用户名: 密码: 验证码:
软质板岩特大断面隧道施工期围岩力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际隧道协会(ITA)根据隧道断面积大小定义:凡是修建在地层中,断面积不小于2m2的通道通称为隧道,其中,断面面积2-3m2称为极小断面隧道、3-10m2称为小断面隧道、10-50m2称为中等断面隧道、50-100m2称为大断面隧道、大于100m2称为特大断面隧道。
     随着我国交通建设事业的迅猛发展,大断面隧道和地下工程逐渐增多,特别是客运专线的飞速发展,涌现了许多特大断面隧道。为了克服客运专线上高速列车在隧道内运行所引起的空气动力学问题,客运专线上的隧道基本采用特大断面隧道,这些隧道轨面以上的净空面积大于100m2,开挖断面积大于150m2。与以往修建的隧道相比,特大断面隧道的建设,在隧道的力学行为、隧道的断面形式、隧道衬砌结构、施工方法、初期支护结构模式、支护参数等方面出现了新的要求。虽然目前针对大断面隧道的研究也不少,但很多研究在力学参数取值和数值模拟等方面采用了简化的方法,缺少综合的、系统的研究,特别对于软岩特大断面隧道围岩施工期力学效应的研究,相关文献较少。
     板岩是一种典型的软岩,在云、贵、湘地区有比较广的分布。本文以沪昆客运专线长昆湖南段第九标段姚家隧道为依托,选择该隧道板岩地段为研究对象,通过成分鉴定与微观结构观察,研究了软质板岩的微观构造;通过室内试验分析了岩石层理面、含水率对软质板岩力学性质的影响,探究了软质板岩的吸水性、软化性、膨胀性和崩解性等水理特性和软化机理;通过单轴和三轴蠕变试验研究了软质板岩的基本蠕变规律,确定了板岩改进的Burgers蠕变模型参数;通过不同含水率条件下的蠕变试验,分析了水对板岩蠕变特性的影响规律;通过有限元法,将Burgers黏弹塑性模型参数引入至ANSYS本构模型,对特大断面隧道开挖及支护的应力和变形状况进行了分析;基于监控量测数据对在不同隧道开挖方法下围岩变形随时间和空间的变化规律进行了分析,研究了隧道围岩径向位移释放率与时间和空间之间的关系;在隧道围岩变形时空效应分析的基础上,对姚家隧道在不同围岩级别下的施工工法进行了优化,确定了二次衬砌最佳施作时机,提出了控制特大断面隧道围岩大变形的支护措施,为类似工程的设计和施工提供参考。
     论文完成的工作包括以下几个方面:
     1.软质板岩力学和水理特性研究
     (1)系统展开了软质板岩力学特性的研究。通过软质板岩天然状态下的单轴、三轴压缩试验获取了软质板岩的力学参数。重点研究了以下内容:从定性和定量的角度分析了软质板岩的单轴抗压强度、弹性模量和泊松比与结构面产状和加载方向之间夹角的关系,研究了软质极岩的各向异性特性;从试验的角度研究了板岩的三轴压缩强度和残余强度与围压之间的关系。
     (2)通过磨片和微观检测,分析了板岩的矿物组成和含量;采用粉晶X衍射及电子显微镜检测得出了板岩的颗粒组成与含量,探究了板岩的胶结类型和内部结构,为板岩水理特性和变形机理的研究提供了基础资料。
     (3)通过软质板岩吸水性试验分析了软质板岩的自然吸水率和饱和吸水率之间的关系及饱水系数的变化范围;研究了软质板岩的自然吸水率和饱水系数随时间的变化规律及其影响因素,给出了自然吸水率和饱水系数与时间的关系式。
     (4)通过软质板岩自由膨胀试验分析了软质板岩的膨胀变形和膨胀率与浸水时间的关系,建立了板岩膨胀率随时间变化的关系式,从定性的角度研究了板岩的膨胀率与结构面方向和试样轴向的夹角之间的关系;
     (5)通过软质板岩侧向约束膨胀试验探析了板岩侧向约束膨胀率随吸水时间变化的规律,构建了板岩侧向约束膨胀率随时间变化的关系式,比较了在侧向约束条件下的板岩轴向膨胀率和自由轴向膨胀率的大小,分析了板岩膨胀率与吸水率之间的关系。
     (6)通过体积不变条件下的膨胀压力试验探析了膨胀压力随时间的变化规律,分析了取样角度对板岩膨胀压力的影响规律,得出了平行和垂直于层理方向的膨胀压力的变化范围;从定量的角度分析了膨胀压力和膨胀应变之间的关系,得出了体积不变条件下的膨胀本构管系;根据理论推导和室内试验得出了膨胀压力随吸水率变化的规律。
     (7)通过软质板岩耐崩解性试验分析了风化程度对板岩崩解性的影响规律,研究了耐崩解指数和干湿循环次数之间的关系。
     (8)通过不同含水率条件下的单轴压缩试验分析了板岩单轴压缩强度、弹性模量与吸水率之间的关系,分别给山了板岩单轴压缩强度、弹性模量随吸水率变化的关系式。
     (9)通过不同含水率条件下的三轴压缩试验研究了在相同的围压条件下板岩的三轴压缩强度、弹性模量和泊松比与吸水率之间的关系;分析了板岩三轴压缩强度和弹性模量之间的相关性,采用二次函数拟合三轴压缩强度和弹性模量之间的关系,拟合精度较高;探讨了围压和板岩破坏方式的关系。
     (10)通过对地下水在板岩中的物理状态和水对岩石的化学作用、物理作用和力学作用的分析,研究了软质板岩水理特性机制,阐述了地下水对软质板岩的作用机理。
     2.软质板岩蠕变特性研究
     (1)通过软质板岩单轴、三轴蠕变试验,得山了板岩蠕变的基本规律:①在不同的围压和轴压下,板岩进入等速蠕变阶段的时间不同,但一般在5小时以内均进入等速蠕变阶段。②在相同围压下,随着应力差的增加,板岩的蠕变变形增加,蠕变率会发生突变,因此应力差的存在加快了板岩进入等速蠕变阶段的进程;在相同应力差条件下,随着围压的增大,蠕变变形会减小,减缓了板岩进入等速蠕变阶段的进程。③当围压和轴压不同时,板岩蠕变全过程曲线的形状及各阶段的持续时间不同。④围压的增大使得作用在板岩上的压应力增加,而应力差会减小,限制了蠕变变形的发展;轴压的增加加快了蠕变变形的进程。
     (2)在总结经典蠕变模型的基础上,引入改进的Burgers模型,通过蠕变试验和理论计算,确定了板岩改进的Burgers蠕变模型参数;通过不同含水率条件下蠕变试验,得出丫水对板岩蠕变特性的影响规律,确定了吸水率0.19%为水对板岩蠕变特性影响的分界值。
     3.软质板岩特大断面隧道施工期围岩力学特性研究
     (1)通过有限元法,将Burgers黏弹塑性模型参数引入至ANSYS本构模型,对特大断面隧道开挖及支护的应力和变形状况进行了分析。
     (2)运用数值模拟方法对特大断面隧道围岩的蠕变特性进行了分析,得出了围岩蠕变规律,并考虑了隧道埋深因素,分析了围岩变形的稳定值与埋深之间的关系。
     (3)运用数值模拟方法对考虑弹塑性和考虑黏弹塑性的围岩变形进行了比较,分析了时间因素对隧道开挖后围岩变形的影响。
     4.基于监控量测的软质板岩特大断面隧道围岩变形特征分析及控制技术研究
     (1)对姚家隧道监控量测技术及其数据处理方法进行了介绍,结合姚家隧道监控量测数据,对在不同隧道开挖方法下围岩变形随时间的变化规律进行了分析,得出了三种不同类型的围岩变形-时间特征曲线,并对三种不同类型的围岩变形-时间曲线特征进行了分析,得山了各变形阶段的围岩变形随时间的变化规律。
     (2)分析了不同围岩级别下围岩径向位移释放率与时间之间的关系,研究结论对于确定最佳支护时机和施工工序具有重要的价值,可以有效地指导施工。
     (3)结合姚家隧道监控量测资料,针对不同围岩级别对围岩变形与距掌子面距离的关系进行了分析,得出了两种不同类型的围岩变形与距掌子面距离之间的关系曲线(“台阶”型和“单厂”型)、二次衬砌施作的最佳时机和隧道围岩径向位移释放率与距掌子面距离的管系。
     (4)运用地质力学和结构力学的方法对时空效应的力学机理和特大断面隧道围岩变形的影响因素进行了分析,得出了影响特大断面隧道围岩变形的因素主要包括:地质构造及不良地质、围岩自身的性质、地下水的弱化作用、岩体的原始应力状态、隧道断面形状和尺寸、隧道开挖方法、支护结构、施工工序和邻近施工。
     (5)在隧道围岩变形时空效应分析的基础上,对软岩隧道支护原理进行了介绍以及对姚家隧道在不同围岩级别下的施工工法进行了优化,确定了二次衬砌最佳施作时机,提出了控制特大断面隧道围岩大变形的支护措施,为类似工程的设计和施工提供参考。
     本文的创新成果主要包括:
     (1)进行了天然状态和不同含水率条件下的单轴、三轴压缩试验,分析了地下水和结构面倾角对软质板岩力学性质的影响规律,探究了地下水对软质板岩的微观作用机理,并分别建立了软质板岩力学参数与结构面倾角和吸水率之间的关系式;建立了板岩三轴压缩强度和弹性模量之间的关系式,探讨了围压和板岩破坏方式的关系,研究成果可以补充水与岩石相互作用效应方面的研究。
     (2)在总结经典蠕变模型的基础上,引入改进的Burgers模型,通过蠕变试验和理论计算,确定了板岩改进的Burgers蠕变模型参数;改进的Burgers蠕变本构模型可以用来描述板岩蠕变的第一、第二和第三阶段,从拟合数据和试验数据的对比可知,拟合的精度较高,各参数的上下波动不大,具有很好的可靠性;分析了不同吸水率条件下板岩的蠕变特性,研究了水对板岩蠕变特性的影响规律及微观作用机理,并将吸水率0.19%定为水对板岩蠕变特性影响的分界值。
     (3)基于数值模拟对考虑弹塑性和考虑黏弹塑性的围岩变形进行了比较,并考虑了埋深因素,分析了产生差异的原因,研究了时间因素对隧道开挖后围岩变形的影响,研究结论对于隧道围岩时空效应研究具有一定的参考价值。
     (4)基于监控量测数据对在不同隧道开挖方法(三台阶七步开挖法、弧形导坑预留核心土法和台阶法)下围岩变形随时间和空间的变化规律进行了分析,研究了隧道围岩径向位移释放率与时间和空间之间的关系,研究成果对于确定二次衬砌的最佳支护时机和提出控制大变形的支护措施具有重要的价值。
According to the size of tunnel cross-sectional area, the tunnel is defined by International Tunneling Association (ITA) as follows:If the channel is built in the strata and its cross-sectional area is more than2m2, the channel is defined as tunnel. If the cross-sectional area is2-3m2, the tunnel is defined as very-small-section tunnel. If the cross-sectional area is3-1Om2, the tunnel is defined as small section tunnel. If the cross-sectional area is3-10m2, the tunnel is defined as small-section tunnel. If the cross-sectional area is10-50m2, the tunnel is defined as middle-section tunnel. If the cross-sectional area is50-100m2, the tunnel is defined as big-section tunnel. If the cross-sectional area is more than100m2, the tunnel is defined as super-large-section tunnel.
     With the rapid development of China's transportation construction, big-section tunnels and underground engineering gradually increase. Especially with the rapid development of passenger dedicated line, a number of very-big-section tunnels has emerged. In order to overcome the aerodynamic problems caused by the high speed train on passenger dedicated line, super-large-section tunnel is basically adopted. The clearance area above the track surface of these tunnels is more than100m2, and the excavation area is more than150m2. Compared with the previous tunnels, the mechanical behavior, the cross-section style, lining structure, construction methods, initial support structure mode and support parameters of super-large tunnels have new requirements. Although, at present, many researchers have devoted themselves to the study on the big-cross-section tunnel, they used simple method in the aspects of mechanical parameters and numerical simulation. Especially for the research of soft surrounding rock mechanical effect of super large cross-section tunnel in construction period, the relevant references are relatively less.
     Slate is a kind of typical soft rock, which has a relatively wider distribution in Yunan, Guizhou, Hunan province. The dissertation relied on Shanghai-Kunming Passenger Dedicated Line Chang-Kun Hunan Section IX tender Yaojia Tunnel and selected slate stratum as the research object. By ingredient identification and microstructure observation, microscopic structure of soft slate was analyzed. The influence rock bedding plane and moisture capacity had on the mechanical properties of soft slate was studied by laboratory experiment. Water absorption, softening, swellabitity, slaking and softening mechanism were discussed. By uniaxial and triaxial creep test the creep law of soft slate was researched and the slate modified Burgers creep model parameters was determined. The influencing law of the water on the slate creep properties was obtained by creep test under different moisture capacity. Using finite element method, Burgers visco-elastic plasticity model parameters were introduced into ANSYS constitutive model, and stress and deformation situation of excavation and supporting of super large cross section tunnel were analyzed. Based on monitoring and measurement data, surrounding rock deformation law with the change of time and space under different tunnel excavation methods was deeply analyzed, and the relationship between radial displacement releasing rate of surrounding rock and time/space was researched. On the basis of analysis of surrounding rock deformation spatial and temporal effects, construction methods under different surrounding rock levels of Yaojia Tunnel were optimized, the best applying timing of secondary lining was ascertained and the supporting measures to control large deformation of super large cross section tunnel surrounding rock were proposed, which can provide references for the design and construction of similar projects.
     The work dissertation has completed included the following aspects:
     1. Research to the mechanical and hydraulic characteristics of soft slate
     (1)Soft slate mechanical properties were systematically researched. By uniaxial and triaxial compression test in natural state, mechanical parameters of soft slate were obtained. The relationship between uniaxial compressive strength, elastic modulus and the angle between the structural surface occurrence and loading direction was analyzed and the anisotropy and its internal mechanism of soft slate were studied. The variation range of soft slate Poisson's ratio and the relationship between Poisson's ratio and the angle of the structural surface occurrence and loading direction were discussed. From the point of experiment the relationship between the triaxial compressive strength, residual strength and confining pressure was researched.
     (2)By grinding and microscopic detection, the mineral composition and content of soft slate were analyzed. By powder X-ray diffraction and electron microscope, the particle composition and content was obtained. The type of cementation and internal structure were analyzed, which provided the basic data for the research of soft slate hydro-physical characteristic and deformation mechanism.
     (3)The relationship between the natural water absorption and saturated water absorption of soft slate and variation range of water saturated coefficient were analyzed by water absorption test. The regulation of natural water absorption and water saturated coefficient with the change of time and its influencing factors. Relational expressions between natural water absorption, water saturated coefficient and time were respectively proposed.
     (4)By soft slate free expansion test, the relationship between the expansion deformation, expansion rate and soaking time was analyzed and the relational expression of soft slate expansion rate with the change of time was established. The relationship between soft slate expansion rate and the angle of structure surface direction and sample axial direction was analyzed.
     (5)By soft slate expansion test of lateral constraints, the law of soft slate lateral constraint expansion rate with the change of time was discussed. The rational expression between soft slate lateral constraint expansion rate and the time was established. Moreover, soft slate axial expansion rate and free axial expansion rate under the condition of lateral constraints were compared and the relationship between soft slate expansion rate and water absorption rate was analyzed.
     (6)By expansion pressure test under the condition of unchanged volume, the regulation of expansion pressure with the change of time was discussed and the influencing law of sampling angle on soft slate expansion pressure. The variation range of expansion pressure in the direction parallel and perpendicular to the bedding was obtained. From a quantitative point the relationship between expansion pressure and expansion strain was analyzed and the expansion constitutive relation under the condition of unchanged volume was obtained. Based on theoretical analysis and laboratory tests, the relationship between expansion pressure and water absorption rate was obtained.
     (7)By soft slate disintegration resistance test, the influence of weathering degree on soft slate disintegration was analyzed and the relationship between disintegration resistance index and dry and wet cycles.
     (8)By uniaxial compression test under the condition of different moisture content, the relationship between uniaxial compressive strength, elastic modulus and water absorption rate was analyzed. The relational expressions of uniaxial compressive strength and elastic modulus with the change of water absorption rate were given.
     (9)By triaxial compression test under the condition of different moisture content, the relationships between the triaxial compressive strength, elastic modulus, Poisson's ratio and water absorption rate under the condition of the same confining pressure were researched. The correlation between triaxial compressive strength and elastic modulus of soft slate was analyzed. Using quadratic function to fit the relationship between triaxial compressive strength and elastic modulus had very good fitting effect. Moreover, the relationship between the confining pressure and failure mode was discussed.
     (10)From points of physical state in which underground water exists in slate and chemical, physical and mechanical effects water has on rock, the hydro-physical property mechanism of soft slate was analyzed. Interaction mechanism of underground water and soft slate was discussed.
     2. Research to soft slate creep characteristic
     (1)By unaxial and triaxial creep tests of soft slate, the basic creep law of soft slate was obtained:(a) The time when slate entered into isokinetic creep stage was different under the condition of different confining and axial pressure. However, commonly, they all entered into isokinetic creep stage in less than5hours.(b) Under the condition of the same confining pressure, with the increasing of stress difference, soft slate creep deformation increased and the creep rate suddenly change. Therefore, the stress difference enhanced the speed of slate entering into isokinetic creep stage.(c) When confining and axial pressure was different, the shape of the creep curve and the duration of every phase were different.(d) Increasing of confining pressure made compressive stress acting on the slate increase but stress difference decrease, which restricted the development of creep deformation. Increasing of axial pressure speeded up the process of creep deformation.
     (2)Based on summarizing classic creep models, the improved Burgers model was introduced. By creep test and theoretical calculations, soft slate improved Burgers model parameters were ascertained. The influence water had on soft slate creep characteristic was acquired and0.19%(water absorption rate) was determined as boundary value of the influence of water on soft slate creep characteristic through creep tests under the condition of different water content.
     3. Study on mechanical characteristic of super large cross section soft slate tunnel in construction period
     (1)By finite element method, we introduced Burgers visco-elastic plasticity model parameters into ANSYS constitutive model and analyzed the stress and deformation status of super large cross section tunnel in the course of excavation and supporting.
     (2)By numerical simulation we analyzed surrounding rock creep characteristic of super large cross section tunnel and obtained the creep law of surrounding rock. Moreover, we considered tunnel depth and quantitatively analyzed the relationship between surrounding rock vault settlement stability value and depth.
     (3)Using finite element method, we compared the surrounding rock deformation of considering elastic plasticity and visco-elastic plasticity and analyzed the importance of time for surrounding rock deformation after the excavation.
     4. Study on the surrounding rock deformation characteristics and controlling technology of super large cross section tunnel based on monitoring and measurement
     (1)To begin with we recommended monitoring and measurement technology of Yaojia Tunnel and data processing method. In combination with monitoring and measurement data of Yaojia Tunnel, we deeply analyzed the surrounding rock deformation with the change of time in different excavation methods and acquired three different types of surrounding rock deformation-time curves. Moreover, we analyzed the curves in detail and obtained surrounding rock deformation law with the change of time in different stages.
     (2)We analyzed the relationship between surrounding rock displacement releasing rate and time/space. The research conclusions had important value for determining the best supporting opportunity and construction process, which can effectively guide the construction.
     (3)Based on monitoring and measurement data, we deeply analyzed the relationship between surrounding rock deformation and the distance from the tunnel working face under the condition of different surrounding rock levels and obtained two different types of surrounding rock deformation-distance from the working face curves(step and single chang type). Moreover, we determined the best applying opportunity of secondary lining and the relationship between surrounding rock radial displacement releasing rate and the distance from the working face.
     (4)Using the methods of geological and structural mechanics, we analyzed the mechanical mechanism of time-space effect and the influencing factors of surrounding rock deformation of super large cross section tunnel, which included as follows:geological structure, adverse geology, the characteristics of surrounding rock, the weakening effect of underground water, initial stress state of rock mass, the tunnel cross section shape and dimension, tunnel excavation methods, supporting structure, construction process and adjacent construction.
     (5)Relying on the analysis of surrounding rock deformation time-space effect, we introduced soft rock tunnel supporting principle, optimized construction methods of Yaojia tunnel under the condition of different surrounding rock levels, determined the best applying opportunity of secondary lining and proposed supporting measures of controlling surrounding rock large deformation of super large cross section tunnel, which provided references for the design and construction of similar engineering.
     Innovations of this dissertation were as follows:
     (1)By uniaxial and triaxial compression tests under conditions of natural state and different moisture content, we analyzed the influence of underground water and dip angle of structural plane on mechanical characteristics of soft rock, discussed microscopic mechanism of underground water on soft slate, and respectively established the relational expressions between mechanical parameters, dip angle of structural plane and water absorption rate. Moreover, we constructed the relational expressions between triaxial compressive strength and elastic modulus, and discussed the relationship between confining pressure and failure mode of slate. The research results can supplement the research of water and rock interaction effect.
     (2)Based on summarizing classic creep models, we introduced improved Burgers model. By creep tests and theoretical calculation, we ascertained improved Burgers creep model parameters. The improved Burgers creep constitutive model could describe the first, second and third stage. From the comparison of fitting data and experimental data, the fitting accuracy was very high and the fluctuation of all parameters was low, which showed that the fitting had good reliability. The slate creep characteristic under the condition of different water absorption rate was analyzed and the influence of water on the slate creep characteristic and microscopic mechanism was studied.0.19%(water absorption rate) was defined as the boundary value of the influence of water on slate creep characteristics.
     (3)Using numerical simulation we compared surrounding rock deformation considering elastic plasticity and visco-elastic plasticity. Moreover, we considered the tunnel depth, analyzed the cause of difference, and obtained the importance of time for surrounding rock deformation after the excavation. The results were of certain reference for the research of tunnel surrounding rock time-space effect.
     (4)Based on monitoring and measurement data, we deeply analyzed the variation of surrounding rock deformation with the change of time and space, and studied the relationship between surrounding rock radial displacement releasing rate and time/space. The research results had very important values for determining the best supporting time of secondary lining and proposing supporting measures of controlling large deformation.
引文
[1]Glover P W J & Gomez J B. Damage of saturated rocks undergoing triaxial deformation using complex electrical conductivity measurements:Experimental results[J]. Phys. Chem. Earth,1997,22(1-2):57-61.
    [2]Gomez J B, Glover P W J. Damage of saturated rocks undergoing triaxial deformation using complex electrical conductivity measurements:mechanical modeling[J]. Phys.Chem. Earth,1997,22(1-2):63-68.
    [3]Newman G H. The effect of water chemistry on the laboratory compression and permeability characteristic of North Sea Chalks[J]. JPT, May,1983,35:976-980.
    [4]Hadizadeh J. Water-weakening of sandstone and quartzite deformed at various stress and strain rates[J]. Int. J. Rock Mech. Min. Sci.,1991,28(5):431-439.
    [5]Delage P, Schroeder C & Cui Y J. Subsidence and capillary effects in chalks[A]. Proc. Eurock'96. Balkema, Rotterdam, pp1291-1298,1996.
    [6]Heggheim T, Madl M V, et al. A chemical induced enhanced weakening of chalk by seawater[J]. Journal of petroleum science and engineering,2004,46(3):171-184.
    [7]Risnes R, Haghighi H, et al. Chalk-fluid interactions with glycol and brines[J]. Tectonophysics,2003,370(1-4):213-226.
    [8]Ernest H, Rutter. The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks[J]. Tectonophysics,1974,22:311-334.
    [9]Alice P & Jan T. The rate of water penetration in experimentally deformed quartzite: implications for hydrolytic weakening[J]. Tectonophysics,1998,295:117-137.
    [10]Kenis I, Urai J L, van der Zee W & Sintubin M. Mullions in the High-Ardenne Slate Belt(Belgium):numerical model and parameter sensitivity analysis[J]. Journal of Structural Geology,2004,26(9):1677-1692.
    [11]吴景浓.地壳岩石的渗透性状及孔隙水对岩石力学性质的影响[J].华南地震,1990,10(3):77-82.
    [12]葛洪魁,黄荣樽,庄锦江,等.三轴应力下饱和水砂岩动静态弹性参数的试验研究[J].石油大学学报,1994,18(3):41-47.
    [13]曾云.盘道岭隧洞软弱岩石浸水软化对强度和变形特性的影响[J].陕西水力发电,1994,10(1):29-33.
    [14]兰光裕.板岩的力学特征及其与超声波速的相关性分析[J].人民珠江,1997,(4):16-19.
    [15]冯启言,韩宝平,隋旺华.鲁西南地区红层软岩水岩作用特征与工程应用[J].工程地质学报,1999,7(3):266-271.
    [16]刘新荣,姜德义,余海龙.水对岩石力学特性影响的研究[J].IM&P化工矿物与加工, 2000,(5):17-20.
    [17]王桂花,张建国,程远方,等.含水饱和度对岩石力学参数影响的实验研究[J].石油钻探技术,2001,29(4):59-61.
    [18]许波涛,尹健民,王煜霞.岩石干湿状态下动静弹模关系特征及工程意义[J].岩石力学与工程学报,2001,20(增):1755-1757.
    [19]冒海军,杨春和,黄小兰,等.不同含水条件下板岩力学实验研究与理论分析[J].岩土力学,2006,27(9):1637-1642.
    [20]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [21]冒海军.板岩水理特性试验研究与理论分析[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,2006.
    [22]包宏涛.深埋板岩隧洞围岩力学特性研究[D].武汉:中国科学院武汉岩土力学研究所硕士学位论文,2007.
    [23]Griggs D T. Creep of rocks[J]. Journal of Geology.1939, (47):225-251.
    [24]Chan K S. A damage mechanics treatment of creep failure in rock[J]. International Journal of Damage Mechanics,1997, (6):122-152.
    [25]Brignoli M, Sartori L. Incremental constitutive relations for the study of rock creep[J]. International Journal of Rock Mechanics and Mining Sciences,1993,21(7):1319-1322.
    [26]Horsrund P, Holt R M, Sonstebo E F. Time dependent borehole stability:laboratory studies and numerical simulation of different mechanism in shale[J]. In Proc.Eurock'94. Rotterdam, Balkema,1994,259-266.
    [27]Zaman M M, Abdulraheem A, Roegiers J C. Reservior compaction and surface subsidence in the North Sea area[J]. Journal of Geology.1995, (5):373-379.
    [28]Papamichos E, Ringstad C, Brignoli M, et al. Modeling of partially saturated collapsible rocks[J]. In Proc.Eurock'96. Rotterdam, Balkema,1996,221-229.
    [29]肖树芳.泥化夹层蠕变全过程的模型及微结构的变化[J].岩石力学与工程学报,1987,6(2):113-124.
    [30]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6):772-779.
    [31]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报,1991,19(4):395-401.
    [32]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,2 1(5):632-634.
    [33]Vanhoenacker K, Schoukens J, Guillaume P & Vanlanduit S. The use of multisine excitations to characterize damage in structures[J]. Mechanical Systems and Signal Processing,2004,18(1):43-57.
    [34]Nei-Che Ho, Donald R. Peacor & Ben A. Van Der Pluijm. Contrasting roles of detrital and authigenic phyllosilicates during slaty cleavage development[J]. Journal of Structural Geology,1996,18(5):615-623.
    [35]Brooks C M & Donald M. F. Strain partitioning and crack-seal growth of chlorite-muscovite aggregates during progressive noncoaxial strain:an example from the slate belt of Taiwan[J]. Journal of Structural Geology,1995,17(4):461-474.
    [36]Sakurai S, Takeuchi K. Back Analysis of measured displacement of tunnel[J]. Rock Mechanics and Rock Engineering,1983,16(3):173-180.
    [37]Gioda G, Pandolfi A, Cividini A. A comparative evaluation of some back analysis algorithms and their application to in-situ load tests[A]. Proceedings of 2nd International Symposium on Field Measurement in Geomechanics, Kobe,1987:1131-1144.
    [38]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用[J].地下工程,1981,(2):9-14.
    [39]Wang Z Y, Liu H H. Back analysis of measured rheologic displacements of underground openings[A]. Proceedings of 6th Conference on Numerical Methods in Geomechanics, Austria,1988, (4):2291-2297.
    [40]王芝银,李云鹏.地下工程围岩黏弹塑性参数反分析[J].水利学报,1990,(9):11-16.
    [41]冯夏庭,杨成祥.智能岩石力学(2)——参数与模型的智能辨识[J].岩石力学与工程学报,1999,18(3):350-353.
    [42]刘怀恒.地下工程位移反分析原理-应用及其发展[J].西安矿业学报学报,1988,8(3):1-10.
    [43]王芝银,李云鹏.地下工程位移反分析法及程序[M].西安:陕西科学技术出版社,1993.
    [44]孙均,蒋树屏,袁勇,等.岩土力学反演问题的随机理论与方法[M].汕头:汕头大学山版社,1996.
    [45]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [46]杨志法,王思敬,冯紫良,等.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [47]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [48]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498.
    [49]Ito H, Sasajima S. A thirty year creep experiment on small rock specimens[J]. International Journal of Rock Mechanics and Mining Sciences,1987,24(2):113-121.
    [50]Haupt M. A constitutive law for rock salt based on creep and relaxation tests[J]. Rock Mechanics and Rock Engineering,1991, (24):179-206.
    [51]Maranini E, Brignoli M. Creep behavior of a weak rock:experimental characterization[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(1):127-138.
    [52]Fujii Y, Kiyama T. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(3):323-337.
    [53]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    [54]杨建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995,8(2):77-80.
    [55]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39-47.
    [56]郭志.软岩流变过程与强度研究[J].工程地质学报,1996,4(1):75-79.
    [57]郭志.软岩力学特性研究[J].工程地质学报,1996,4(3):79-84.
    [58]Sun J, Hu Y Y. Time-dependent effects on the tensile strength of saturated granite at Three Georges Project in China[J]. International Journal of Rock Mechanics and Mining Sciences,1997, (34):323-337.
    [59]张学忠,王龙,张代钧,等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(5):99-103.
    [60]王金星.单轴应力下花岗岩蠕变变形特征的试验研究[D].焦作:焦作工学院,2000.
    [61]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    [62]赵法锁,张伯友,卢全中,等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报,2001,20(4):478-480.
    [63]赵法锁,张伯友,彭建兵,等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [64]Yang C H, Daemen J J K, Yin J H. Experimental investigation of creep behavior of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences,1998,36(2): 233-242.
    [65]Yang C H, Bai S W. Proceedings of analysis of stress relaxation behavior of salt rock[J]. In:Proceedings of the 37th U.S Rock Mechanics Symposium. New York:John Willey & Sons,1999,935-938.
    [66]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270-275.
    [67]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [68]杨春和,曾义军,吴文,等.深层盐岩本构关系及其在石油钻井工程中的应用研究[J].岩石力学与工程学报,2003,22(10):1678-1682.
    [69]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24(5):77-79.
    [70]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,(1):10-15.
    [71]赵永辉,何之民,沈明荣.润扬大桥北锚旋岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [72]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749.
    [73]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [74]赵延林,曹平,文有道,等.岩石弹粘塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486.
    [75]李鹏,刘建.不同含水率软弱结构面剪切蠕变试验及模型研究[J].水文地质工程地质,2009,(6):49-53
    [76]张治亮,徐卫亚,赵海斌,等.向家坝水电站含弱面砂岩剪切蠕变试验研究[J].岩石力学与工程学报,2010,增(2):3693-3698.
    [77]张治亮,徐卫亚,王伟.向家坝水电站坝基挤压带岩石三轴蠕变试验及非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报,2011,30(1):132-140.
    [78]张强勇,陈芳,杨文东,等.大岗山坝区岩体现场剪切蠕变试验及参数反演[J].岩土力学,2011,32(9):2584-2590.
    [79]张志沛,王芝银,彭惠.陕南泥岩三轴压缩蠕变试验及其数值模拟研究[J].水文地质工程地质,2011,38(1):53-58.
    [80]徐慧宁,庞希斌,徐进,等.粉砂质泥岩的三轴蠕变试验研究[J].四川大学学报(工程科学版),2012,44(1):69-74.
    [81]沈明荣,谌洪菊,张清照.基于蠕变试验的结构面长期强度确定方法[J].岩石力学与:工程学报,2012,31(1):1-7.
    [82]李维树,周火明,钟作武,等.岩体真三轴现场蠕变试验系统研制与应用[J].岩石力学与工程学报,2012,31(8):1636-1641.
    [83]徐平,夏熙纶.三峡工程花岗岩蠕变特性实验研究[J].岩土工程学报,1996,18(4):63-67.
    [84]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    [85]杨春和,殷建华,Daemen J J K盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262-265.
    [86]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [87]刘泉声,许锡昌,山口勉,等.三峡花岗岩与温度及时间相关的力学性质实验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    [88]刘泉声,王崇革.岩石时-温等效原理的理论与实验研究——第一部分[J].岩石力学与工程学报,2002,21(2):193-198.
    [89]刘泉声,王崇革.岩石时-温等效原理的理论与实验研究——第二部分[J].岩石力学与工程学报,2002,21(3):320-325.
    [90]曾伟军.变质板岩高边坡岩石蠕变特性试验研究[J].湖南交通科技,2012,38(2):4-8,32.
    [91]徐月生,陈建忠,王永志.层状盐岩力学特性与蠕变机理研究[J].科技创新导报,2012,(8):25-28.
    [92]李志敬,周伟华,朱珍德.大理岩泥夹层剪切蠕变特性研究[J].人民黄河,2012,34(12):130-135.
    [93]张清照,沈明荣,丁文其.绿片岩软弱结构面剪切蠕变本构模型研究[J].岩土力学, 2012,33(12):3632-3638.
    [94]刘钦,李术才,李利平,等.软弱破碎围岩隧道炭质页岩蠕变特性试验研究[J].岩土力学,33(增2):21-28.
    [95]李亚丽,于怀昌,刘汉东.三轴压缩下粉砂质泥岩蠕变本构模型研究[J].岩土力学,2012,33(7):2035-2040,2047.
    [96]王更峰,张永兴,熊晓晖,等.深埋大变形隧道炭质板岩蠕变特性试验[J].公路交通科技,2012,29(9):95-102.
    [97]刘小军,张永兴,王桂林,等.碎裂板岩不同含水状态下蠕变特性试验[J].解放军理工大学学报(自然科学版),2012,13(6):640-645.
    [98]李鹏,刘建,朱杰兵,等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,29(7):1865-1871.
    [99]刘江,杨春和,吴文,等.盐岩蠕变特性和本构关系研究[J].岩土力学,2006,27(8):1267-1271.
    [100]Raymond D M. Stress distribution around a tunnel. Proc. ASCE,1939,65(4):619-642.
    [101]Kimura T, Mair R J. Centrifugal testing of model tunnels in soft clay[A]. Proc 10th International Conference on Soil, Soil Mechanics & Foundation Engineering, Stockholm, Balkema,1981.
    [102]Reyes S F, Deere D U. Elasticity-plastic analysis of underground openings by the finite element method[A]. Proc.1st Cong. Int. Soc. Rock Mechanics. Lisbon,1966,477-483.
    [103]Zienklewicz O C, Valliappan S, King I P. Stress analysis of rock as a "no-tension" material[J]. Geotechnique.1968,18(l):55-66.
    [104]Zienklewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671-689.
    [105]Wilson E L. A computer diagram for the dynamic stress analysis of underground structures[J]. Ad-832681,1968.
    [106]Kulhaway F H. Stress and displacements around opening in Homogeneous Rocks[J]. Int. J Rock Mech. Min. Soc.1975,12(3):43-51.
    [107]Wittke W. Static analysis for underground openings in jointed rock[J]. Numerical Methods in Geotechnical Engineering. McGraw-Hill Book Company,1977.
    [108]黄伦海,刘伟,刘新荣,等.单洞四车道公路隧道开挖的模型试验[J].地下空间,2004,24(4):465-474.
    [109]师金锋,张应龙.超大断面隧道围岩的稳定性[J].地下空间与工程学报,2005,1(2):227-241.
    [110]孙兆远,焦苍,罗琼,等.不同工法开挖超大断面隧道引起围岩变形机理分析[J].铁道建筑,2006,(9):60-63.
    [111]黄成造.龙头山双洞八车道公路隧道的设计与施工[J].铁道建筑,2007,(1):52-54.
    [112]刁志刚,李春剑.大断面隧道在上软下硬地层中施工方法研究[J].隧道建设,2007,(增):433-436.
    [113]张林,庞连才.大跨隧道施工方法概述及施工的数值模拟研究[J].山西建筑,2007,33(31):296-297.
    [114]黄伟钊.大断面软弱围岩隧道三台阶法施工[J].桥隧机械&施工技术,2008,(5):72-74.
    [115]曲海峰,朱合华,蔡永昌,等.曲率半径对临时支护及核心土的受力影响分析[J].岩土力学,2008,29(7):1778-1782.
    [116]李雷.大断面黄土隧道弧形导洞法施工关键技术研究[J].现代隧道技术,2009,46(2):50-56.
    [117]李宁.大断面黄土隧道双侧壁导坑法的力学行为研究[J].铁道标准设计,2009,(增):122-124.
    [18]吴张中,徐光黎,吴立,等.超大断面隧道侧向扩挖施工围岩力学特征研究[J].岩土工程学报,2009,31(2):172-177.
    [119]中华人民共和国国家标准,工程岩体试验方法标准(GB/T 50266-99).
    [120]戴鸿麟.中华人民共和国地质矿产部岩石物理力学性质试验规程(DY-94)[S].北京:地质出版社,1995.
    [121]鄢定嫒,张学民,李兵,等.具有层理弱面砂质板岩力学特性的试验研究[J].公路交通科技(应用技术版),2012,(2):174-176.
    [122]冒海军,杨春和.结构面对板岩力学特性影响研究[J].岩石力学与工程学报,2005,24(20):3651-3656.
    [123]Hadizadeh J. Water-weakening of sandstone and quartzite deformed at various stress and strain rates[J]. Int. J. Rock Mech. Min. Sci,1991,28(5):431-439.
    [124]Heggheim T, Madl M V. A chemical induced enhanced weakening of chalk by seawater[J]. Journal of petroleum science and engineering,2004,46(3):171-184.
    [125]李化敏,李振华,等.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749.
    [126]李昌友,傅鹤林,等.风化板岩水理特性研究[J].铁道科学与工程学报,2009,6(1):74-77.
    [127]冒海军.板岩水理特性试验研究与理论分析[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,2006.
    [128]杜雁鹏.软质板岩隧道大变形力学行为与控制技术研究[D].长沙:中南大学硕士学位论文,2011.
    [129]W. G. Holtz, H. J. Gibbs. Engineering Properties of Expansive Clays, Proc. Am. Soc. Civ. Engrs.121,1956.
    [130]H. Grob.瑞士隧道中的膨胀和鼓起[J].地下工程,1983(11):71-72.
    [131]M. Gysel. Design methods for structure in Swelling rock, ISRM Volume VI.
    [132]孙均,李成江.复合膨胀渗水围岩一隧洞支护系统的流变机理及其粘弹塑性效应[A].第一届全国岩石力学数值计算及模型试验讨论会论文集,1986.
    [133]杨庆.膨胀岩与巷道稳定[M].冶金工业出版社,1995.
    [134]杨庆,廖国华,膨胀岩三维膨胀本构关系的研究[J].岩石力学与工程学报,1995(1):33-38.
    [135]付志亮.岩石力学试验教程[M].北京:化学工业出版社,2010.
    [136]付小敏,邓荣贵.室内岩石力学试验[M].成都:西南交通大学出版社,2012.
    [137]刘佑荣,吴立,贾洪彪.岩体力学实验指导书[M].武汉:中国地质大学出版社,2008.
    [138]刘信勇,李振灵,陈艳.南水北调西线工程亚尔堂坝址板岩膨胀特性研究[J].人民长江,2010,41(9):39--41.
    [139]吴道祥,刘宏杰,王国强.红层软岩崩解性室内试验研究[J].岩石力学与工程学报,2012,29(增2):4173-4179.
    [140][101]胡博聆,王继华,赵春宏.滇中泥质粉砂岩崩解特性试验研究[J].工程勘察,2010,(7):13-17.
    [141]张抒.广州地区花岗岩残积土崩解特性研究[J].武汉:中国地质大学硕士学位论文,2009.
    [142]曹运江,黄润秋,郑海君.岷江上游某水电站工程边坡软岩的崩解特性研究[J].工程地质学报,2006,35-40.
    [143]余宏明,胡艳欣,张纯根.三峡库区巴东地区紫红色泥岩的崩解特性研究[J].地质科技情报,2002,21(4):77-80.
    [144]刘长武,陆士良.泥岩遇水崩解软化机理的研究[J].岩土力学,2000,21(1):28-31.
    [145]朱效嘉.软岩的水理性质[J].矿业科学技术,1996,(3/4):46-50.
    [146]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [147]耶格JC,库克NGW.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981.
    [148]傅冰骏.陈宗基院士生平[J].岩石力学与工程动态,2002,(3):1-9.
    [149]袁海平,曹平,许万忠.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土二工程学报,2006,28(6):796-799.
    [150]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [151]Zienkiewicz O C, Cormeau I C. Visco-Plasticity-Plasticity and creep in elastic solids-A unified numerical solution approach. International Journal for Numerical Method in Engineering,1974,8(4):821-845.
    [152]Gioda G A finite element solution of non-linear creep problems in rocks. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1981,18(1): 35-46.
    [153]Owen D R J, Hinton E. Finite Elements in Plasticity:Theory and Practice. Swansea: Pineridge Press Limited,1980.
    [154]Zienkiewicz O C, Owen D R J, Cormeau I C. Analysis of viscoplastic effects in pressure vessels by the finite element method. Nuclear Engineering and Design,1974, (28): 278-288.
    [155]李权ANSYS在土木工程中的应用[M].北京:人民邮电出版社,2005.
    [156]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000.
    [157]胡曼.基于沥青混合料粘弹塑性本构模型实验研究与车辙计算[D].重庆:重庆交通大学硕士学位论文,2011.
    [158]汪凡.基于流变学本构模型和动力有限元分析的沥青路面车辙计算[D].重庆:重庆交通大学硕士学位论文,2009.
    [159]郭大智,任瑞波.层状粘弹性体系力学[M].哈尔滨:哈尔滨:工业大学出版社,2001.
    [160]周传波,陈建平,罗学东,等.地下建筑工程施工技术[M].北京:人民交通出版社,2008.
    [161]中华人民共和国行业标准.高速铁路工程测量规范(TB10601-2009)[S].北京:中国铁道出版社,2010.
    [162]中华人民共和国行业标准.铁路隧道监控量测技术规程(TB10121-2007)[S].北京:中国铁道出版社,2007.
    [163]吴梦军,张永兴,蒋树屏,等.大跨扁平连拱隧道施工时空效应试验[J].土木建筑与环境工程,2009,31(5):54-58.
    [164]霍晓龙,陈寿根,张小明.唐家山隧道施工特性及时空效应研究[J].施工技术,2012,41(374):79-83.
    [165]李凤翔.深埋软弱围岩隧道施工时空效应及大变形控制研究[D].长沙:中南大学硕士学位论文,2012.
    [166]余铎.软岩隧道施工时空效应研究[D].西安:长安大学硕士学位论文,2011.
    [167]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [168]孙元春,尚彦军.岩石隧道围岩变形时空效应分析[J].工程地质学报,2008,16(2):211-215.
    [169]张向东,盛超,王学军.庙岭隧道基于时空效应的围岩稳定性分析[J].广西大学学报(自然科学版),2010,35(6):888-895.
    [170]刘光明.软弱破碎围岩隧道大变形机理及控制措施研究[J].长沙:中南大学硕士学位论文,2012.
    [171]李晓红.隧道新奥法及其测量技术[M].北京:科学出版社,2002.
    [172]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [173]王伟峰.大跨浅埋隧道施工时空效应研究[D].成都:西南交通大学硕士学位论文,2008.
    [174]杨会军,王梦恕.隧道围岩变形影响因素分析[J].铁道学报,2006,28(3):92-96.
    [175]刘光明.软弱破碎围岩隧道大变形机理及控制措施研究[D].长沙:中南大学硕士学位论文,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700