用户名: 密码: 验证码:
铯原子喷泉钟物理系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铯原子喷泉钟是当今时间频率的基准钟,具有最高的准确度,标校着其它原子钟,在守时、计量和基础物理研究等领域有着广泛的应用价值。
     中国科学院国家授时中心(NTSC)是我国专门从事时间频率基础和技术研究的科研机构,担负着国家标准时间的建立、保持和发播任务,是国际原子时TAI建立的重要参加单位。国家授时中心拥有全国最大的守时钟组,但是没有可以对其进行实时校准的铯原子喷泉钟。研制和运行铯原子喷泉钟,可以提高我国标准时间频率产生的自主性,提高我国时间频率服务的质量。
     围绕铯原子喷泉钟物理系统的研制,本文主要研究喷泉钟磁屏蔽、微波腔和二维磁光阱部分。磁屏蔽方面,通过在磁屏蔽内部加补偿线圈和运用最小二乘法,实现了从微波激励腔到原子自由飞行区大范围的均匀磁场;激励腔方面,通过分析设计、耦合馈入、铟丝压封等,微波输入功率降至法国喷泉原子钟的十分之一,减小了原子钟微波泄漏频移;选态腔方面,通过真空脂和密封胶注入,成功解决了微波传输线真空漏气问题;二维磁光阱研制方面,设计并实现了二维磁光阱装置,获得了大流量的慢速原子束。主要研究内容和成果归纳为以下三个部分:
     (1)完成了喷泉钟磁屏蔽的设计和研制,达到了较高的性能指标。本文首先给出本喷泉钟在磁屏蔽方面的独特设计,即对喷泉钟整体进行了磁屏蔽,并在真空筒内对应小、中屏蔽筒的端盖位置处设计和放置四个小屏蔽盖,延长了轴向磁场的均匀性;其次,在磁屏蔽研制中,形成了一整套磁屏蔽设计、选材、测试和分析的理论和实验方法;针对磁屏蔽系统由于碰撞、变形等原因导致的磁性能下降,以及漏磁和剩磁等严重情况,通过在磁屏蔽内部轴向方向不同位置放置小的补偿线圈,运用最小二乘法和研制的高精度电流源,实现了对漏磁的较好补偿,得到在长达48cm范围内磁场波动小于1.7nT的均匀磁场。达到国内领先水平。
     (2)设计并调试了微波激励腔和选态腔,较好满足了喷泉钟性能的要求。激励腔是喷泉钟的核心,激励腔质量关系着喷泉钟的整体性能指标。选用含铜量高达99.99%的零号无氧铜,达到了无磁和高导电率要求;合理设计结构并采用双端微波对称输入,减少了腔相位频移;采用铟丝压封及60mm截止波导方法,减少了微波泄漏;通过理论计算、软件模拟与实验相结合方法,优化各级耦合效率和阻抗匹配;通过在激励腔上方放置导热性能良好的无氧铜管,增加了原子飞行路径上温度的均匀性,有利于喷泉钟黑体辐射频移的测试评估。通过综合调试,在-75dB范围内未发现有微波泄漏,微波腔馈入微波功率只需要法国FO1喷泉钟的十分之一。为了进一步降低腔相位频移,提高喷泉钟性能,分析提出了四端馈入微波的新型微波腔设计思想。选态腔方面,考虑到无磁、低热膨胀系数、低Q值等要求,选用硬铝材料;采用单端侧面微波耦合,简化了装置;微波线与铜支座之间采用特殊焊接方式,铜支座与选态腔侧壁之间采用压铟丝方式,保证了部件连接处的真空和防止微波泄漏;采用微波线灌真空脂与密封胶的方法,实现了3.710-7Pa的长期真空保证,成功解决了微波线真空泄漏问题。
     (3)设计并实现了二维磁光阱装置,获得了大流量的慢速原子束,对提高铯原子喷泉钟的稳定度和准确度性能具有重要的意义。二维磁光阱装置由两个独立的阱区构成,并且铯饱和蒸汽压可以调节,以获得最优的性能指标,其实现的慢速原子束流量为2.1×109atoms/s,满足了铯原子喷泉钟的设计要求。
     本文的创新点为:
     (1)提出并实现了在磁屏蔽筒内部放置补偿线圈弥补漏磁的方法,在48cm的较长范围内磁场波动小于1.7nT,具有国内领先水平;
     (2)设计和调试了微波激励腔,微波泄漏小于-75dB,阻抗匹配;分析提出了进一步减小腔相位频移的四端馈入的新型微波腔设计思想。
     (3)以上装置通过与控制系统联调,获得了铯原子喷泉钟的标志性信号—Ramsey谐振信号,实现了铯原子喷泉钟整体闭环运行。为铯原子喷泉钟性能的提高和实际应用奠定了基础。
Cesium atomic fountain clock is the primary standard clock of the current timeand frequency measurement, with the best accuracy performance and proofreadingother atomic clocks. It is applied widely in fields such as time-keeping system, thefield of metrology, fundamental physics etc.
     National Time Service Center (NTSC) is the academic institution specializing intime-frequency foundation and technical research; it is responsible for theestablishment, keeping and dissemination tasks of the national standard time. It is animportant participant in establishing the International Atomic Time (TAI). AlthoughNTSC has the domestic maximum time-keeping atomic clock set, it has no cesiumfountain atomic clock, which is able to calibrate the time-keeping atomic clock setwith high performance. Developed and operated cesium atomic fountain clock, canimprove the autonomy of Chinese standard time and frequency, and improve thequality of time-frequency service.
     Around this theme, the key technology studies of cesium atomic fountain clockare carried out. This paper mainly focuses on the physical parts consisting of magneticshield, microwave cavity and two-dimensional magneto-optical trap device. By layingcompensation coils and using the method of least squares, a uniform magnetic field isobtained in a large area from the microwave cavity to the atomic free flight range; byadvantage of optimized design, double-ended input, two-coupled connected andpressuring indium wire between connecting parts, an interrogation microwave cavityis realized, whose operating microwave power is only one tenth of the FranceSYRTE-FO1atomic clock, and the microwave leakage frequency shift reducedlargely. By injecting vacuum grease and sealant in coaxial line of state selected cavity,the problem of vacuum seal is solved. By designing and implementing atwo-dimensional magneto-optical trap device, a large flow of slow atomic beam isrealized. Specific research contents and results can be summarized as the followingthree parts:
     (1) The design and construction of the fountain clock magnetic shielding iscompleted with high performance. Firstly, the unique designs of the magneticshielding in fountain clock are given, including the magnetic shield for overallfountain clock and additional four small shield covers inside the vacuum cylinder, which enhance the strength of the magnetic shielding and extend the axial magneticuniformity area. Secondly, in the development of magnetic shielding, forms acomplete set of magnetic shielding design, material selection, testing and analysis ofthe theoretical and experimental methods. Thirdly, in order to conquer the worseningof the magnetic shielding performance induced by collision, the magnetic flux leakage,remanence, and other serious conditions in our case, placing different smallcompensation coils in different positions along the internal axial direction of themagnetic shield, adopting the least squares method and using homemadehigh-precision current sources, the magnetic leakage is well compensated and a largerange uniform magnetic field up to48cm with less than1.7nT fluctuations is obtained.
     (2) Design and commissioning of the interrogation microwave cavity andstate-selection microwave cavity is completed and a fine performance is achieved inthe fountain clock. As the core of the fountain clock, the performance of interrogationmicrowave cavity will affect the overall performance of the fountain clock.
     A copper content of up to99.99%oxygen-free copper is selected to avoidmagnetism. A design of the rational structures and double-ended microwavesymmetrical input are applied to minimize the cavity phase shift.
     To reduce microwave leakage, a60mm cutoff waveguide method and indiumwire between various parts joints are adopted.
     Theoretical calculations, software simulation and experimental methods are usedto optimize the coupling efficiency at all levels and impedance matching.
     A oxygen-free copper (OFC) tube with good thermal conductivity is placed onthe microwave cavity to increase the temperature uniformity of the atom flight path,which is conducive to the fountain clock blackbody radiation frequency shift of thetesting and evaluation.
     By Integrated debugging, little microwave leakage less than-75dB and highcoupling efficiency are achieved, and compared with the France SYRTE-FO1atomicfountain clocks, only one tenth of the interrogation microwave power is needed.
     In order to further reduce the cavity phase shift and improve cavity performance,design thinking about a novel microwave cavity with quadruple fed microwave isproposed.
     Taking into account the non-magnetic, low coefficient of thermal expansion,simplifying apparatus and other requirements, a state-selection microwave cavitymade of hard aluminum and with single-ended coupling is realized. At the same time, special weld is introduced between the coaxial line and the copper bearing and indiumwire is adopted between the selection cavity sidewall and the copper bearing, whichensure the vacuum and microwave leakage prevention between the connected parts.By filling vacuum grease and sealant in coaxial line of the selection cavity, a3.710-7Pa vacuum environment is achieved in the long-term work.
     (3) By designing and implementing a two-dimensional magneto-optical trapdevice, an intense and slow atomic beam is of great significance to improve thestability and accuracy of the cesium atomic fountain clock. Two-dimensionalmagneto-optical trap device consists of two separate traps, and the saturated cesiumvapor pressure can be adjusted to obtain optimal performance. A high flux up to2.1109atoms/s is achieved, which can meet the requirements of the cesium atomicfountain clock.
     The innovations of this paper are as follows:
     (1) A method of compensating for the magnetic flux leakage by placingcompensation coils in magnetic shielding cylinder is proposed and realized. A largerange uniform magnetic length up to48cm less than1.7nT fluctuations is obtained,which is in the leading domestic level;
     (2) Little microwave leakage less than-75dB and high coupling efficiency areachieved by designing and debugging microwave cavity; to further reduce the cavityphase shift, a new type of microwave cavity with four terminal design is proposed.
     (3) By debugging the fountain clock, the key signal-Ramsey resonance signal ofthe cesium atomic fountain clock is obtained, and the cesium fountain clock overallclosed-loop operation is realized, which are the foundation for the cesium atomicfountain clock performance improvement and practical application.
引文
[1]漆贯荣.时间科学基础.北京:高等教育出版社,2006
    [2] J. Jespersen, and J. Fitz-Randolph. From Sundials to Atomic Clocks. Understanding Time andFrequency,2nd ed., Dover, Mineola, New York,1999
    [3] J. Levine. Introduction to time and frequency metrology. Rev. Sci. Instrum.,1999,70:2567
    [4] F. Riehle. Frequency Standards: Basics and Applications. Wiley-VCH Verlag, Weinheim,2004:363
    [5]王义遒.时间频率量的特征及其对时频系统建设的影响.时间频率学报,2003,l26(2):81
    [6]王义遒.量子频标原理.北京:科学出版社,1986: xvi
    [7]王义遒.建设我国独立自主时间频率系统的思考.宇航计测技术,2004,l24(1):1
    [8] N F Ramsey. Molecular Beams. Oxford: Oxford University Press,1956
    [9] M. Kumagai, H. Ito, M. Kajita. Evaluation of caesium atomic fountain NICT-CsF1. Metrologia,2008,45:139
    [10] A. Bauch and R. Schroder. Experimental verification of the shift of the cesium hyperfine transitionfrequency due to blackbody radiation. Phys. Rev. Lett.,1997,78:622
    [11] E. J. Angstmann, V.A. Dzuba, and V.V. Flambaum. Frequency shift of hyperfine transitions due toblackbody radiation. Phys. Rev. A,2006,74:023405
    [12] K. Gibble and S. Chu. A laser cooled Cs frequency standard and a measurement of the frequencyshift due to ultra-cold collisions. Phys. Rev. Lett.,1993,70:177
    [13] F. Pereira, H. Marion, S. Bize. Controlling the cold collision shift in high precision atomicinterferometry. Phys. Rev. Lett.,2002,89:233004
    [14] S Bize, Y Sortais, M Abgrall.//Gill P. Ed. Proc.6thsymp. Freq. standards metrology. Singapore:World Scientific,2002:53
    [15] J. H. Shirley, F. Levi, Thomas P. Heavner. Microwave Leakage-Induced Frequency Shifts in thePrimary Frequency Standards NIST-F1And IEN-CsF1. IEEE Trans. on Ultr. Ferr. Freq. Contr.2006,53(12):358
    [16] S. Weyers, R. Schr der, and R. Wynands. Effects of microwave leakage in caesium clocks:Theoretical and experimental results. in Proc. Eur. Time Freq. Forum,2006:355
    [17] S. R. Jefferts, J. Shirley, T. E. Parker. Accuracy evaluation of NIST-F1. Metrologia,2002,39:321
    [18] A. Bauch and R. Schr der. Frequency shifts in a cesium atomic clock due to Majorana transitions.Ann. Phys.,1993,2(5):421
    [19] S. Weyers, R. Schr der, and R. Wynands. Majorana transitions in an atomic fountain clock. IEEETrans. Instrum. Meas.,2007,56(4):660
    [20] J Vanier, C Audoin. The quantum physics of atomic frequency standards. Bristol, Philadaphia:Adam Hilger,1989
    [21]王义遒.原子钟及其进展.物理教学,2003,25(4):2
    [22] F.G.Major, G.Werth. High-resolution magnetic hyperfine resonance in harmonically bouadground-state199Hg+ions. Phys.Rev.lett,1973,30
    [23] A.Clairon. Quantum projection noise in an atomic fountain: A high stability Cs frequencystandard[C]. Proceedings of the5th symposium on Frequency Standard and Metrology, WorldScientific: London,1965:49
    [24] R. Wynands and S. Weyers. Atomic fountain clocks. Metrologia,2005,42:64
    [25] F. Chapelet, J. Gu′ena, D. Rovera. Comparisons between3fountain clocks at LNE-SYRTE.Frequency Control Symposium,2007Joint with the21st European Frequency and Time Forum.,2007:467
    [26] C. Vian, P. Rosenbusch, H. Marion. BNM-SYRTE Fountains: Recent Results. IEEETRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2005,54(2):833
    [27] Circular TT. BIPM. ftp://ftp2.bipm.org/pub/tai/data/pfs_reports/
    [28] S. Zhang. Déplacement de fréquence d au rayonnement du corps noir dans une fontaineatomique à césium et amélioration des performances de l’horloge[D]. Paris: Université de Paris VI,2004:26
    [29] Li Yi-Min, Chen Xu-zong, Wang Qing-ji. ACTA PHYSICA SINICA(Overseas Edition),1995,4:727
    [30] A. Steck Daniel. Cesium D Line Data.1998
    [31] J. Dalibard, C. Salomon, A. Aspect. In J. C. Gay S. Hariche and G. Grynberg, Paris: Proceedingsof the11th International Conference on Atomic Physics, World Scientific,1988.
    [32] C. Cohen-Tannoudji and W. D. Phillips. New mechanisms for laser cooling Physics Today.1990,43(33):40
    [33] C. Salomon, J. Dalibard, W. D. Phillips. Laser cooling of caesium atoms below3μk Europhys.Lett.1990,12:683
    [34] M. Lours Chambon, F. Chapelet, S. Bize. Design and metrological features of microwavesynthesizers for atomic fountain frequency standard. IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2007,54:729
    [35] S. Weyers, B. Lipphardt, and H. Schnatz. Reaching the quantum limit in a fountain clock using amicrowave oscillator phase locked to an ultrastable laser. Phy. Rev. A.,2009,79:031803R
    [36] J. Millo, M. Abgrall, M. Loursl. Ultralow noise microwave generation with fiber-based opticalfrequency comb and application to atomic fountain clock. Appl. Phys. Lett.,2009,94:141105
    [37] G. J. Dick. Local oscillator induced instabilities in trapped ion frequency standards. In Proc.19thPrecise Time and Time Interval (PTTI) Applications and Planning Metting, Redondo Beach, USA,1987:133
    [38] C. A. Greenhall. A derivation of the long-term degradation of a pulsed atomic frequency standardfrom a control-loop model. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,45,1998:895
    [39] P. Berthoud, E. Fretel, A. Joyet. Toward a primary frequency standard based on a continuousfountain of laser-cooled Cesium atoms. IEEE Trans. Instrum. Meas.,48,1999:516
    [40] L. Devenoges, A. stefanov, A. Joyet. Improvement of the Frequency Stability Below the DickLimit with a Continuous Atomic Fountain Clocks. IEEE Trans. Ultra. Ferro. Fre,2012,59(2):211
    [41] F. Pereira Dos Santos, H. Marion, M. Abgrall.87Rb and133Cs laser cooled clocks: testing thestability of fundamental constants. In J. R. Vig, Proceedings of the joint meeting of17th EuropeanFrequency and Time Forum and the IEEE International Frequency Control Symposium, Tampa, USA,2003
    [42] F. Levi, C. Calosso, D. Calonico. Cryogenic fountain development at NIST and INRIM:preliminary characterization. IEEE Trans Ultrason Ferroelectr Freq Control.2010,57(3):600
    [43]李天初,李明寿,林平卫等. NIM4#激光冷却铯原子喷泉钟—新一代国家时间频率基准.计量学报,2004年,25(3):193
    [44]李天初,李明寿,林平卫等. NIM第二代铯原子喷泉钟NIM5的研制和评定不确定度进入310-15.全国时间频率年会,2007:344
    [45] ZHOU Zi-Chao, WEI Rong, SHI Chun-yan. Progress of the87Rb fountain clock. Chinese PhysicsLetter,2009,26(12):123201
    [46] F. Chapelet, J. Guena, D. Rovera. Comparisons between3fountain clocks at LNE-SYRTE.Frequency Control Symposium,2007Joint with the21st European Frequency and Time Forum.,2007:467
    [47] M. A. Lombardi, T. P. Heavner and S. R. Jefferts. NIST Primary Frequency Standards and theRealization of the SI Second. NCSL INTERNATIONAL measure,2007,2(4):
    [48] V.Gerginov, N.Nemitz, D.Griebsch. RECENT IMPROVEMENTS AND CURRENTUNCERTAINTY BUDGET OF PTB FOUNTAIN CLOCK CSF2.24th European Frequency and TimeForum2010, Noordwijk, Netherlands:29
    [49] R. Li, K. Gibble and K. Szymeniec. Improved accuracy of the NPL-CsF2primary frequencystandard: evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia,2011,48:283
    [50] F Levi. IEN-CsF1:primary frequency standard at INRIM: accuracy evaluation and TAIcalibrations, Metrologia,2006,43:545
    [51] M Kumagai. Evaluation of caesium atomic fountain NICT-CsF1, Metrologia2008,45:139
    [52]阮军.守时型铯原子喷泉钟关键技术的研究和实现[D].西安:中国科学院国家授时中心,2012:45
    [53] Jun Ruan, Jie Liu, Jie Ma. Robust external cavity diode laser system with high frequency stabilityfor Cs atomic clock. CHINESE OPTICS LETTERS,2010,8(3):300
    [54]赵文宇,姜海峰,张首刚.铯原子喷泉钟低噪声频率综合器的研制.时间频率学报,2008,31(2):81
    [55]吴长江,管勇,陈江等.铯原子喷泉钟均匀C场的实现.时间频率学报,2011,34(2):81
    [56]安振昌.2000年中国地磁场及其长期变化冠谐分析.地球物理学报,2003,46(1):68
    [57]张三慧.大学物理学.第二版,第三册,北京:清华大学出版社,1999:306
    [58]软磁合金手册.北京:冶金工业出版社出版,1975年
    [59]严密,彭晓领.磁学基础与磁性材料.杭州:浙江大学出版社,2006:14
    [60]磁屏蔽理论和实践. http://www.docin.com/p-54881010.html
    [61] S. Dickerson, J. M. Hogan, D. M. S. Johnson. A high-performance magnetic shield with largelength-to-diameter ratio. Rev. Sci. Instrum.2012,83:065108
    [62] S. M. Freake and T. L. Thorp. Shielding of low magnetic fields with multiple cylindrical shells.the Review of Science Instruments,1971,42(10):1411
    [63] A. Mager. J. Appl. Phys.1968,39:1914
    [64] D. Dubbers. Simple formula for multiple mu-metal shields. Nuclear Instruments and Methods inPhysics Research A,1986,243:511
    [65] S. M. FREAKE, T. L. THORP. Shielding of low magnetic fields with multiple cylindrical shields.Rev. Sci. Instrum,1971,42(10):1411
    [66] F. Schweizer. Magnetic Shielding Factors of a System of Concentric Spherical Shells. J. Appl.Phys.1962,33:1001
    [67] T. E. Sterne. Rev. Sci, Instr.1935,6:324
    [68] D. U. Gubser, S. A. Wolf, and J. E. Cox. Shielding of longitudinal magnetic fields with thin,closely spaced, concentric cylinders of high permeability material. Rev. Sci. Instrum,1979,50(6):751
    [69] A. J. Mager. Magnetic Shields. IEEE Trans. Mag.1970, MAG-6(1):67
    [70] A. Mager, Z. Angew. Phys.1967,23:381
    [71] A. Mager. Physica B/C1975,80:451
    [72]崔雅茹,刘环,施源,等.提高1J85合金磁性能的最终退火制度的改进.铸造技术,2005,26(12):1145
    [73] E. Calvo, M. Cerrada, I. Gil-Botella. Passive magnetic cylindrical shielding at gauss-range staticfields. Nuclear Instruments and Methods in Physics Research A,2009,600:560
    [74] J. D. Kraus,安绍萱译.电磁学[M].北京:人民邮电出版社,1979:289
    [75]刘杰.用于新型原子钟的半导体激光器驱动及稳频系统研究[D].西安:中国科学院国家授时中心,2009:
    [76] M. Kumagai, H. Ito, M. Kajita. Evaluation of caesium atomic fountain NICT-CsF1. Metrologia,2008,45:139
    [77]王义遒,王庆吉,董太乾,等.量子频标原理[M].北京:科学出版社,1986:325
    [78] V.Gerginov, N.Nemitz, S.Weyers. Uncertainty evaluation of the caesium fountain clockPTB-CSF2. Metrologia,2010,47:65
    [79]刘兴民.关于退磁方法的讨论.宇航计测技术,2002,22(5):13
    [80]赵凯华,陈熙谋.电磁学(下).北京:高等教育出版社,1985年6月第二版:472
    [81]胡勇,高峰,郑庆强.磁性材料的真空热处理工艺及设备.热处理技术与装备,2007,28(3):35
    [82]李晨隽.高初始磁导率合金1J85热处理工艺的研究.南方钢铁,2000,(116):7
    [83]孙军艳,汤健明.改善软磁合金热处理后综合性能的方法研究.电子元件与材料,Vol.2009,28(6):27
    [84]刘天佐,曹静,夏天东.热处理工艺对Fe-79%Ni软磁合金磁性能的影响.磁性材料及器件,2006,37(1):26
    [85]梁昌洪,谢拥军,官伯然.简明微波.北京:高等教育出版社,2006年7月第一版:258
    [86]水启刚.微波与光导波技术.杭州:浙江大学出版社,1996年8月第一版:340
    [87] S. Zhang. Déplacement de fréquence d au rayonnement du corps noir dans une fontaineatomique à césium et amélioration des performances de l’horloge[D]. Paris: Université de Paris VI2004:54
    [88]水启刚.微波与光导波技术.浙江大学出版社,1996年8月第一版:53
    [89]边风刚,魏荣,吕德胜.激光冷却铷原子喷泉钟的微波谐振腔设计.中国激光,2006,33(9):1185
    [90]黄秉英.新一代原子钟,武汉:武汉大学出版社,2006年10月:
    [91]无线电波的空气折射率,http://www.hudong.com/wiki/%E6%97%A0%E7%BA%BF%E7%94%B5%E6%B3%A2%E7%9A%84%E7%A9%BA%E6%B0%94%E6%8A%98%E5%B0%84%E7%8E%87
    [92]金群峰.大气折射率影响因素的研究[D].杭州,浙江大学,2006:25
    [93] S. Zhang. Déplacement de fréquence d au rayonnement du corps noir dans une fontaineatomique à césium et amélioration des performances de l’horloge[D]. Université de Paris VI,2004:62
    [94]黄秉英,吴长华,干云清等.用于铯原子喷泉频率基准的TE011微波谐振腔.计量学报,2002,23(2):157
    [95] Vecchi G, de Marchi A. Spatial phase variations in a TE011microwave cavity for use in cesiumfountain primary frequency standard. IEEETrans,1993, IM-42(2):434
    [96] R. Li and K. Gibble. Phase variations in microwave cavities for atomic clocks. Metrologia,2004,41:376
    [97]阮军.守时型铯原子喷泉钟关键技术的研究和实现[D].西安:中国科学院国家授时中心,2012:43
    [98] R. Li and K. Gibble. Evaluating and Minimizing Distributed Cavity Phase Errors in AtomicClocks. Metrologia,2010,47:534
    [99]曹学军,马弘舸,谢苏隆.微波耦合场测量圆环探头的接收特性.强激光与粒子束,2008,20(7):1155
    [100] Roland Schroder, Udo Hiibner, and Dieter Griebsch. Design and Realization of the MicrowaveCavity in the PTB Caesium Atomic Fountain Clock CSF1. IEEE Trans. Ultra., Fer., Fre. cont,2002,49(3):383
    [101] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-DimensionalMagneto-optical Trap with a High Optical Depth. Chin. Phys. Lett,2012,29(2):024205
    [102] WANG Xiao-Long, CHENG Bing, WU Bin, WANG Zhao-Ying, LIN Qiang. A Simplified ColdAtom Source for3-D MOT Loading. Chin. Phys. Lett,2011,28(5):053701
    [103] C.S. Adams, M. Sigel and J. Mlynek. Atom Optics. Phys. Rep.,1994,240:143
    [104] A. MIFFRE, M. JACQUEY, M. BüCHNER, G. TRENEC and J. VIGUE. Atom Interferometry.Phys. Scr.,2006,74: C15
    [105] H J Metcalf, P. van der Straten. Laser cooling and trapping. Springer-Verlag New York,1999:345
    [106]阮军,吴长江,刘丹丹,等.二维磁光阱产生铯原子束的数值模拟.原子与分子物理学报,2012,29(5):10
    [107] S Chaudhuri, S Roy, C S Unnikrishnan. Realization of an intense cold Rb atomic beam based ona two-dimensional magneto-optical trap: Experiments and comparison with simulations, Phys. Rev. A,2006,74:023406
    [108] K Lindquist, M Stephens, C Wieman. Experimental and theoretical study of the vapor-cellZeeman optical trap. Phys. Rev. A,1992,46:4082
    [109] J Ramirez-Serrano, N Yu, J M Kohel. Multistage two-dimensional magneto-optical trap as acompact cold atom beam source. OPTICS LETTERS,2006,31(6):682
    [110] V. Gerginov, C. E. Tanner. Fluorescence of a highly collimated atomic cesium beam: theory andexperiment. Optics Communications,2003,222:17
    [111] Harold J. Metcalf, Peter van der Straten. Laser cooling and trapping. Springer-Verlag New York,1999:80
    [112]P. A. Molenaar, P. van der Straten, H. G. M. Heideman,and H. Metcalf. Diagnostic technique forZeeman-compensated atomic beam slowing: Technique and results. Phys. Rev. A,1997,55(1):605
    [113]J. Catani, P. Maioli, L. De Sarlo, F. Minardi, and M. Inguscio. Intense slow beams of bosonicpotassium isotopes. Phys. Rev. A,2006,73(3):033415
    [114] J Catani, P Maioli, L De Sarlo. Intense slow beams of bosonic potassium isotopes. Phys. Rev. A,2006,73:033415
    [115] A. Takamizawa, S. Yanagimachi, Y. Shirakawa. Cesium Atomic Fountain Clocks At NMIJ.42ndAnnual Precise Time and Time Interval (PTTI) Meeting,2010:234
    [116] J. Catani, P. Maioli, L. De Sarlo. Intense slow beams of bosonic potassium isotopes. Phys. Rev.A,2006,73(3):033415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700