risk of damage. Due to comprehensivelyconsideration on structural safety, it is needed to study on the risk-based structuralperformance analysis. As the pressure hull structure of mono-shell submarine, sphere-cylindercombined shells have the characteristics of super-long cabin and large subdivision. Theinteractions between cylindrical shell and spherical shell will influence the structureperformance of combined shell.
     Aiming at the above problems and using a combination of theoretical analysis andmodel test, this paper has carried out some researches, which include three aspects: thestructural mechanical performance of combined shell, structural system reliability, andrisk-based structure design. The main contents are as follows:
     (1) Considering the deformation coordination conditions at the joint of combined shell,structural mechanics model of sphere-cylinder combined shell is established. The influence ofstructural parameters to sphere-cylinder combined shell strength is analyzed. The law ofcombined shell structure performance is summarized. The edge effect is analyzed usingsimplified boundary model. For the structural stability of sphere-cylinder combined shell, thestructure displacement function which meeting the displacement coordination is established.The stability calculation formula of sphere-cylinder combined shell is deduced, while the totalpotential energy is divided into external work, thin film strain energy and bending strainenergy.
     (2) In order to validate the theory analysis results, three test models which have differentparameters were designed. The rule of stress distribution and the effects of structureparameters are analyzed by the measured strain of models. The edge effects of sphere-cylindercombined shells are verified through comparing with the results of theory analysis and modeltest.
     (3) The failure mode and distribution and statistics characteristic of random variable ofsphere-cylinder combined shells are determined through the analysis of uncertainty factors, and the reliability models are established. Joint failure probability calculation formula of tworelated failure modes is derived through2d joint probability density function and the fullprobability formula of tandem structure system of sphere-cylinder combined shells whichconsidering the correlation among failure modes is given. And then the correctness of systemreliability calculation is verified through Monte Carlo simulation. The reliability-basedoptimization design is carried out through multi-island genetic algorithm.
     (4) The concept of risk beyond the submerged depth is firstly put forward. The“cost-benefit” criteria of structure design is formulated through overall considering therequirements of society, environment, person and economy to risk beyond the submergeddepth. Through the extreme distribution function, the probability of risk beyond thesubmerged depth is described. Selecting the reliability of99%, the sphere-cylinder combinedshells are designed based on the reliability optimization under different submerged depth andthe structure security costs (structure weight) of each scheme are given. According to theprinciples of structure design, safety cost and occurrence probability of risk, the properdecisions is made. Finally, a framework of risk-based structure design is constructed.
引文
[1]胡毓仁,李典庆,陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [2]海上固定平台规划、设计和建造的推荐做法—工作应力设计法[S].中华人民共和国海洋石油天然气行业标准,SY10030-2003.
    [3]贡金鑫,仲伟秋,赵国藩.工程结构可靠性理论的发展与应用(1)[J].建筑结构学报,2002,23(4):2-9.
    [4]贡金鑫,仲伟秋,赵国藩.工程结构可靠性理论的发展与应用(2)[J].建筑结构学报,2002,23(5):2-10.
    [5]贡金鑫,仲伟秋,赵国藩.工程结构可靠性理论的发展与应用(3)[J].建筑结构学报,2002,23(6):2-9.
    [6]陈肇元,杜拱辰.结构设计规范的可靠度设计方法质疑[J].建筑结构,2002,32(4):64-69.
    [7]阮欣,陈艾荣,石雪飞.桥梁工程风险评估[M].北京:人民交通出版社,2008.
    [8]李露梅.工程建设项目设计阶段工程造价控制研究[D].天津工业大学硕士学位论文,2008.
    [9] Apostolos D. Papanikolaou. Risk-Based Ship Design. Methods, Tools and Applications
    [M]. Springer,2009.
    [10]黄加强,郭日修.分区样条等参元方法分析加肋轴对称组合壳[J].计算力学学报,1998,15(1):56-58.
    [11]宋天霞,崔建强.球、柱组合结构的应力分析[J].华中工学院学报,第十一卷第六期.
    [12]宋天霞,秦庆华.球、柱壳组合结构在均布压力下的平衡与稳定性[J].华中工学院学报,第十三卷第一期.
    [13]李丽娟,刘锋,梅占馨,万虹.组合壳体大变形分析的样条函数法[J].工程力学,1995,12(1):19-23.
    [14]王安稳,郭日修.锥—环—柱结合壳的应力和稳定性[J].中国造船,1995,3:54-60.
    [15]徐永春,张永涛.组合壳边缘应力弹性分析[J].青岛建筑工程学院学报,1996,17(2):19-24.
    [16]徐永春,张永涛.组合壳极限承载力分析[J].青岛建筑工程学院学报,1996,17(3):6-12.
    [17] K. Magnucki,W. Szyc,J. Lewinski. Minimization of stress concentration factor incylindrical pressure vessels with ellipsoidal heads [J]. International Journal of PressureVessels and Piping,2002,79(12):841-846.
    [18] K. Magnucki,W. Szyc. Stability of ellipsoidal heads of cylindrical pressure vessels [J].Applied Mechanics and Engineering,2000,5(2):389-404.
    [19] D. N. Paliwal,H. Kanagasabapathy,K. M. Gupta. The large deflection of an orthotropiccylindrical shell on a Pasternak foundation [J]. Composite Structures,1995,31(1):31-37.
    [20]戴自昶.锥—环—柱结合壳和锥—柱结合壳应力的近似解[J].舰船科学技术,2002,24(5):3-8.
    [21]许兵,蒋培林.锥柱结合壳加强形式应用研究[J].船舶工程,2004,26(3):16-20.
    [22]郭日修,吕岩松,黄加强,吴梵,白雪飞,陈昕.加肋锥—环—柱结合壳试验研究[J].船舶力学,2008,12(2):252-257.
    [23]白雪飞,陈昕,丁锦超,吴梵,吕岩松,郭日修.凹型加肋锥—环—柱结合壳强度的模型试验研究[J].船舶力学,2006,10(2):65-72.
    [24]白雪飞,陈昕,丁锦超,吴梵,吕岩松,郭日修.凹型加肋锥—环—柱结合壳强度的模型试验研究[J].船舶力学,2006,10(2):65-72.
    [25]崔逸琼.内波作用下组合壳体结构性能分析[D].宁波大学硕士学位论文,2009.
    [26] Freudenthal A M. The safety of structures. ASCE Trans.1947,112(2):125-129.
    [27]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:水利水电出版社,1984.
    [28] Cornell C A. A probability based structural code [J]. Journal of the American ConcreteInstitute,1969,66(12):974-985.
    [29] Lind N. C. Consistent partial safety factors [J]. Journal of the Structural Division,1971.
    [30]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社,1993.
    [31]马永亮.考虑腐蚀影响的潜艇结构可靠性研究[D].哈尔滨工程大学硕士学位论文,2009.
    [32]赵维涛,安伟光,严心池.二次二阶矩可靠性指标[J].哈尔滨工程大学学报,2004,25(2):240-242.
    [33]王永胜.基于响应面法和蒙特卡罗法的混泥土结构可靠性分析[D].西安建筑科技大学硕士学位论文,2005.
    [34]里超.连续卸船机结构系统可靠性分析及优化设计[D].西南交通大学硕士学位论文,2010.
    [35] Chames A, Cooper W W. Chance constrained programming [J]. Management Science,1959,6(1):73-79.
    [36] Rao S S. Structural optimization by chance constrained programming technique [J].Computer&Structures,1980,12(6):777-781.
    [37] Jozwiak S F. Probability-based optimization of truss structures [J]. Computer&Structures,1989,32(1):87-91.
    [38]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [39]苏长青,张义民,杜劲松.具有相关失效模式转子系统的频率可靠性研究[J].机械工程学报,2012,48(6):175-179.
    [40]卢昊,张义民,赵长龙,朱丽莎.多失效模式机械零件可靠性灵敏度估计[J].机械工程学报,2012,48(2):63-67.
    [41]牟善军.海上石油工程风险评估技术研究[D].中国海洋大学博士学位论文,2006.
    [42]张圣坤,白勇,唐文勇.船舶与海洋工程风险评估[M].北京:国防工业出版社,2003.
    [43] NTS. Rsik and Emergency Preparedness Analysis. NORSOK Z-013. March,1998.
    [44]李典庆,唐文勇,张圣坤.海洋工程风险接受准则研究进展[J].海洋工程,2003,21(2):96-102.
    [45]李祥茂.基于风险的舰船火灾爆炸评估方法研究[D].上海交通大学硕士学位论文,2008.
    [46]李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004.
    [47]李刚,张大勇,岳前进.抗冰海洋平台的全寿命优化设计I—理论与模型[J].船舶力学,2008,12(4):599-606.
    [48]张大勇.基于性能的抗冰导管架结构风险设计研究[D].大连理工大学博士学位论文,2007.
    [49] Val D V, Stewart M G. Life-cycle cost analysis of reinforced concrete structures inmarine environments [J]. Structural Safety,2003,25:343-362.
    [50] Bea R G, Brandtzaeg A, Craig M J K. Life-cycle reliability characteristics of minimumstructures [J]. Journal of Offshore Mechanics and Arctic Engineering,1998,120:129-138.
    [51]白旭.潜艇球形壳体结构性能研究[D].哈尔滨工程大学硕士学位论文,2011.
    [52]黄旎,夏飞.球—环—锥组合壳在外压下的强度计算方法评述[J].舰船科学技术,2011,33(9):7-10.
    [53]谢祚水,王自力,吴剑国.潜艇结构分析[M].华中科技大学出版社,2003.
    [54]刘勇,蒋培林,张政.潜艇舱壁加强环结构形式研究[J].舰船科学技术,2008,30(3):69-71.
    [55]施德培,李长春.潜水器结构强度[M].上海:上海交通大学出版社,1991.
    [56]黄旎.球—环—锥旋转组合壳强度和稳定性研究[D].中国舰船研究院博士学位论文,2012.
    [57] Iain J. S. Attwater, John Anderson, George E. Findlay. Three-dimensional finite elementanalysis of sphere/cylinder intersections under axisymmetric loading [J]. InternationalJournal of Pressure Vessels and Piping,1994,57:231-235.
    [58] S. Komura, K. Tamura, T. Kato. Buckling of spherical shells adhering onto a rigidsubstrate [J]. The European Physical Journal E,2005,18:343-358.
    [59] Carl T. F. Ross, Terry Whittaker, Andrew P. F. Little. Design of submarine pressure hullsto withstand buckling under external hydrostatic pressure [C]. Proceedings of theinternational conference on computing in civil and building engineering, University ofPortsmouth,2001.
    [60]石德新,王晓天.潜艇强度[M].哈尔滨:哈尔滨工程大学出版社,1996.
    [61]刘鸿文.板壳理论[M]:浙江大学出版社,1987
    [62]成鸿学,郭建华,张聪,包亦望.样条加权残数法分析薄壳[J].工程力学,1986,2(1):58-63.
    [63] Sherrel Dane Manning. General Instability of a Cylindrical Shell with Conical EndsSubject to Uniform External Pressure [D]. Texas Technological College,1969.
    [64] J. G. A. Croll. Towards a rationally based elastic-plastic shell buckling designmethodology [J]. Thin-walled Structure,1995,23:67-84.
    [65] J. G. A. Croll and G. D. Gavrilenko. Reduced-stiffness method in the theory of bucklingof stiffened shells [J]. Strength of Material,2000,32(2):168-177.
    [66] Eduardo M. Sosa, Luis A. Godoy and James GA. Croll. Computation of lower-boundelastic buckling loads using general-purpose finite element codes [J]. Computers andStructures,2006,84:1934-1945.
    [67] Rossana C. Jaca, Luis A. Godoy, Fernando G. Flores et al. A reduced stiffness approachfor the buckling of open cylindrical tanks under wind loads [J]. Thin-walled Structures,2007,45:727-736.
    [68] Lauren Kougias. A study of the effect of imperfections on buckling capability in thincylindrical shells under axial loading [D]. Rensselaer Polytechnic Institute,2009.
    [69] Robert M. Jones. Buckling of bars plates and shells [M]. Bull Ridge Publishing,2006.
    [70] G. D. Gavrilenko and V. I. Matsner. Effect of localized imperfections on the criticalloads of ribbed shells [J]. International Applied Mechanics,2010,46(7):771-775.
    [71] Christopher J. Stull, Christopher J. Earls and Wilkins Aquino. A posteriori initialimperfection identification in shell buckling problems [J]. Computer Methods inApplied Mechanics and Engineering,2008,198(2):260-268.
    [72] G. D. Gavrilenko and V. I. Matsner. The Stability and Load-Carrying Capacity ofCylindrical shells with Axisymmetric Dents [J]. International Applied Mechanics,2002,38(7):861-871
    [73] Eduardo M. Sosa, Luis A. Godoy, James G.A. Croll. Computation of lower-boundelastic buckling loads using general-purpose finite element codes [J]. Computers andStructures,2006,84:1934-1945.
    [74] Y.G. Fakhim, H. Showkati, K. Abedi. Experimental study on the buckling andpost-buckling behavior of thin-walled cylindrical shells with varying thickness underhydrostatic pressure. Proceedings of the International Association for Shell a nd SpatialStructures (IASS) Symposium2009, Valencia, Spain,28September–2October,2009.
    [75] Mackay J R, Smith M J, Keulen F, Bosman T N and Pegg N G. ExperimentalInvestigation of the Strength and Stability of Submarine Pressure Hulls with andwithout Artificial Corrosion Damage[J]. Marine Structures,2010,23:339-359.
    [76] Kim K, Kim U, Park J. A Study on Effects of Initial Deflection on Ultimate Strength ofRing-stiffened Cylindrical Structure under External Hydrostatic Pressure[C].Proceeding of The Thirteenth International Offshore and Polar Engineering Conference,Hawaii, USA,2003:415-422.
    [77]徐秉汉,朱邦俊,欧阳吕伟,裴俊厚.现代潜艇结构强度的理论与试验[M].北京:国防工业出版社,2007.
    [78]吴九强.潜艇与可潜器结构可靠性分析及综合性能评估方法研究[D].华中科技大学硕士学位论文,2006.
    [79]张伟.潜艇结构可靠性评估和设计研究[D].中国舰船研究院博士学位论文,1997.
    [80]吴亚舸.潜艇耐压结构系统可靠性分析[D].华东船舶工业学院硕士学位论文,2002.
    [81]姜封国.结构系统基于可靠性的优化设计研究[D].哈尔滨工程大学博士学位论文,2009.
    [82]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社,2001.
    [83] GJB/Z21A-2001,潜艇结构设计计算方法[S].
    [84]蔡新刚.潜艇耐压壳结构屈曲强度可靠性分析[D].中国舰船研究院博士学位论文,1991.
    [85]杨代盛,桑国光,李维扬,戴仰山.船舶强度的概率方法[M].哈尔滨:哈尔滨工程大学出版社,1994.
    [86]吴亚舸,吴剑国.潜艇耐压圆柱壳结构可靠性的数值模拟计算法[J].造船技术,2002,1:15-18.
    [87]曾广武,吴九强,黎庆芬,肖伟.潜水器耐压结构可靠性计算及衡准[J].中国造船,2007,48(4):19-25.
    [88]吕春雷,王晓天,梁超.水下耐压壳体结构可靠性的设计方法[J].船舶力学,2007,11(4):600-608.
    [89] YU Yingxia, LIU Fengjun, ZHANG Wei, LIANG Bin. Improving of RSM-FORM andapplication to reliability calculation of ring-stiffened cylindrical shell [J]. Journal ofShip Mechanics,2012,16(3):271-276.
    [90] N. Gayton, J. M. Bourinet, M. Lemaire. CQ2RS: a new statistical approach to theresponse surface methods for reliability analysis [J]. Structure Safey,2003,25:99-121.
    [91] Herbert Martins Gomes, Armando Miguel Awruch. Comparison of response surface andneural network with other methods of structural reliability analysis [J]. Structure Safey,2004,26:49-67.
    [92] Baidurya Bhattacharya, Roger Basu, Kaitung Ma. Developing taget reliability for novelstructures: the case of the Mobile Offshore Base [J]. Marine Structures,2001,14:37-58.
    [93] Jian Deng, Desheng GU. Structural reliability analysis for implicit performancefunctions using artificial neural network [J]. Structure Safety,2005,27:25-48.
    [94] Y. S. Cheng, F. T. K. Au, G. W. Zeng. Optimal and robust design of docking blocks withuncertainty [J]. Engineering Structures,2004,26:499-510.
    [95] Jinsuo Nie, Bruce R Ellingwood. Directional methods for structural reliability analysis[J]. Structural Safety,2000,22:233-249.
    [96] Li D Q, Zhou C B. Reliability calibration of hydraulic gates for serviceability limit state[J]. HKIE Transactions,2008,15(3):18-23.
    [97] Frank Grooteman. Adaptive radial-based importance sampling method for structuralreliability [J]. Structural Safety,2008,30:533-542.
    [98] M. Papadrakakis, N. D. Lagaros. Reliability-based structural optimization using neuralnetworks and Monte Carlo simulation [J]. Computer Methods in Applied Mechanicsand Engineering,2002,191(32):3491-3507.
    [99] A. Evgrafov, M. Patriksson. Stochastic structural topology optimization discretizationand penalty function approach [J]. Journal of International Society for Structural andMultidisciplinary Optimization,2003,25(3):174-188.
    [100] T. Zoul, S. Mahadevan. A direct decoupling approach for efficient reliability-baseddesign optimization [J]. Structural and Multidisciplinary Optimization,2006,31(3):190-200.
    [101]谢祚水,王志军.潜艇耐压圆柱壳结构的优化设计[J].中国造船,1993,3:79-86.
    [102]陆海燕.基于遗传算法和准则法的高层建筑结构优化设计研究[D].大连理工大学博士学位论文,2009.
    [103]蔡德咏,马大为,赵英英.基于可靠性的复合材料定向管优化设计[J].工程力学,2012,29(6):259-264.
    [104]宋昕,谷正气,张清林,张海峰.基于多岛遗传算法的湍流模型优化研究[J].湖南大学学报(自然科学版),2011,38(2):23-29.
    [105]阮欣.桥梁工程风险评估体系及关键问题研究[D].同济大学博士学位论文,2007.
    [106]王燕.基于风险的岩石隧道支护结构设计研究[D].同济大学博士学位论文,2009.
    [107]金伟良,牛荻涛.工程结构耐久性与全寿命设计理论[J].工程力学,2011,28(SupII):31-37.
    [108]金伟良,宋志刚,赵羽习.工程结构全寿命可靠性与灾害作用下的安全性[J].浙江大学学报(工学版),2006,40(11):1862-1868.
    [109]吴建成.潜艇结构风险评估的关键技术研究[D].华东船舶工业学院硕士学位论文,2003.
    [110] Ricardo O. Foschi. Reliability theory and application to risk analysis of powercomponents and systems [J]. Electrical power&Energy systems,2004,26:249-256.
    [111] Patev R C, Putcha C S. Development of fault trees for risk assessment of dam gates andassociated operating equipment [J]. International Journal of Modelling and Simulation,2005,25(3):190-201.
    [112] Patev R C, Putcha C S, Foltz S D. Methodology for risk analysis of dam gates andassociated operating equipment using fault-tree algorithm [J]. International Journal ofCivil and Environmental Engineering,2005,1(1):52-63.
    [113] John Richard Shultz. The risk of accidents and spills at offshore production platforms
    [D]. Carnegie Mellon University, Carnegie institute of technology thesis submitted inpartial fulfillment of the requirements for the degree of doctor of philosophy,2000.
    [114] Mohammad Khaled H. Chowdhury. Probabilistic human health risk assessment fromoffshore produced water [D]. A thesis submitted to the School of Graduate Studies inpartial fulfillment of the requirements for the degree of Master of Engineering,2009.
    [115]于会萍.电力网络规划方案的成本效益分析与评价[D].上海交通大学硕士学位论文,上海交通大学,2001.
    [116]李刚,程耿东.基于投资—效益准则的结构目标性能水平[J].大连理工大学学报,2005,45(2):166-171.
    [117]李刚,程耿东.基于投资—效益准则的现有结构抗震加固策略[J].大连理工大学学报,2003,43(4):412-415.
    [118]孙海,梁立孚,侯钢领.结构最弱失效模式组的优化及投资—效益模型[J].哈尔滨工程大学学报,2009,30(3):262-266.
    [119]张荫.密肋壁板结构全寿命质量控制与建造技术研究[D].西安建筑科技大学博士学位论文,2007.
    [120]王光远,季天健,张鹏.抗震结构全寿命预期总费用最小优化设计[J].土木工程学报,2003,36(6):1-6.
    [121]王晓锋,马骋,钱正芳,门运国.大潜深潜艇设计中计算深度的探索与建议[J].舰船科学技术,2004,36(3):13-15.
    [122]马运义.试论潜艇总体设计理念创新的有关问题[J].中国舰船研究,2013,8(1):1-6.
    [123]徐亦凡,何斌,何成.潜艇下潜过程中最小挽回深度的仿真分析[J].船海工程,2007,36(5):138-140.
    [124]徐亦凡.潜艇操纵原理与方法[M].北京:兵器工业出版社,2002.
    [125]施生达.潜艇操纵性[M].北京:国防工业出版社,1995.
    [126]潜水系统和潜水器入级与建造规范[S].北京:人民交通出版社,1996.
    [127] William J. Bender. A risk-based cost control methodology for constructing complexstructures with the mobile offshore base as a case study [D]. Dissertation submitted tothe Faculty of the Graduate School of the University of Maryland, Collage Park inpartial fulfillment of the requirements for the degree of Doctor of Philosophy,2000.
    [128] Mathiesen T C, Skjong R. Towards a rational approach to marine safety andenvironment protection regulations [C]. Conference on market mechanisms for safershipping and cleaner oceans. Rotterdam,1996.
    [129] Pinna R, Ronalds B F, Andrich M A. Cost-effective design criteria for Australianmonopod platforms [J]. Journal of Offshore Mechanics and Arctic Engineering,2001,125:132-138.
    [130] Leon D D, Ang A H-S. Development of a cost-benefit model for the management ofstructural risk on oil facilities in Mexico [J]. Computational, Structural Engineering,2002,2(1):19-23.
    [131] Garbatov Y, Soares C G. Cost and reliability based strategies for fatigue maintenanceplanning of floating structures [J]. Reliability Engineering and System Safety,2001,73:293-301.
    [132] Ang A H-S, Lee J C. Cost optimal design of R/C buildings [J]. Reliability Engineering&System Safety,2001,73:233-238.
    [133] Ang A H-S, Leon D D. Determination of optimal target reliabilities for design andupdating of structures [J]. Structural Safety,1997,19(1):91-103.
    [134] Wen Y K. Minimum lifecycle cost design under multiple hazards [J]. ReliabilityEngineering and System Safety,2001,73:223-231.
    [135] H. G. Voortman. Risk-based design of large-scale flood defence system [D].,2002.
    [136] Slobodan P. Simonovic, M. ASCE, Lanhai Li. Methodology for assessment of climatechange impacts on large-scale flood protection system [J]. Journal of Water ResourcesPlanning and Management,2003,129:361-371.
    [137] Hessel G. Voortman, Johannes K. Vrijling. A risk-based optimization strategy forlarge-scale flood defence systems [C]. Proceeding IABSE Conference on Safety, Riskand Reliability, Trends in Engineering, Malta,21-23March, pp:1001-1006.
    [138] Mukhtasor. Hydrodynamic modeling and ecological risk-based design of producedwater discharge from an offshore platform [D]. A thesis submitted to the School ofGraduate Studies in partial fulfillment of the requirement for the degree of Doctore ofPhilosophy, Faculty of Engineering and Applied Science Memorial University ofNewfoundland,2001.
    [139] J. K. Vrijling, Pieter H. A. J. M. van Gelder, Louis H. J. Goossens, Hessel G. Voortman,Mahesh D. Pandey. A framework for risk criteria for critical infrastructures:fundamentals and case studies in the Netherlands [J]. Journal of Risk Research,2004,7(6):569-579.
    [140]陈朝辉,Erik Van Marcke,孙毅,李正良.常规风与飓风的极值风速预测模型评述[J].自然灾害学报,2008,17(5):158-163.
    [141]程细玉.极值I型变异系数估计[J].华侨大学学报(自然科学版),1998,19(2):115-117.
    [142]吴绍敏.极值I型分布恒加应力试验的非参数统计分析[J].华侨大学学报(自然科学版),2001,22(4):342-347.
    [143]肖可以.最大熵原理在水文频率分布模型中的应用研究[D].西北农林科技大学硕士学位论文,2010.
    [144]董凯.基于成本效益分析的风/柴混合发电系统双目标规划[D].湖南大学硕士学位论文,2009.
    [145]肖义,郭生练,熊立华,雒征.大坝安全评价的可接受风险研究与评述[J].安全与环境学报,2005,5(3):90-94.
    [146]胡群芳,黄宏伟.隧道及地下工程风险接受准则计算模型研究[J].地下空间与工程学报,2006,2(1):60-64.
    [147] Jawad D J, Dima J. Life cycle cost optimization for infrastructure facilities [D]. Rutgers:The States University of New Jersey,2003.
    [148] Pieter VAN GELDER, Alex ROOS, Han VRIJLING. Risk based design of civilstructures [C]. The proceeding of one-day workshop at the subfaculty of CivilEngineering, the Delft University of Technology,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700