用户名: 密码: 验证码:
天然及改性赤玉土吸附去除水溶液中六价铬的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中Cr(VI)污染主要来源于制革、电镀、冶金等工业废水的不合理排放。过量的Cr(VI)对生物体有致癌性和致畸性,严重威胁着人类的健康。目前运用于Cr(VI)去除的方法有很多,如化学沉淀、离子交换、膜技术、以及吸附法等。其中,吸附法凭借其操作简单、实用高效、可重复利用性等优点成为应用最广泛的除Cr(VI)技术。在众多的吸附材料中,粘土矿物类吸附剂是备受关注的一种。
     在本研究中,具备多孔性、渗透性和吸附性的日本火山灰堆积物—赤玉土,首次被用于水溶液中Cr(VI)的吸附。实验采用序批式方法,探讨了吸附时间、溶液初始pH值、吸附剂投加量等对天然赤玉土吸附水溶液中Cr(VI)的影响。结果显示,天然赤玉土对Cr(VI)的吸附可在180min内达到平衡,吸附的最佳pH条件为2。当溶液初始Cr(VI)浓度为50.0mg/L,吸附剂投加量为5g/L时,实验最大Cr(VI)吸附量为4.29mg/g。天然赤玉土对Cr(VI)的吸附数据符合Freundlich等温线模型和伪二级动力学模型,吸附机理主要是化学吸附过程。与其他天然粘土矿物对比表明,天然赤玉土吸附Cr(VI)的开发潜力较大。
     为了提高Cr(VI)吸附量并拓宽应用范围,本研究采用HCl作为改性剂制得HCl改性赤玉土(CMAC)。实验通过研究主要因素如pH、共存离子等对吸附效果的影响评价了CMAC的Cr(VI)吸附性能。CMAC的pH适用范围可扩大至2~11,Cr(VI)的实验最大吸附量可达到7.47mg/g。吸附过程符合伪二级动力学方程,说明吸附反应是化学过程。吸附等温线拟合结果显示,CMAC对Cr(VI)的吸附与Langmuir模型拟合度较差,与Freundlich模型和Dubinin-Radushkevich模型更吻合,说明吸附发生在异相介质表面。CMAC在多种离子共存的状态下,仍具有较高的Cr(VI)离子选择性。
     无机盐作为改性剂也被应用于天然赤玉土的改性。在5种无机盐离子Al3+、Fe3+、Ca2+、Mg2+、和Mn2+中,Fe3+的改性效果最佳。在Fe3+改性赤玉土(FeAC)的研究中,析因分析法用于吸附影响因素贡献效率的评价和实验过程的优化。结果分析得出,对于Cr(VI)吸附量,溶液初始Cr(VI)浓度是最重要的因素,其次依次为吸附剂投加量和吸附时间,溶液初始pH对吸附结果不产生影响。在初始Cr(VI)浓度为400.0mg/L,吸附剂投加量为1g/L时,Cr(VI)吸附量可达到22.74mg/g。实验数据符合伪二级动力学方程和Freundlich等温线模型。热力学研究表明,FeAC对水溶液中Cr(VI)的吸附是易发、自动的吸热反应。
     在相同条件下,将天然赤玉土、CMAC、FeAC分别用于实际含Cr(VI)制革废水的处理发现,三者对Cr(VI)的去除率分别为23.1%,38.9%,和94.5%,FeAC的吸附效果最佳。
     总之,天然赤玉土、CMAC、FeAC均对溶液中Cr(VI)有良好的吸附性能,其中FeAC具有改性方法简单、成本低廉、效率高、适应性强等多重优点,在处理实际工业废水的应用中效果最佳。
In aqueous systems, chromium(VI) is usually discharged from the industries ofleather tanning, electroplating, production of steel and alloys, etc. Exceed Cr(VI) iscarcinogenic and mutagenic to living organisms and seriously threaten human health.Various technologies such as chemical precipitation, ion exchange, membranetechnologies, adsorption, etc are available for Cr (VI) removal. Nowadays, adsorptionhas become the most versatile and widely used technology for its operation simplicity,availability, and recyclability. Among numerous adosrbents, mineral materials arecompetitive and concerned by public.
     In this study, a volcanic clay originated in Japan-Akadama clay, with goodproperties of porosity, permeability, and affinity, was used for Cr (VI) removal fromaqueous solution. Batch experiments were carried out to investigate the effect ofcontact time, initial pH, and adsorbent dose on Cr (VI) adsorption. Results showedthat Cr (VI) adsorption on natural Akadama clay reached equilibrium in180min. Theoptimum pH was2. The maximum adsorption capacity was4.29mg g-1at an initialconcentration of50.0mg L-1and adsorbent dosage of5g L-1. The equilibrium datafitted Freundlich isotherm better than Langmuir isotherm, and they were wellexplained by pseudo-second-order kinetic model. Adsorption mechanism analysisproved that electrostatic adsorption dominated the removal process. Results from thisstudy demonstrated that natural Akadama clay had the potential to be an efficientadsorbent for Cr (VI) removal compared to other natural mineral adsorbents.
     In order to improve the adsorption capacity of Cr (VI) and widen the adsorptionconditions, HCl-modified Akadama clay (CMAC) was developed as an adsorbent forthe treatment of Cr (VI) contaminated wastewater. The influence of pH, coexistingions etc. were evaluated by batch experiments. Wide pH ranges of2~11were foundto be suitable for Cr (VI) adsorption onto CMAC. The maximum experimentaladsorption capacity of7.47mg g-1was obtained. The kinetic data fittedpseudo-second-order model better than pseudo-first-order model, indicating the Cr(VI)adsorption was mainly a chemical process. The Cr (VI) adsorption process well fittedthe Freundlich isotherm model and Dubinin-Radushkevich isotherm model ratherthan the Langmuir isotherm model, revealing that heterogeneous adsorption occurred onto CMAC. CMAC had a high selectivity for Cr (VI) ions in presence of coexistingions.
     Inorganic salts were also used to modify the original Akadama clay. Among Al3+,Fe~(3+), Ca~(2+), Mg~(2+), and Mn~(2+), Fe~(3+)performed the best modification effect on Akadamaclay, and the adsorption capacity of Cr (VI) onto Fe-modified Akadama clay (FMAC)was greatly enhanced. A factorial design methodology was applied to evaluate theimportance of parameters and to optimize the adsorption process. Results revealedthat initial concentration is most important for the adsorption capacity, followed byadsorbent dose, and contact time, but pH of the solution had no effect on theadsorption of Cr (VI). The maximum experimental adsorption capacity of Cr (VI)onto FMAC has been found to be22.74mg g-1at a dose of1.0g L-1with initial Cr(VI) concentration of400.0mg L-1. The experimental data was found to followpseudo-second order model and Freundlich isotherm model. Thermodynamic studiesindicated that the adsorption reaction was spontaneous and endothermic in nature.
     Under the same conditons, natural Akadama clay, CMAC, and FeAC wereapplied to treat Cr(VI) containing waster discharged from leather tannery. Resultsrevealed that the Cr(VI) removal efficiencies were23.1%,38.9%, and94.5%,respectively. FeAC had the optimum adsorption efficiency.
     In conclusion, natural Akadama clay, CMAC, and FMAC could be effectivelyused as adsorbents for Cr (VI) removal from wastewater. Among them, FMAC,presenting the best performance based on its simple operation, low cost, wide pHconditions, and high adsorption capacity, could be considered in practical application.
引文
Akar S.T., Yetimoglu Y., Gedikbey T.. Removal of chromium (VI) ions from aqueous solutions byusing Turkish montmorillonite clay: effect of activation and modification. Desalination,2009,244(1-3):97-108.
    Albadarin A.B., Mangwandi C., Al-Muhtaseb A. H., et al.. Kinetic and thermodynamics ofchromium ions adsorption onto low-cost dolomite adsorbent. Chemical Engineering Journal,2012,179:193-202.
    Alemayehu E., Thiele-Bruhn S., Lennartz B.. Adsorption behaviour of Cr(VI) onto macro andmicro-vesicular volcanic rocks from water. Separation and Purification Technology,2011,78(1):55-61.
    álvarez-Ayuso E., García-Sánchez A., Querol X.. Adsorption of Cr(VI) from synthetic solutionsand electroplating wastewaters on amorphous aluminium oxide. Journal of HazardousMaterials,2007,142(1-2):191-198.
    Atia A A. Adsorption of chromate and molybdate by cetylpyridinium bentonite. Applied ClayScience,2008,41(1-2):73-84.
    Ayoub G.M., Hamzeh A., Semerjian L.. Post treatment of tannery wastewater using lime/bitterncoagulation and activated carbon adsorption. Desalination,2011,273(2-3)359-365.
    Baran A., B ak E., Baysal.H., et al.. Comparative studies on the adsorption of Cr(VI) ions on tovarious sorbents. Bioresource Technology,2007,98(3):661-665.
    Basaldella E. I., Vázquez P. G., Iucolano F., Caputo D.. Chromium removal from water using LTAzeolites: Effect of pH. Journal of Colloid and Interface Science,2007,313(2):574–578.
    Bayramo lu G., Yakup Arica M.. Adsorption of Cr(VI) onto PEI immobilized acrylate-basedmagnetic beads: Isotherms, kinetics and thermodynamics study. Chemical EngineeringJournal,2008,139(1):20-28.
    Benhammou A, Yaacoubi A, Nibou L, Tanouti B. Chromium(VI) adsorption from aqueoussolution onto Moroccan Al-pillared and cationic surfactant stevensite. Journal of HazardousMaterials2007,140(1-2):104-109.
    Bhattacharya A. K., Naiya T. K., Mandal S. N., et al. Adsorption, kinetics and equilibrium studieson removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. ChemicalEngineering Journal,2008,137(3):529-541.
    Chand R., Watari T., Inoue K., et al.. Evaluation of wheat straw and barley straw carbon for Cr(VI)adsorption. Separation and Purification Technology,2009,65(3):331-336.
    Chen R., Zhang Z., Feng C., et al.. Batch study of arsenate (V) adsorption using Akadama mud:Effect of water mineralization. Applied Surface Science,2010,256(9):2961-2967.
    Chen S. S., Li C. W., Hsu H. D., et al.. Concentration and purification of chromate fromelectroplating wastewater by two-stage electrodialysis processes. Journal of HazardousMaterials,2009,161(2-3):1075–1080.
    Chen S., Yue Q., Gao B., et al.. Equilibrium and kinetic adsorption study of the adsorptiveremoval of Cr(VI) using modified wheat residue. Journal of Colloid and Interface Science,2010,349(1):256-264.
    Cheng Q., Li C., Xu L., et al.. Adsorption of Cr(VI) ions using the amphiphilic gels based on2-(dimethylamino)ethyl methacrylate modified with1-bromoalkanes. Chemical EngineeringJournal,2011,173(1):42-48.
    Cho D.W., Chon C.M., Kim Y., et al.. Adsorption of nitrate and Cr(VI) by cationicpolymer-modified granular activated carbon. Chemical Engineering Journal,2011,175:298-305.
    Dakiky M., Khamis M., Manassra A.,et al.. Selective adsorption of chromium(VI) in industrialwastewater using low-cost abundantly available adsorbents. Advances in EnvironmentalResearch,2002,6(4):533-540.
    Deveci H., Kar Y.. Adsorption of hexavalent chromium from aqueous solutions by bio-charsobtained during biomass pyrolysis. Journal of Industrial and Engineering Chemistry,2013,19(1):190-196.
    Dhal B., Thatoi H. N., Das N. N., et al.. Chemical and microbial remediation of hexavalentchromium from contaminated soil and mining/metallurgical solid waste: A review. Journal ofHazardous Materials,2013,250-251:272-291.
    Ding D., Zhao Y., Yang S., et al.. Adsorption of cesium from aqueous solution using agriculturalresidue-walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. WaterResearch,2013,47(7):2563-2571.
    Dionex. Determination of Cr(VI) in water, wastewater and solid waste extracts. DionexCorporation, California,1996.
    Dzyazko Y.S., Mahmoud A., Lapicque F., et al.. Cr(VI) transport through ceramic ion-exchangemembranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry,2007,37(2):209–217
    El-Sheikh A.H.. Effect of oxidation of activated carbon on its enrichment efficiency of metal ions:comparison with oxidized and non-oxidizedmulti-walled carbon nanotubes. Talanta,2008,75(1):127-134.
    Ertugay N., Bayhan Y.K.. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricusbisporus. Journal of Hazardous Materials,2008,154(1-3):432-439.
    EU. Council directive98-83-EC on the quality of water intended for human consumption.Brussels: EC,1998.
    Fahim N.F., Barsoum B.N., Eid A.E., et al.. Removal of chromium(III) from tannery wastewaterusing activated carbon from sugar industrial waste. Journal of Hazardous Materials,2006,136(2):303-309.
    Gao H., Liu Y., Zeng G., et al.. Characterization of Cr(VI) removal from aqueous solutions by asurplus agricultural waste-rice straw. Journal of Hazardous Materials,2008,150(2):446-452.
    Giri A.K., Patel R., Mandal S.. Removal of Cr (VI) from aqueous solution by Eichhornia crassipesroot biomass-derived activated carbon. Chemical Engineering Journal,2012,185–186:71-81.
    Guo Y., Qi J., Yang S. et al.. Adsorption of Cr(VI) on micro-and Mesoporous rice husk-basedactive carbon. Materials Chemistry and Physics,2003,78(1):132-137.
    Gupta S., Babu B.V.. Modeling, simulation, and experimental validation for continuous Cr(VI)removal from aqueous solutions using sawdust as an adsorbent. Bioresource Technology,2009,100(23):5633-5640.
    Han Y., Wang J., Tang M.. Adsorption of Hexavalent Chromium in Wastewater on Modified RedMud. Environmental Protection of Chemical Industry,2005,25(2):132-136.
    Hasan S. H., Singh K. K., Prakash O., et al.. Removal of Cr(VI) from aqueous solutions usingagricultural waste 'maize bran'. Journal of Hazardous Materials,2007,152(1):356-365.
    Hingstona J.A., Collinsa C.D., Murphyb R.J., et al.. Leaching of chromated copper arsenate woodpreservatives-a review. Environmental Pollution,2011,111(1):53-66.
    Ho Y.S., McKay G.. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal,1998,70(2),115–124.
    Huang G., Shi J.X., Langrish T.A.G.. Removal of Cr(VI) from aqueous solution using activatedcarbon modified with nitric acid. Chemical Engineering Journal,2009,152(2-3):434-439.
    Iddou A., Ouali M.S.. Waste-activated sludge (WAS) as Cr(III) sorbent biosolid from wastewatereffluent. Colloids and Surfaces B: Biointerfaces,2008,66(2):240-245.
    Iqbal M., Saeed A.,Zafar S. I.. FTIR spectrophotometry, kinetics and adsorption isothermsmodeling, ion exchange, and EDX analysis for understanding the mechanism of and Pb2+removal by mango peel waste. Journal of Hazardous Materials,2009,164(1):161-171.
    Jain M., Garg V.K., Kadirvelu K.. Adsorption of hexavalent chromium from aqueous medium ontocarbonaceous adsorbents prepared from waste biomass. Journal of EnvironmentalManagement,2010,91(4):949-57.
    Kebir M., Chabani M., Nasrallah N., et al.. Coupling adsorption with photocatalysis process forthe Cr(VI) removal. Desalination,2011,270(1-3):166-173.
    Khan S. A., Rehman R., Khan M. A.. Adsorption of Chromium (III), Chromium (VI) and Silver (I)on bentonite. Waste Management,1995,15(4):271-282.
    Korngold E., Belayev N., Aronov L.. Removal of chromates from drinking water by anionexchangers. Separation and Purification Technology,2003,33(2):179-187.
    Kumar R., Bishnoi N.R., Garima, et al.. Biosorption of chromium(VI) from aqueous solution andelectroplating wastewater using fungal biomass. Chemical Engineering Journal,2008,135(3):202-208.
    Lazarevic S., Jankovic-castvan I., Jovanovic D., et al.. Adsorption of Pb2+,Cd2+and Sr2+ions ontonatural and acid-activated sepiolites. Applied Clay Science,2007,37(1-2):47-57
    Li Y., Yue Q.Y., Gao B.Y.. Effect of humic acid on the Cr(VI) adsorption onto Kaolin. AppliedClay Science,2010,48(3):481-484.
    Liu W., Zhang J., Zhang C., et al. Adsorptive removal of Cr (VI) by Fe-modified activated carbonprepared from Trapa natans husk. Chemical Engineering Journal2010,162(2):677-684.
    Liu W., Zhang J., Zhang C., et al.. Preparation and evaluation of activated carbon-basediron-containing adsorbents for enhanced Cr(VI) removal: Mechanism study. ChemicalEngineering Journal,2012,189-190:295-302.
    Mansri A., Benabadji K.I., Desbrieres J., et al..Chromium removal using modified Poly (4-vinylpyridinium) bentonite salts. Desalination,2009,245(1-3):95-107.
    Marder L., Bernardes A. M., J. Ferreira Z.. Cadmium electroplating wastewater treatment using alaboratory-scale electrodialysis system. Separation and Purification Technology,2004,37(3):247–255
    Maryuk O., Gladysz-Plaska A., Rudas M., et al.. Adsorption of chromium (VI) ions on asurfactant-modified clinoptilolite. Przemysl Chemiczny,2005,84(5):360-363.
    Miretzky P., Cirelli A.F.. Cr(VI) and Cr(III) removal from aqueous solution by raw and modifiedlignocellulosic materials: A review. Journal of Hazardous Materials,2010,180(1-3):1-19.
    Mohan D., Pittman C.U.. Activated carbons and low cost adsorbents for remediation of tri-andhexavalent chromium from water. Journal of Hazardous Materials,2006,137(2):762-811.
    Mohan D., Singh K., Singh V.. Trivalent chromium removal from wastewater using low costactivated carbon derived from agricultural waste material and activated carbon fabric cloth.Journal of Hazardous Materials,2006,135(1-3):280-295.
    Moussavi G., Barikbin B.. Biosorption of chromium(VI) from industrial wastewater onto pistachiohull waste biomass, Chemical Engineering Journal. Chemical Engineering Journal,2010,162(3)893-900.
    Mungasavalli D.P., Viraraghavan T., Jin Y.C.. Biosorption of chromium from aqueous solutions bypretreated Aspergillus niger: Batch and column studies. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1-3):214-223.
    Natale D. F., Lancia A., Molino A., et al.. Removal of chromium ions from aqueous solutions byadsorption on activated carbon and char. Journal of Hazardous Materials,2007,145(3):38l-390.
    Neagu V.. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups. Joumalof Hazardous Materials,2009,171(1-3):4l0-416.
    Pehlivan E., Altun T.. Biosorption of chromium (VI) ion from aqueous solutions using walnut,hazelnut and almond shell. Journal of Hazardous Materials,2008,155(1-2):378-384.
    Rai D., Eary L.E. and Zachara J.M.. Environmental chemistry of chromium. The Science of theTotal Environment,1989,86(1-2):15-23.
    Rao R.A.K., Rehman F.. Adsorption studies on fruits of Gular (Ficus glomerata): Removal ofCr(VI) from synthetic wastewater. Journal of Hazardous Materials,2010,181(1-3):405-412.
    Rawajfih Z., Nsour N.. Thermodynamic analysis of sorption isotherms of chromium(VI) anionicspecies on reed biomass. The Journal of Chemical Thermodynamics,2008,40(5):846-851.
    Rengaraj S., Joo C.K., Kim Y., et al.. Kinetics of removal of chromium from water and electronicprocess wastewater by ion exchange resins:1200H,1500H and IRN97H. Journal ofHazardous Materials,2003, B102(2-3):257–275.
    Rodrigues L.A., Maschio L.J., da Silva R.E., et al.. Adsorption of Cr(VI) from aqueous solution byhydrous zirconium oxide. Journal of Hazardous Materials,2010,173(1-3):630-636.
    Saha B., Orvig C.. Biosorbents for hexavalent chromium elimination from industrial andmunicipal effluents. Coordination Chemistry Reviews,2010,254(23-24):2959-2972.
    Samani M. R., Borghei S. M., Olad A., et al.. Removal of chromium from aqueous solution usingpolyaniline-Poly ethylene glycol composite. Journal of Hazardous Materials,2010,184(1-3):248–254.
    Sankararamakrishnan N., Dixit A., Iyengar L., et al.. Removal of hexavalent chromium using anovel cross linked xanthated chitosan. Bioresource Technology,2006,97(18):2377–2382.
    Sari A., Tuzen M.. Biosorption of total chromium from aqueous solution by red algae (Ceramiumvirgatum): equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials,2008,160(2-3):349-55.
    Sari A., Tuzen M., Soylak M.. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtekclay. Journal of Hazardous Materials,2007,144(1-2):41-46.
    Sharma Y.C.. Effect of Temperature on Interfacial Adsorption of Cr(VI) on Wollastonite. Journalof Colloid and Interface Science,2010,233(2):265-270.
    Sharma Y.C., Weng C.H.. Removal of chromium(VI) from water and wastewater by usingriverbed sand: Kinetic and equilibrium studies. Journal of Hazardous Materials,2007,142(1-2):449–454.
    Shi T., Wang Z., Liu Y., et al.. Removal of hexavalent chromium from aqueous solutions by D301,D314and D354anion-exchange resins. Journal of Hazardous Materials,2009,161(2-3):900-906.
    Sirajuddin, Kakakhel L., Lutfullah G., et al.. Electrolytic recovery of chromium salts from tannerywastewater. Journal of Hazardous Materials,2007,148(3):560-565.
    Suksabye P, Nakajima A, Thiravetyan P, et al.. Mechanism of Cr(VI) adsorption by coir pithstudied by ESR and adsorption kinetic. Journal of Hazardous Materials,2009,161(2-3):1103-1108.
    Suksabye P., Thiravetyan P., Nakbanpote W.. Column study of chromium(VI) adsorption fromelectroplating industry by coconut coir pith. Journal of Hazardous Materials,2008,160(1):56-62.
    Suksabye P., Thiravetyan P., Nakbanpote W., et al.. Chromium removal from electroplatingwastewater by coirpith. Joumal of Hazardous Materials,2007,14l (3):637-644.
    Suksabyea P., Thiravetyan P.. Cr(VI) adsorption from electroplating plating wastewater bychemically modified coir pith. Journal of Environmental Management,2012,102:1-8.
    Sumathi K. Use of low-cost biological wastes and vermiculite for removal of chromium fromtannery effluent. Bioresource Technology,2005,96(3):309-316.
    Sun X., Ma Y., Liu X., et al.. Sorption and detoxification of chromium(VI) by aerobic granulesfunctionalized with polyethylenimine. Water Research,2010,44(8):2517–2524.
    Suraj G., Iyer C.S.P., Lalit hambika M.. Adsorption of cadmium and copper by modifiedkaolinites. Applied Clay Science,1998,13(4):293-306
    Tewari N., Guha B. K., Vasudevan P.. Adsorption study of hexavalent chromium by bentonite clay.Asian Journal of Chemistry,2005,17(4):2184-2190.
    Thanos A.G., Katsou E., Malamis S., et al.. Evaluation of modified mineral performance forchromate sorption from aqueous solutions. Chemical Engineering Journal,2012,211-212:77-88.
    U.S. EPA. Basic Information about Chromium in Drinking Water. United States EnvironmentalProtection Agency, Washington, D.C.,2012.
    U.S. EPA. National Primary Drinking Water Regulations. United States Environmental ProtectionAgency, Washington, D.C.,2012.
    Venugopal V., Mohanty K.. Biosorptive uptake of Cr(VI) from aqueous solutions by Partheniumhysterophorus weed: Equilibrium, kinetics and thermodynamic studies. ChemicalEngineering Journal,2011,174(1):151-158.
    Vinodhini V., Das N.. Packed bed column studies on Cr (VI) removal from tannery wastewater byneem sawdust. Desalination,2010,264(1-2):9-14.
    Wang X.S., Chen L.F., Li F.Y., et al.. Removal of Cr (VI) with wheat-residue derived black carbon:Reaction mechanism and adsorption performance. Journal of Hazardous Materials,2010,175(1-3):816-822.
    Wang Y., Lan Y., Hu Y.. Adsorption mechanisms of Cr(VI) on the modified bauxite tailings.Minerals Engineering,2008,21(12-14):913-917.
    Wen Y., Tang Z., Chen Y., et al.. Adsorption of Cr(VI) from aqueous solutions usingchitosan-coated fly ash composite as biosorbent. Chemical Engineering Journal,2011,175:110–116.
    Weng C.H., Sharma Y.C., Chu S.H.. Adsorption of Cr(VI) from aqueous solutions by spentactivated clay. Journal of Hazardous Materials,2008,155(1-2):65-75.
    WHO. Guidelines for Drinking-water Quality–4thed. World Health Organization, Geneva,Switzerland,2011.
    Xiao L., Ma W., Han M., et al.. The influence of ferric iron in calcined nano-Mg/Al hydrotalciteon adsorption of Cr (VI) from aqueous solution. Journal of Hazardous Materials,2011,186(1):690-698.
    Yavuz A.G., Dincturk-Atalay E., Uygun A., et al.. A comparison study of adsorption of Cr(VI)from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination,2011,279(1-3):325-331.
    Rawajfih Z., Nsour N.. Thermodynamic analysis of sorption isotherms of chromium(VI) anionicspecies on reed biomass. The Journal of Chemical Thermodynamics,2008,40(5):846-851.
    Zhao N., Wei N., Li J., et al.. Surface properties of chemically modified activated carbons foradsorption rate of Cr (VI). Chemical Engineering Journal,2005,115(1-2):133-138.
    Zhou J, Wu P, Dang Z, et al.. Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI)from aqueous solutions. Chemical Engineering Journal2010,162(3):1035-1044.
    Zimmermann A.C., Mecab A., Fagundes T., et al.. Adsorption of Cr(VI) using Fe-crosslinkedchitosan complex (Ch-Fe). Journal of Hazardous Materials,2010,179(1-3):192-196.
    曹春艳.改性膨润土吸附处理含六价铬废水的研究.化学工程师,2008,157(10):43-45.
    晁吉福,吴耀国,刘燕燕.重金属吸附剂高岭石的改性研究进展.化工环保,31(1):42-46.
    陈冠兰,陈银广.低成本生物材料吸附六价铬研究进展.水处理技术,2008,34(12):7-10.
    陈素红.玉米秸秆的改性及其对六价铬离子吸附性能的研究.博士学位论文,济南:山东大学,2012.
    陈雪梅,肖文胜,刘煦晴.交联壳聚糖吸附剂的制备及处理含铬废水的研究.环境科学与工程技术,2006,29(4):74-75.
    程永华,闫永胜,王智博,等.壳聚糖高效吸附处理含铬废水的研究.华中科技大学学报,2005,22(4):51-53.
    崔伟,郭成吉,罗杰.浅析铬与人体健康.微量元素与健康研究,2008,25(6):66.
    范力,张建强,程新,等.离子交换法及吸附法处理含铬废水的研究进展.水处理技术,2009,35(1):30-33.
    方金鹏.复合吸附剂吸附水中六价铬的研究.中国硕士论文,长沙:湖南大学,2008.
    付俊鹤,余明华,许武桥,等.铬的生物学功能及富铬酵母的应用.微量元素与健康研究,2011,28(1):66.
    耿兵.壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究.博士学位论文,天津:南开大学,2009.
    谷月霞,李涛,矫强,等.沸石负载壳聚糖对铬(VI)的吸附平衡和动力学研究.环境科学与管理,2009,34(9):83-86.
    顾雪琼,陈维芳.改性活性炭对饮用水中铬酸盐的去除特性研究.水资源与水工程学报,2011,22(2):20-24.
    官章琴.农林废弃物对废水中Cr(VI)、Cu2+、Zn2+、Pb2+的吸附特性研究.硕士学位论文,青岛:中国海洋大学,2010.
    何定国.含铬工业废水处理技术研究进展.科技创新导报,2009,11:101.
    贾陈忠,秦巧燕,樊生才.活性炭对含铬废水的吸附处理研究.应用化工,2006,35(5):369-372.
    贾金平,谢少艾,陈宏锦.电镀废水处理技术及工程实例,北京:化学工业出版社,2003:15.
    蓝磊,童张法,李仲民,等.改性膨润土对废水中六价铬的吸附过程研究.环境污染与防治,2005,27(5):352-354.
    李爱琴,唐宏建,王阳峰.环境中铬污染的生态效应及其防治.中国环境管理干部学院学报,2006,(1):74-77.
    李文胜,梁斌勇.生物吸附剂-活性污泥法吸附处理含铬电镀废水.环境,2011,127-129.
    李英杰,纪智玲,候凤,等.活性炭吸附法处理含铬废水的研究.沈阳化工学院学报,2005,19(3):184-187.
    刘存海,朱玉凤,张光华.改性壳聚糖的制备及在电镀含铬废水中的应用.陕西师范大学学报,2009,37(6):47-50.
    刘德丽,孙德智.聚苯胺对铬(VI)离子的吸附性能研究.环境工程学报,2011,5(11):2552-2556.
    刘婉,李泽琴.水中铬污染治理的研究进展.广东微量元素科学,2007,14(9):5-9.
    刘晓明,杨翠英,宋吉勇.用活性炭为吸附剂处理含Cr(VI)电镀废水探讨.山东科技大学学报,2005,24(2):107-109.
    刘秀奇,邢贺钦,郑邦婞,等.改性沸石/EPDM复合材料对水中六价铬离子的吸附研究.弹性体,2012,22(2):55-57.
    刘云,吴平霄.粘土矿物与重金属界面反应的研究进展.环境污染治理技术与设备,2006,7(1):17-21.
    刘智峰,梁宝霞,石文琴,等.典型农林废弃物处理含铬废水的研究进展.化工技术与开发,2012,41(6):45-53.
    马伯琍.职业性铬危害及诊断.劳动化工保护,1987,4:31-33.
    马军,邱立平,郝醒华,等.微生物絮凝法处理含铬工业废水中试研究.哈尔滨建筑工业大学学报,2001,34(5):44-48.
    马青兰,刘秀艳,吕俏.电镀六价铬废水的实用处理工艺研究及应用.环境污染与防治,2006,28(12):947-949.
    聂宁,丁远昭,李喜青.制备斜发沸石和零价铁复合材料处理水中的六价铬污染.中国环境科学,2013,33(3):443-447.
    施波.废水中六价铬的存在形态分析.电镀与环保,1986,6(4):30-33.
    石太宏,贾世国,陈颖,等.改性天然矿物吸附废水中重金属离子的研究进展.水处理技术,2009,35(4):18-23.
    宋勇,刘力,王荣中,等.铝镁铁三元类水滑石对Cr(VI)的吸附性能研究.电镀与环保.2013,33(4):43-45.
    孙迎雪,徐栋.铁质多孔滤料除铬研究.工业用水与废水,2003,34(2):32-34.
    孙莹,李素芹.吸附法处理含铬废水的研究.工业安全与环保,2009,35(3):11-13.
    汪德进,何小勇.含铬废水处理的研究进展.安徽化工,2007,33(1):12–15.
    王芳芳.壳聚糖/稀土复合材料的制备及对铬(VI)的吸附性能研究.博士学位论文,无锡:江南大学.2013
    王家宏,常娥,丁绍兰,等.吸附法去除水中六价铬的研究进展.环境科学与技术,2012,35(2):67-72.
    王友平,张焕祯,于卫花,等.含铬废水吸附材料改性技术探讨.环境工程,2012,30:147-150.
    吴云海,李斌,冯仕训,等.活性炭对废水中Cr(VI)、As(III)的吸附.化工环保,2010,30(2):108-112.
    肖莉莉. Mg/AI水滑石中Fe3+的加入对水溶液中铬吸附的影响.硕士学位论文.大连:大连理工大学,2011.
    谢东丽,叶红齐.钡盐法处理六价铬Cr (VI)废水的研究.应用化工,2012,41(4):656-663.
    谢志刚,吉芳英,邱雪敏,等.柑橘渣吸附剂对六价铬的吸附性能.2009,32(2):192-196.
    杨国华,黄统琳,姚忠亮,等.吸附剂的应用研究现状和进展.化学工程与装备,2009,6:84-88.
    于海琴.膨润土基吸附材料的制备、表征及其吸附性能研究.中国硕士论文,青岛:中国海洋大学,2012.
    张恩娟,陈琳.正确评价铬超标“毒胶囊”中铬的危害.中国药房,2012,3834-3835.
    张汉池,张继军,刘峰.铬的危害与防治.内蒙古石油化工,30:72-73.
    张猛.氨基化改性花生壳对Cr(VI)的吸附性能研究.硕士学位论文,济南:山东大学,2012.
    张兴刚.活性炭治污应用须过成本关.中国化工报,2009.
    张学洪,吕炳南,冯令艳.含氰含铬电镀废水处理技术的研究.哈尔滨建筑大学学报,1999,32(6):27-32.
    赵丽,王成端,赵诚,等.电解还原法处理含铬废水.科技导报,2006,24(11):58-60.
    中华人民共和国环境保护部.2010年环境统计年报.http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/t20120118_222727.htm,2012-01-18.
    中华人民共和国卫生部.中国国家标准化管理委员会.GB5749-2006,生活饮用水卫生标准.北京:中国标准出版社,2007.
    周青龄,桂双林,吴菲.含铬废水处理技术现状及展望.能源研究与管理,2010,29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700