用户名: 密码: 验证码:
松花江中硝基苯类污染物应急检测及水质达标技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈尔滨市有磨盘山水库和松花江两个供水水源,目前磨盘山水库是供水主水源,磨盘山净水厂供水能力为90万m3/d,松花江作为哈尔滨市供水热备水源,松花江水源有三个净水厂总供水能力为60万m3/d。由于松花江哈尔滨江段水质遭受到不同程度的污染,致使松花江净水厂在现有常规水处理工艺条件下的出厂水水质无法达到我国新颁布并且在2012年全部强制实施的国家生活饮用水卫生标准要求。因此,开发松花江水源水中有机污染物应急检测方法、典型有机物应急处理以及以松花江为原水的达标处理技术,对松花江水源需要启动时,净水厂出厂水可全项达到生活饮用水卫生标准106项水质指标要求有着重要的现实和长远意义。
     结合GB5749-2006和GB3838-2002水质指标体系的具体要求,采用气相色谱质谱联用技术对松花江水源水和三水厂出厂水中的有机污染物进行了定性检测,分别检测到有机污染物165种和137种。其中含有苯、甲苯、乙苯、间二甲苯、对二甲苯、邻二甲苯、硝基苯、萘、酞酸二丁酯、酞酸二辛酯等10种我国优先控制污染物以及卤代烃、酚、各种环己烷、多环芳烃等潜在危害物质,表明松花江水源水中苯系物应成为今后监控的重点。
     针对2005年松花江遭受硝基苯污染重大事件,迅速开发出气相色谱法快速测定硝基苯浓度的检测技术。通过实验研究将国标方法中的萃取剂苯改为正己烷,样品检测时间显著下降,满足应急检测的技术要求。本方法最低检测浓度为0.1μg/L,测定系列浓度(25~250μg/L)的硝基苯水溶液标准偏差(RD)为1.0~5.5μg/L,相对偏差(RSD)均小于6.5%。采用实际松花江水样加标回收率为100%~108%。与几个试验室对比结果显示,本方法与其它实验室测定结果最大偏差为6%。该方法已成功用于硝基苯污染事件水质检测工作中,为哈尔滨市恢复供水发挥了重要作用。
     研究了气相色谱法同时测定地表水环境质量标准中所有硝基苯类有机污染物(共10种)的技术流程,在所设定的色谱条件下,所开发的最低检测浓度均优于国标推荐方法,测定系列浓度(20~200μg/L)的硝基苯类化合物水溶液的标准偏差(RD)为0.15~3.4μg/L,相对偏差(RSD)均小于2.0%,结果也好于国标推荐方法。同时研究也发现尽管液相色谱法无法实现10种硝基苯类化合物有效分离,若遇到应急检测时,可以先用气相色谱法定性,然后再适当分类即可达到快速检测的目的。液相色谱法测定硝基苯类化合物水溶液的标准偏差(RD)为6.06~12.4μg/L,相对偏差(RSD)均小于2.0%(n=7)。加标回收率在94.7~104.3%,满足实际工作要求。检测限除硝基苯外,其它化合物均优于国标推荐方法。
     针对水源地可能受到的有机污染,选择对硝基氯苯和2,4-二硝基氯苯为目标化合物进行了粉末活性炭的吸附特性研究,研究结果表明:在对硝基氯苯和2,4-二硝基氯苯为5倍超标量时,分别投加20mg/L和30mg/L可以达到水源地水质控制标准;二者在粉末活性炭的吸附为物理吸附,吸附特征符合弗瑞德里希方程,对硝基氯苯的吸附动力学常数分别为1.6849(g/mg·min)(5℃),1.7742(g/mg·min)(15℃),1.8286(g/mg·min)(25℃),2,4-二硝基氯苯的吸附动力学常数分别为21.537(g/mg·min)(5℃),19.596(g/mg·min)(15℃),20.39(g/mg·min)(25℃),表明低温有利于对硝基氯苯和2,4-二硝基氯苯在粉末活性炭上吸附。本文还详细地介绍了松花江硝基苯污染期间应急处理的工程实例,指出在应对硝基苯污染过程中采用粉末活性炭吸附并结合颗粒活性炭石英砂双层滤池可以保障有效去除水中硝基苯,并确保供水安全。
     设计完成两套规模为5.0t/h的中试装置,并历时一年时间研究了臭氧预氧化强化混凝以及臭氧活性炭技术在松花江水源应急启动中的应用,研究结果表明:臭氧预氧化可以改善水质的混凝特性,具有助凝作用,可以节约混凝药剂12%左右;臭氧活性炭技术作为一种深度处理技术,可以满足松花江水源水的深度处理技术要求。中试结果表明:采用臭氧活性炭技术可以提高饮用水的生物稳定性,并确保达到GB5749-2006的106项水质指标要求。
     以上研究成果紧密结合哈尔滨供水水质中几个关键性问题开展的研究,对于全面提高哈尔滨城市供水水质具有重要的指导意义和应用价值。
There are Mopanshan reservoir and Songhua River in Harbin which are used asthe supply of drinking water. Currently, Mopanshan reservoir is the main watersupply, Mopanshan waterworks can provide90million m3/d of water, SonghuaRiver is a backup source of water supply in Harbin, it has three waterworks and canprovide60million m3/d of water. Because the water quality in Songhua River ofHarbin suffered different degrees of pollutions, the water quality of waterworks inconventional water treatment technology could not meet with the state drinkingwater health standards which is just lauched and forced to implement in2012.Therefore, when use Songhua River water, The development of emergencydetection for organic pollutants in Songhua River water, typical organic emergencytreatment and treatment technology could make water meat with the demand of106indexes of drinking water health standard, it has important and long-termsignificance.
     With regard to both GB5749-2006and GB3838-2002, the organic pollutantstesting results of GC-MS on Songhua River water source water and the third waterfactory are165kinds of organic compounds and137respectively. In the detectionof organic matter, there are benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, nitrobenzene, naphthalene, dibutyl phthalate, dioctyl phthalate and other10kinds of priority control in China pollutants and halogenated hydrocarbons, phenol,all kinds of cyclohexane, polycyclic aromatic hydrocarbons and other potentiallyhazardous substances.
     Based on the fact that Songhua river suffered nitrobenzene pollution in2005, agas chromatography method for rapid testing nitrobenzene concentration isdeveloped. Through research, benzene was replaced by n-hexane as extractant innational standard method, extraction time decreases significantly, which can meetwith the technical requirement of the emergency detection. The lowest detectionlimit is0.1μg/L, the measured concentrations is (25~250μg/L) of nitrobenzenestandard deviation (RD) is1.0~5.5μg/L, the relative deviation (RSD) are lessthan6.5%. Being practical in Songhua River water samples with the recovery being100~108%. Compared with several laboratory results, it showed that this methodwith other laboratory results the determined maximum deviations being less6%. The method has been successfully used in the work of nitrobenzene pollution eventin water quality testing, and plays an important role for restoring the water supplyof Harbin.
     Study on gas chromatography method and technical process for thedetermination of nitrobenzene, in special chromatographic conditions, the detectionlimit is superior to the national standard method for the determination a series ofconcentrations (20~200μg/L) of nitrobenzene, the standard deviation (RD) is0.15~3.4μg/L, the relative deviation (RSD) are less than2.0%, the result isbetter than that achieved with the national standard method. In the same time,although research founds that liquid chromatographic method can achieve10kindsof nitrobenzenes effectively separated compounds, if emergency detection is need,first using gas chromatography method to determine and then classify appropriatelynitrobenzenes for rapid detection. The standard deviation (RD) of nitrobenzenes is6.06~12.4μg/L, the relative deviation (RSD) are less than2.0%(n=7). Therecovery of the method is94.7~104.3%. In addition to the detection limit ofnitrobenzenes, all other compounds are superior to the method achieved by thenational standard.
     Based on the organic pollutants for water source, the selected target compoundsare nitrochlorobenzene and2,4-dinitrochlorobenzene for powdered activatedcarbon absorption test, the results indicate that when nitrochlorobenzene and2,4-dinitrochlorobenzene are5times the superscalar, the addition of powdered activatedcarbon are20and30mg/L respectively, the water quality could reach the controlstandard. The adsorption of nitrochlorobenzene and2,4-dinitrochlorobenzene isphysical absorption, and the absorption characteristics the follows Freundlichisotherm, the adsorption kinetic constants are1.6849(g/mg·min)(5℃),1.7742(g/mg·min)(15℃),1.8286(g/mg·min)(25℃) for Nitrochlorobenzene, and21.537(g/mg·min)(5℃),19.596(g/mg·min)(15℃),20.39(g/mg·min)(25℃) for2,4-dinitrochlorobenzene. It indicates that low temperature is favour the adsorption ofnitrochlorobenzene and2,4-dinitrochlorobenzene by powdered activated carbon.This paper introduces the engineering example of emergency treatment duringSonghua River polluted by nitrochlorobenzene, it points out that in the process ofcoping with nitrochlorobenzene pollution, using powdered activated carbon toadsorb the nitrochlorobenzene and combining activated carbon and sand layersfilter could remove nitrochlorobenzene from water effectively, and ensure water supply security.
     Two sets of5.0t/h pilot plant are operated, and lasting one year time to studythe ozone pre-oxidation and ozone activated carbon technology systematically, theresults indicate that pre-ozonation could improve the characteristic coagulation ofwater quality, it can save about12%of coagulant agents. Ozone/activated carbontechnology is proposed as an advanced treatment technology, it could meet with thetechnology requirement of Songhua River source water on advanced treatment. Theresults of pilot show that ozone-activated carbon technology could improvebiological stability of drinking water to meat with the demand of GB5749-2006's106index standard.
     The research results include several key research issues of water supply inHarbin, there are important values for the use of method for improving the level ofwater supply in Harbin.
引文
1张杰,曹相生,孟雪征.以水的健康循环应对松花江水系污染.给水排水.2006,32(7):32~34
    2陈忠林,范洁,马军,等.高锰酸钾与粉末活性炭联用去除和控制受污染饮用水源中的致突变物质.中国给水排水.1998,14(4):1~3
    3金子,李善日,李青山.松花江水中有机污染物的GC/MS定性定量分析.质谱学报.1998,19(1):33~42
    4马建滨,付金发,王东伟.松花江水中微量有机物的危害及处理方法.水利科技与经济.2000,6(4):182~184
    5张心余.松花江汞与甲基汞的污染变迁.黑龙江水利科技.2004,32(2):104~105
    6李圭白,李星.污染源治理与饮用水除污染并重.哈尔滨建筑大学学报.1996,29(5):274~278
    7李圭白,马军.用高锰酸钾去除和控制受污染水源水中的致突变物质.给水排水.1992,18(2):101~104
    8H. R. Wang, Y. Y. Dong, Y. Wang. Water Right Institution and Strategies of theYellow River Valley. Water. Resour. Manage.2008,22(6):1499~1519
    9G.W. Miller. Integrated concepts in water reuse: managing global water needs.Desalination.2006,187(1~3):65~75
    10E. Engelhaupt. Parking lots create sticky pollution problem. Environ. Sci.Technol.2009,43(1):3
    11E.R. Long, A. Robertson, D.A. Wolfe,et al. Estimates of the Spatial Extent ofSediment Toxicity in Major U.S. Estuaries. Environ. Sci. Technol.1996,30(2):3585~3592
    12W.H. Dong. The third discussion of water right, water price and watermarket~an analysis of water price mechanism. Water Resour. Dev. Res.2002,25(2):1~5
    13R.S. Duan, C.H. Ran and Z.Z. Tong. Water right and water utilizationmanagement of Russia. Water Cons. Dev. Res.2001,35(3):28~30
    14Y.R. Hu and Y.Q. Chen. Cognition and practice of water transfer in the YellowRiver valley. China Water Cons.2004,15(4):46~47
    15D. Bixio, C. Thoeye, J. De Koning,et al. Wastewater reclamation and reuse inEurope. Desalination.2006,187(1~3):89~101
    16Water recycling in Australia. Australian Academy of Technological Sciencesand Engineering.2004
    17Clean Watershed Needs Survey2000, Report to Congress.2003
    18李树苑,吴瑜红,刘海燕.饮用水臭氧活性炭深度处理工艺设计.中国给水排水.2008,24(24):36~38
    19安东,李伟光,崔福义,等.固定化生物活性炭强化饮用水深度处理.中国给水排水.2005,21(4):9~12
    20王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社.2002
    21A. Imai, K. Matsushige and T. Nagai. Trihalomethane formation potential ofdissolved organic matter in a shallow eutrophic lake. Water Res.2003,37(17):4284~4294
    22M.H. Fontela, M.T. Galceran and F. Ventura. Stimulatory Drugs of Abuse inSurface Waters and Their Removal in a Conventional Drinking WaterTreatment Plant. Environ. Sci. Technol.2008,42(18):6809~6816
    23D. Hummel, D. Loeffler, G. Fink and T.A. Ternes. Simultaneous determinationof psychoactive drugs and their metabolites in aqueous matrices by liquidchromatography mass spectrometry. Environ. Sci. Technol.2006,40(23):7321~7328
    24E. Zuccato, S. Castiglioni, R. Bagnati,et al. Illicit drugs, a novel group ofenvironmental contaminants. Water Res.2008,42(4~5):961~968
    25T.A. Ternes, M. Meisenheimer, D. McDowell, H.,et al. Removal ofpharmaceuticals during drinking water treatment. Environ. Sci. Technol.2002,
    36(2~3):3855~3863
    26L.A. Rossman. The effect of advanced treatment on chlorine decay in metallicpipes. Water Res.2006,40(13):2493~2502
    27F. Hua, J.R. West, R.A. Barker et al. Modelling of chlorine decay in municipalwater supplies. Water Res.1999,33(12):2735~2746
    28L. Mathieu, J.C. Block, M. Dutang,et al. Control of biofilm accumulation indrinking~water distribution systems. Water Supply,11(3~4):365~376
    29W. Lu, L. Kiene and Y. Levi. Chlorine demand of biofilms in water distributionsystems. Water Res.1999,33(3):827~835
    30K. Gotoh. Residual chlorine concentration decreasing rate coefficients forvarious pipe materials. In Proceedings of the17th IWSAWater SupplyConference,1988
    31马静,张红旗,李慧娴,等.粮食国际贸易对我国水土资源利用的影响分析.资源科学.2008,30(11):1723~1728
    32中华人民共和国国家统计局.中国统计年鉴2001~2006.北京:中国统计出版社,2007
    33刘昌明,李云成.“绿水”与节水:中国水资源内涵问题讨论.科学对社会的影响.2006,21(1):16~20
    34张敦强.虚拟水:缓解我国水短缺的新途径.中国水利.2004,24(8):24~26
    35张坤民,朱达,张世秋.可持续发展在中国.中国环境科学.1995,10(5):323~328
    36于忠民.当代水污染防治的特点及发展.中国给水排水.1997,13(3):26~28
    37王东辉,王禹,林志华.松花江水环境污染特征及防治措施.环境科学与管理.2007,32(6):67~69
    38中国环境科学学会.酸雨文集.北京:中国环境科学出版社.1989:265~275
    39吴霞芬.中国的水污染问题.中国地质.1998,5(9):32~33
    40李志群,董增川.科学应对流域水污染事件—松花江重大水污染事件实例分析.水资源保护.2008,24(2):45~49
    41张书庭.中国灾害管理.哈尔滨:哈尔滨出版社.1996:58~72
    42刘铁民.应急体系建设和应急预案编制.北京:企业管理出版社.2004
    43X.J. Zhang, C. Chen and W.J. He. Control of disinfection by-products in safechlorine disinfection process. China Water Wastewater,2004,20(4):13~16
    44A.C. Diehl, G.E. Speitel and Jr J.M. Symons. DBP formation duringchloramation. Am Water Works Ass J.2000,92(3):76~90
    45C. Chen and X.J. Zhang. Reduction of disinfection by-products with short-termfree chlosine plus chloramines disinfection process.4th IWA World WaterCongress and Exhibition. Marrakech, Morocco,2004,9
    46C. Achten, A. Kolb and W. Puttmann. Occurrence of methyl tert-butyl ether(MTBE) in riverbank filtered water and drinking water produced by riverbankfiltration.2. Environ. Sci. Technol.2002,36(2):3662~3670
    47L.M. Debrewer, G.L. Rowe, D.C. Reutter,et al. Environmental Setting andeffects on Water Quality in the Great and Little Miami River Basins, Ohio andIndiana. Water-Resources Investigations Report99-4201, U.S. GeologicalSurvey: Denver,2000
    48M.H. Daly and B.D. Lindsey. Occurrence and Concentrations of VolatileOrganic Compounds in Shallow Groundwater in the Lower Susquehanna RiverBasin, Pennsylvania and Maryland. Water-Resources Investigations Report96-4141, U.S. Geological Survey: Denver,1997
    4925Years of the Safe Drinking Water Act: History and Trends. EnvironmentalProtection Agency, Washington, DC. Office of Water.1999
    50李丽娟,梁丽乔,刘昌明,等.近20年我国饮用水污染事故分析及防治对策.地理学报.2007,62(9):917-924
    51谢有奎,陈灌春,方振东.城市饮用水水质安全分析.后勤工程学院学报.2004,11(4):14-17
    52刘恒,陈齐巍,胡素萍.莱茵河水污染事件回顾与启示.中国水利.2006,34(7):55-58
    53中国石油化工总公司抗震办公室编译.地震的教训—1989年美国洛马·普里埃塔地震.地震出版社,1990
    54金春久.松花江流域面积污染调查方法初探.东北水利水电.2006,22(6):54~55
    55郑晶晶,徐迎,金丰年.“卡特里娜”飓风对防灾预案的启示.自然灾害学报,2007,16(1):12-16
    56黑龙江统计局.2004黑龙江统计年鉴.北京:中国统计出版社,2004
    57陈善荣,陈明.广东省北江韶关段镉污染事件案例分析.环境教育.2008,15(1):49-53
    58给水排水动态编辑部.太湖蓝藻爆发,无锡水危机.给水排水动态.2007
    59罗怀良.四川水资源可持续利用与水质保护研究.四川环境.2003,22(3):38-39
    60朱鸿斌,邓明智,张成云.沱江水源水污染事故暴露出公共卫生问题及解决对策.中国饮食卫生与健康,2004,2(4);50-51
    61孙莉,朱鸿斌,张成云,等.一起工业废水污染沱江水源水事故的调查.环境与健康杂志,2005,22(3):192-193
    62胡东风,贺述柒,付永安.硫氢化纳泄露污染生活饮用水水源的调查及处理.实用预防医学,2007,7(3):215-216
    63陈忠林,沈吉敏,齐飞,等.液液微萃取气相色谱法快速测定硝基苯.中国给水排水.2006,6(3):77~79;
    64盛杰,谢丽,翟桂明,等.液液萃取-气相色谱法测定硝基苯及其降解产物影响因素研究.净水技术.2007,26(3):69~73;
    65刘敬东,王佳祥.高效液相色谱法测定水中硝基苯含量.化学工程师.2006,128(5):28~29;
    66吕国晓,尹军,刘蕾,等.高效液相色谱法测定环境水体中的硝基苯.吉林建筑工程学院学报.2008,25(3):21~23
    67魏道圃,罗会堂,杨艳菊. N, N-二甲基苯胺气相色谱分析.河南化工.2005,22(10):46
    68章思规.实用精细化学品手册有机卷.北京:化学工业出版社,1996
    69《辞中国商品大典》编辑委员会.中国商品大辞典.北京:中国商业出版社.1994
    70B. Cancho. Simultaneous determination of cyanogen chkride and cyanogensbromide in treated water at sub-mg/L levels by a new solid-phasemicroextraction-gas chromatographic-electron-capture detection method,J.Chromatogr. A,2000,897(1~2):307-315
    71A. M. Bak ierowska, J. Trzeszczynski. Graphcal method for the determinationof water/gas partition coefficients of volatile organic compounds by aheadspace gas chromatography technique, Fluid Phase Equilibria,2003,213(1~2):139-146
    72T. J. Lopes, D. A. Bender. Nonpoint source of volatile organic compounds inurban areas-relative importance of land surface and air, Environ. Pollut,1998,101(2)221-230
    73S. K. Golfinopoulos, T. D. Lekksa, A. D. Nikolaou. Comparison of methods fordetermination of volatile organic compounds in drink water,Chemosphere,2001,45(3):275-284
    74C. Bloch. The properties of chromatomembrane cells in flow systems coupledto gas chromatography-analysis of volatile organic compounds,Talanta,2000,52(1):123-128
    75C. C. Chang, G. R. Her. On-line monitoring trihalomethanes in chlorinatedwater by membrane introduetion-fast gas chromatography mass-spectrometry.J. Chromatogr. A,2000,893(1)169-175.
    76M. N. Sarrion. Strategies for the analysis of chlorobenzenes in soils using solidphase microextraction coupled with gas chromatography-ion trap massspectrometry, J. Chromatogr. A,1998,819(1~2):197-209
    77M. Llompart. Headspaee solid-phase microextraction for the determination ofvolatile and semi-volatile pollutants in water and air, J. Chromatogr.A,1998,824(1):53-61
    78M. A. Stack. Measurement of trihalomethanes in potable and reereationalwaters using solid phase microextraetion with gas chromatography-massspectrometry, ChemosPhere,2000,41(11):1821-1826
    79J. Yang,S-S. Tsai. Development of headspace solid-phase microextractiontotal reflection infrared chemical sensing method for the determination ofvolatile organic compounds in aqueous solutions, Anal.Chim.Acta,2001,436(1):31-40.
    80O. Ezquerro. MultipIe headspace solid-phase microextraetion for thequantitative determination of volatile organic compounds in multiplayerpackagings, J. Chromatogr.A,2003,999(l-2):155-164
    81B. Canehoetal. Simultaneous determination of cyanogen chloride andeyanogens bromide intreated water at sub-mg/L levels by a new solid-phasemicroextraetion-gas chromatographic-eleetron-capture detection method, J.Chromatogr. A,2000,897(1-2):307-315.
    82张万峰.松花江水中有机污染物的GC/MS分析.北方环境.2002,12(1):53~54
    83赵淑敏,张万峰,吴静.水中氯代苯酚的GC/MS分析.北方环境.2002,8(3):62~63
    84J.D. Plummer and J.K. Edzwald. Effect of ozone on algae as precursors fortrihalomethane and haloacetic acid production. Environ. Sci. Technol.2001,35(18):3661~3668
    85方晶云,马军,王立宁,等.臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响.环境科学.2006,27(6):1127~1132
    86S. Itoh, H. Murakami, M. and A. Nakano. Limitations of chlorine dioxide asan alternative disinfectant in comparison with chlorine from the viewpoint ofmutagenicity. J. Water Supply Res. Technol. Aqua.2007,56(2):95~104
    87N. Narkis, A. Katz, F. Orshansky,et al. Disinfection of effluents bycombinations of chlorine dioxide and chlorine. Water. Sci. Technol.1995,31(5~6):105~114
    88P. Andrzejewski, B. Kasprzyk-Hordern, J. Nawrocki. Thehazard of N-nitrosodimethylamine (NDMA) formation during water disinfection withstrong oxidants. Desalination.2005,176(13):37~45
    89C.Y. Chang, Y.H. Hsieh, Y.M. Lin, et al. The organic precursors affecting theformation of disinfection by-products with chlorine dioxide. Chemosphere.2001,44(5):1153~1158
    90J. Kris, K. Munka, E. Buchlerova,et al. Chlorine dioxide disinfection by-products in the Nova Bystrica-Cadca-Zilina long distance water supply system.Water Sci. Technol. Water Supply.2006,6(2):209~214
    91P. Andrzejewski, M. Czerwifiska, B. Kasprzyk-Hordern,et al. Proc.18thNational,6th International Scientific and Technical Conference. Water supplyand water quality, Poznafi,2004
    92黄君礼,李绍峰,崔崇威.饮用水消毒剂ClO2的研究进展.哈尔滨建筑大学学报.2001,34(5):39~43
    93黄君礼,崔崇威.二氧化氯物理化学性质研究进展.哈尔滨建筑大学学报.1999,32(5):47~51
    94黄君礼,李春兰.二氧化氯对水中酚类化合物的去除效果.环境化学.1998,17(2):174~179
    95黄君礼,王学凤.二氧化氯对水中无机污染物的去除效果.环境化学.1996,15(1):82~89
    96王占生,刘文君.我国给水深度处理应用状况与发展趋势.中国给水排水.2005,21(9):92~96
    97左金龙.饮用水处理技术现状评价及技术集成研究.哈尔滨工业大学博士论文.2007
    98尹军.饮用水深度处理技术若干研究进展.吉林建筑工程学院学报.2004,
    21(2):7~13
    99T.E. Hinkebein, M.K. Price. Progress with the desalination and waterpurification technologies US roadmap. Desalination.2005,182(1~3):19~28
    100M. Clever, F. Jordt, R. Knauf, et al. Process water production from river waterby ultrafiltration and reverse osmosis. Desalination.2000,131(1~3):325~336
    101B. Ericsson, M. Hallberg, J. Wachenfeldt. Nanofiltration of highly colored rawwater for drinking water production. Desalination.1997,108(1~3):129~141
    102S. Atkinson. Filtration technology verified to remove arsenic from drinkingwater. Memb. Techol.2006,2006(3):8~9
    103R.J.N. Willemse, Y. Brekvoort. Full-scale recycling of backwash water fromsand filters using dead~end membrane filtration. Water Res.1999,33(15):3379~3385
    104J.E. Dyksen, S. Master, V. Veerapaneni. Treatment of the Hudson River forwater supply development. J N Engl Water Works Assoc.2008,122(3):253~258
    105P. Vieira, H. Alegre, M.J. Rosa,et al. Drinking water treatment plantassessment through performance indicators. Water Sci. Technol. Water Supply.2008,8(3):245~253
    106H.Z. Wu, Y.L. Hsu, H.L. Huang, et al. Application of biocoagulant on drinkingwater treatment. Pract. Period. Hazard. Toxic Radioact. Waste Manage.2007,
    11(2):92~96
    107C. Nietch, R. Haught, J. Goodrich, et al. Integrating source water protectionand drinking water treatment: U.S. Environmental Protection Agency's watersupply and water resource division. J. Harbin Inst. Technol.2005,12(1):6~12
    108J.C. Mierzwa, I. Hespanhol, M.C.C. da Silva, et al. Direct drinking watertreatment by spiral-wound ultrafiltration membranes. Desalination.2008,230(1~3):41~50
    109王宝贞,王欣泽,李冰,等.优质饮用水的消毒方法.哈尔滨工业大学学报.2002,34(4):884~284
    110唐安中,何敬成.优质饮用水生产工艺介绍.中国给水排水.1999,15(3):47~49
    111楚文海,高乃云,李青松,等.六氯苯污染源水的饮用水应急处理工艺研究.中国环境科学.2008,28(6):507~511
    112何圣兵,王宝贞,王琳,等.活性炭—纳滤膜处理饮用水试验研究.中国给水排水.2003,19(13):67~68
    113李绍峰,刘伟,黄君礼. NF和RO膜用于饮用水处理的研究.南京理工大学学报(自然科学版).2003,27(1):93~97
    114金文标,马放,杨秀妍,等.饮用水深度处理设备的净化效能.中国给水排水.2002,18(5):39~41
    115S. Shipard. High speed water filtration.The potential for novel polypropylenefibred, fabric media filters. Australasian Institute of Mining and MetallurgyPublication Series.2004,15(4),423~436
    116H. Evans, M. Bauer, N. Goodman, et al. The Role of Ozone in ImprovingDrinking Water Quality in London and Oxford. Ozone Sci. Eng.2003,25(5):409~416
    117W. Kreisel. Water quality and health. Water. Sci. Technol.1991,39(1):201~209
    118Q.H. Ji, H.J. Liu, C.Z. Hu, J.H. Qu, D.S. Wang and J. Li. Removal ofdisinfection by-products precursors by polyaluminum chloride coagulationcoupled with chlorination. Sep. Purif. Technol.2008,62(2):464~469
    119S.W. Krasner, H.S.Weinberg, S.D. Richardson, et al. Occurrence of a newgeneration of disinfection byproducts. Environ. Sci. Technol.2006,40(23):7175~7185
    120G.H. Hua, D.A. Reckhow. DBP formation during chlorination andchloramination: Effect of reaction time. pH, dosage, and temperature. J AmWater Works Assoc.2008,100(8):82~95
    121S. Batterman, L.Z. Zhang, S.Q. Wang. Quenching of chlorination disinfectionby-product formation in drinking water by hydrogen peroxide. Water Res.2000,
    34(5):1652~1658
    122J.S. Kim, Y. Chung, D.C. Shin,et al. Chlorination by-products in surface watertreatment process. Desalination.2003,151(1):1~9
    123肖羽堂,许建华,王冠平.强化微污染原水净化效果的生产性应用研究.环境科学.1998,5(3):28~34
    124Z.W. Wang, Z.C. Wu, S.H. Mai,et al. Research and applications of membranebioreactors in China: Progress and prospect. Sep. Purif. Technol.2008,62(2):249~263
    125E.J. McAdam, S.J. Judd. Biological treatment of ion-exchange brine regenerantfor re-use: A review. Sep. Purif. Technol.2008,62(2):264~272
    126A. Nuhoglu, T. Pekdemir, E. Yildiz, et al. Drinking water denitrification by amembrane bio-reactor. Water Res.2002,36(5):1155~1166
    127K.H. Carlson, G.L. Amy. Importance of Soluble Microbial Products (SMPS) inbiological drinking water treatment. Water Res.2000,34(4):1386~1396
    128刘秉涛,徐菲,娄渊知.饮用水深度处理技术现状及工艺比较.水科学与工期程技术.2007,9(3):7~10
    129W.Y. Hua, E.R. Bennett, R.J. Letcher. Ozone treatment and the depletion ofdetectable pharmaceuticals and atrazine herbicide in drinking water sourcedfrom the upper Detroit River, Ontario, Canada. Water Res.2006,40(12):2259~2266
    130D. Manojlovic, D.R. Ostojic, B.M. Obradovic,et al. Removal of phenol andchlorophenols from water by new ozone generator. Desalination.2007,213(1~3):116~122
    131B. Langlais. Ozone and its applications in a drinking water treatment plant.Water Supply.1986,4(1):491~498
    132Y.S. Pei, J.W. Yu, Z.H. Guo,et al. Pilot study on pre-ozonation enhanceddrinking water treatment process. Ozone Sci. Eng.2007,29(5):317~323
    133储金宇,吴春笃,陈万金.臭氧技术及应用.北京:化学工业出版社.2002
    134B.Y. Sohn, T.J. Park, B.S. Oh,et al. A case study of the DAF-based drinkingwater treatment plant in Korea. Sep. Sci. Technol.2008,43(15):3873~3890
    135M. Huerta-Fontela, M.T. Galceran, F. Ventura. Stimulatory drugs of abuse insurface waters and their removal in a conventional drinking water treatmentplant. Environ. Sci. Technol.2008,42(18):6809~6816
    136A. Bacaoui, A. Dahbi, A Yaacoubi,et al. Experimental design to optimizepreparation of activated carbons for use in water treatment. Environ. Sci.Technol.2002,36(17):3844~3849
    137T. Kameya, Tatsuya Hada, K. Urano. Changes of adsorption capacity and poredistribution of biological activated carbon on advanced water treatment. Water.Sci. Technol.1997,35(7):155~162
    138M. Ahmedna, W.E. Marshall, A.A. Husseiny, et al. The use of nutshell carbonsin drinking water filters for removal of trace metals. Water Res.2004,38(4):1062~1068
    139刘益萱,钟亮洁.颗粒活性炭在饮用水深度处理中的应用.给水排水.2001,
    27(3):12~15
    140J. Sketchell, H.G. Peterson, N. Christofi. Dissolved organic carbon removalfrom a prairie water supply using ozonation and biological activated carbon.Water Quality Res J Canada.1999,34(4):615~631
    141W.H. Kim, W. Nishijima, E., M. Okada. Pilot plant study on ozonation andbiological activated carbon process for drinking water treatment. Water. Sci.Technol.1997,35(8):21~28
    142J. Rivera-Utrilla, J. Mendez-Diaz, M Sanchez-Polo,et al. Removal of thesurfactant sodium dodecylbenzenesulphonate from water by simultaneous useof ozone and powdered activated carbon: Comparison with systems based onO3and O3/H2O2. Water Res.2006,11(40):1717~1725
    143L.Y. Kong, X.J. Zhang, Z.S. Wang. Pilot plant study on ozonation andbiological activated carbon process for drinking water treatment. J. Environ.Sci.2006,18(2):232~235
    144D. Y. Kim, J. A. Rhim and J.H. Yoon. Characteristics of micropollutants byozonation and treatment of BDOC in the Nakdong river. Water Supply.1996,
    14(2):285~295
    145汪力,高乃云,朱斌,等.从分子质量的变化分析臭氧活性炭工艺.中国给水排水.2005,21(3):21~61
    146陈士才,郑斐,许建华.臭氧系统在净水厂深度处理中的应用.中国给水排水.2006,22(8):09~49
    147B. Nicolaisen. Developments in membrane technology for water treatment.Desalination.2003,153(1~3):355~360
    148C.T. Matos, S. Velizarov, M.A.M. Reis,et al. Removal of bromate fromdrinking water using the ion exchange membrane bioreactor concept. Environ.Sci. Technol.2008,42(20):7702~7708
    149Z.W. Wang, Z.C. Wu, S.H. Mai,et al. Research and applications of membranebioreactors in China: Progress and prospect. Sep. Purif. Technol.2008,62(2):249~263
    150J.C. van Dijk, B.R. Munneke, B. Krame,et al. Membrane filtration. A realisticoption in the field of water supply? Desalination.1991,81(1~3):229~247
    151S.J. Xia, J. Nan, R.P. Liu. Study of drinking water treatment by ultrafiltrationof surfacewater and its application to China. Desalination.2004,170(1):41~47
    152刘萍,曾光明,黄瑾辉.膜技术在饮用水深度处理上的应用.环境科学与技术.2004,27(6):001~301
    153张慧,朱淑飞,鲁学仁.膜技术在水处理中的应用与发展.水处理技术.2002,28(5):256~259
    154A. Khalik, V.S. Praptowidodo. Nanofiltration for drinking water productionfrom deep well water. Desalination.2000,132(1~3):287~292
    155B. Van der Bruggen, M. Manttari, M. Nystrom. Drawbacks of applyingnanofiltration and how to avoid them: A review. Sep. Purif. Technol.2008,63(2):251~263
    156C.T. Matos, S. Velizarov, M.A.M. Reis,et al. Removal of bromate fromdrinking water using the ion exchange membrane bioreactor concept. Environ.Sci. Technol.2008,42(20)7702~7708
    157T.H. Boyer, P.C. Singer. Removal of natural organic material by a magnetic ionexchange resin. Water Sci. Technol. Water Supply.2008,8(3):167~172
    158C. Bae, B. Dougherty, S. Harrison. Removal of perchlorate from drinkingwater and ion~exchange regenerant brines. Association for EnvironmentalHealth and Sciences-22nd Annual International Conference on ContaminatedSoils, Sediments and Water2006.2007,12:158~169
    159S. Ruppenthal. Nitrate removal solutions for drinking water: How a flexibleapproach can deliver reliable results. J Am Water Works Assoc.2007,99(6):28~30
    160S.A Parsons. Effect of domestic ion-exchange water softeners on themicrobiological quality of drinking water. Water Res.2000,34(8):2369~2375
    161刘建,闫英桃,马红娜,等.载铁阳离子交换树脂去除饮用水中余氯的性能研究.应用化工.2008,37(11):1331~1334
    162W.J. Cooper, A.C. Jones, R.F. Whitehead, et al. Sunlight-inducedphotochemical decay of oxidants in natural waters: Implications in ballastwater treatment. Environ. Sci. Technol.2007,41(10)3728~3733
    163A.T. Cooper, D.Y. Goswami. Survey of solar based drinking water treatment.International Solar Energy Conference.1998,265~275
    164B.D. Kelly, P. De Laquil. Conceptual design of a photocatalytic wastewatertreatment plant. Bechtel Corp, San Francisco, CA, USA.1992,65~69
    165L. Tothova, E. Frankova. The fungal spores elimination in drinking water byUV radiation. Environ. Health Risk.2001,183~191
    166R. Clayton. UV-catalysed oxidation in water treatment. Chem Eng (London).1992,(519):23~26
    167R. Munter, S. Preis, J. Kallas,et al. Advanced oxidation processes (AOPs):Water treatment technology for the twenty-first century. Kem Kem.2001,10(28):354~362
    168高湘,王瑞,刘娟.光催化微O3氧化饮用水中腐殖质研究.西安建筑科技大学学报.2006,38(2):281~284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700