用户名: 密码: 验证码:
离散单元法在金属粉末高速压制成形过程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离散单元法是研究非连续体力学行为的有效数值方法,特别适合求解大变形和不连续结构问题,已广泛应用于工程领域。粉末高速压制成形技术具有压制时间短、压坯密度高、压坯密度分布均匀等特点,由于加工过程中粉末的致密化机理尚不明确,制约了该项技术发展和推广。本论文首次将离散单元法应用于粉末高速压制成形过程和粉末传热过程的研究,根据金属粉末原料及高速压制工艺的特点,基于弹塑性力学和散度空间理论,建立了描述粉末高速压制过程的数学模型,并分析了粉体的变形行为、粉体中应力波传播和热传导规律。
     首先,介绍了离散单元法的发展现状及高速压制技术的工艺特点。根据粉末压制中的颗粒粒度分布服从高斯正态分布的特点,应用Box Muller变换得到了满足粉末试样粒径分布条件的颗粒生成方法。对粉末离散单元法的单元搜索方法、计算方法、边界条件进行了分析。考虑到粉末在成形过程中会先后发生加工硬化、加工软化及塑性变形,建立了描述颗粒高应变率、塑性变形的离散元接触模型。
     然后,模拟了满足实验条件的松装系统在高速加载条件下的三维成形过程,结果表明压制初期粉末重排及孔隙填充是使压坯密度急剧增加的主要因素,后期粉末变形会使压坯密度进一步提高。所得成型坯密度分布与实验结果吻合,验证了所建立模型的有效性。本文对高速压制粉体内外摩擦系数、压坯高径比、单双向压制条件进行了对比实验,发现颗粒间摩擦系数对压坯最终密度有主要影响,颗粒与模腔间摩擦系数及高径比主要影响压坯密度的分布。
     其次,利用散度定理对粉末系统的应力公式进行了离散化处理,建立了压制过程中的应力统计公式,得到了实际实验中难以测得的粉体内部不同高度层的应力波波形,及粉末高速压制过程中应力波的传播过程。分析了铁基及铜基粉末在不同摩擦系数下的应力波传播情况,得出粉末高速压制成形坯的高致密化是应力波反复作用的结果,粉体内部存在明显的应力迟豫现象,加卸载波形呈锯齿状的弹性波形,随着粉体被压实应力传播速度加快。
     最后,分析了粉末压坯内部的高温蔓延及温度分布规律。根据温度场与接触力作用场的相似性,将颗粒看作独立热阻,整个粉体看作热阻与热流构成的温度传导网,建立了离散单元热传导模型,热流通过颗粒接触面传导。研究了粉体内颗粒排列、粒径分布、压坯密度对成形坯温度的影响。数值结果表明,粉末压坯的热传导过程与内部的颗粒架构有关,在高速压制过程中粉体内部确实存在着可短时耗散的高温积聚。
Discrete element method (DEM) is an effective numerical approach in simulating force behavior of non-continuous materials. It has established itself as an important simulation technique for engineering applications involving granular and large-deformable systems. High velocity compaction (HVC) is a new technology for fabricating high density powder metallurgy parts with low cost and high production capacity. Its productions permit good characters such as high green density, uniform density distribution, low ejection force and low spring-back etc. In the paper DEM is applied for studying the particle flowing process of dense granular system in High Velocity Compaction. According to the characteristics of metal powder materials and the relevant principles of HVC, the numerical model was established based on mechanics of granular media and theory of elastic-plasticity. The densification behavior, stress wave propagation and heat transfer rule of powder system in the compaction process of HVC were analyzed. The main works are concluded as follows:
     Firstly, we summarized the research situation and application of DEM and the principle and characteristic of HVC. Since the distributing features of raw packing material obey to Gaussian distribution, a new specimen generation method based on Box Muller transform was presented. Considering powder presents successively to work Hardening, work softening and plastic deformation in HVC process, a contact force model was deduced to describe the high strain rate and elastic-perfectly plastic of powder material. The element search method, boundary condition and governing equation of particle flow for HVC were also proposed.
     Secondly, with the computing program developed based on software Particle Flow Code (PFC), the three-dimensional forming process and density distribution of samples under HVC conditions were simulated. The quantitative capabilities of DEM are provided by comparing numerical models to real experimental data. Numerical results show that the rearranging and porosity filling behavior of metal powder at the early compaction stage have significant influences on green density increasing, at the late stage the densification of particles is mainly in the manner of elastic-plastic deformation. The contrast experiments were performed for different packing fractions, diameter high ratio of compacts and different loading conditions. The simulation results coincide well with experiments in engineering application.
     Thirdly, evolution features of compaction force in HVC process was simulated based on the DEM. Because the full process was divided into elastic loading, plastic deformation and elastic unloading, the governing equations were established in three stages respectively. The impacting forces through different layers of powders were obtained, which could not be observed by experiments. The simulation results show obviously delay phenomenon and serrate wave with different gradient at loading and unloading processes. The simulated low-level stress waves are compared to available experimental data, which are consistent with the overall waveform.
     Finally, DEM was applied for studying the high temperature spread in a compacted metal particles system. Assuming that thermal transmissions existed only at the contact zones between particles, the general thermal equation based on continuum mechanics was rewritten to a discrete form. Then the interior heat source generated during friction of the motion particles was deduced from kinetic equations. Using the proposed model, the factor which affect the temperature distribution of specimen was investigated including particles arrangement, particle diameter distribution and green density. Temperature profiles at different locations and different moments are given. At a fixed location the temperature rise presents a logarithmic relationship with time. Simulation results show that the geometry distribution of particle materials significantly influences the temperature distribution. Heat transfers fast in the system which is comprised of small and uniform particles.
引文
[1]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [2]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [3]H. J. Herrmann, S. Luding. Modeling granular media on the computer [J]. Continuum Mechanics and Thermodynamics,1998,10(4):189-231.
    [4]Soheil Mohammadi. Extended finite element method for fracture analysis of structures [M]. Oxford:Blackwell Publishing Ltd,2008.
    [5]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2008.
    [6]P. A. Cundall, O. D. L. Strack. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29:47-65,.
    [7]H.G. Matuttis, S. Luding, H. J.Herrmann. Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles [J]. Powder Technology,2000,109:278-292.
    [8]R. Hart, P. A. Cundall, J. Lemos. Formulation of a Three-dimensional Distinct Element Model-Part II [J]. Int.J.Rock Mech.Min.Sci.,1988,25 (3):117-125
    [9]P. A. Cundall. A discontinuous future for numerical modeling in geomechanics [J]. Proceedings of the Institution of Civil Engineers:Geotechnical Engineering. 2001,149:41-47.
    [10]S. Nemat-Nasser, Y. Tobita. Influence of fabric on liquefaction and densification potential of cohesionless sand [J]. Mech. Mater.1982,1:43-62.
    [11]M. M. Mehrabadi, S. Nemat-Nasser. Stress, dilatancy and fabric in granular materials [J]. Mech. Mater.1983,2:155-161.
    [12]F. Maddalena, M. Ferrari. Viscoelasticity of Granular Materials [J]. Mech. Mater. 1995,20:241-250.
    [13]C. Thornton. Coefficient restitution for collinear collisions of elastic perfectly plastic spheres [J]. J Appl. Mech.,1997,64:383-386.
    [14]C. Thornton, S. J. Antony. Quasi-static shear deformation of a soft particle system [J]. Powder Technology,2000,109:179-191.
    [15]C. Y. Wu, C. Thornton, L. Y. Li. Coeffcients of restitution for elastoplastic oblique impacts [J]. Advanced Powder Technology,2003,14(4):435-448.
    [16]M. H. Sadd, Qiming Tai, Arun Shukla. Contact law effects on wave propagation in particulate materials using distinct element modeling [J]. International Journal of Non-Linear Mechanics,1993,28(2):251-265.
    [17]M. H. Sadd, J. Gao, A.Shukla. Numerical analysis of wave propagation through assemblies of elliptical particles [J]. Computers and Geotechnics,1997, 20(3):323-343.
    [18]M. H. Sadd, GAdhikari, F.Cardoso. DEM simulation of wave propagation in granular materials, Powder Technology,2000,109:222-233.
    [19]L. Oger, S. B. Savege, D. Corriveau, et al. Yield and Deformation of an assembly of disks subjected to a deviatoric stress loading. Mechanical. Mater., 1998,27:187-270.
    [20]Nivedita Das. Modeling three-dimensional shape of sand grains using Discrete Element Method [D]. USA:University of South Florida,2007.
    [21]H.Kruggel-Emden, E.Simsek, S.Rickelt. Review and extension of normal force models for the Discrete Element Method [J]. Powder Technology,2007,171: 157-173.
    [22]H.Kruggel-Emden, S.Wirtz, V.Scherer, et al. A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior[J]. Chemical Engineering Science,2008,63:1523-1541.
    [23]Fr'ed'eric V. Donz'e, Vincent Richefeu, Sophie-Ad'ea"ie Magnier. Advances in Discrete Element Method applied to soil, rock and concrete mechanics [J]. Electronic Journal of Geotechnical Engineering,2008,8:1-44.
    [24]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [25]魏群.岩土工程中的散体元的基本原理、数值方法及实验研究[D].北京:清华大学,1990.
    [26]周健,贾敏才.土工细观模型试验与数值模拟[M].北京:科学出版社,2008.
    [27]C.B. Zhao, B.E.Hobbs, A.Ord, et al. Particle simulation of spontaneous crack generation associated with the laccolithic type of magma intrusion processes [J]. International Journal for Numerical Methods in Engineering.2008,75: 1172-1193.
    [28]张洪武,秦建敏.基于接触价键的颗粒材料微观临界状态[J].岩土力学,2008,29(4):865-870.
    [29]秦建敏.基于离散元模拟的岩土力学性能研究及应变局部化理论分析[D].大连:大连理工大学,2007.
    [30]M.J. Jiang, H.S.Yu, D.Harris. A novel discrete model granular material incorporating rolling resistance [J]. Computers and Geotechnics,2005,32: 340-357.
    [31]M.J. Jiang, H.S.Yu, D.Harris. Kinematic variables bridging discrete and continuum granular mechanics [J]. Mechanics Research Communications,2006, 33:651-666.
    [32]蒋明镜,胡海军.密实和松散颗粒材料等吸力三轴剪切试验离散元数值模拟[J].中南大学学报(自然科学版),2010,41(6):538-544.
    [33]I. Iordanoff, D. Richard, S. Tcherniaieff. Discrete Element method, a tool to investigate contacts in material forming [J]. International Journal of Materials Forming.2008,1:1235-1238.
    [34]Williams J R, Rege N. The development of circulation cell structures in granular materials undergoing compression [J]. Powder Technology,1997,90:187-194.
    [35]H.G. Matuttis, S. Luding, H. J.Herrmann.Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles [J]. Powder Technology,2000,109:278-292.
    [36]R.S. Ransing, D.T. Gethin, A.R. Khoei, et al. Powder compaction modeling via the discrete and finite element method [J]. Materials and Design,2000,21: 263-269.
    [37]D.T.Gethin, P. Mosbah, et al. Comparison of computer models representing powder compaction process [J]. Powder Metallurgy,1999,42:301-311.
    [38]P.Redanz, N.A.Fleck. The compaction of a random distribution of metal cylinders by the discrete element method [J]. Acta Materialia,2001,49:4325-4335.
    [39]C.L.Martin, D.Bouvard, S.Shima. Study of particle rearrangement during powder compaction by the Discrete Element Method [J]. Journal of the Mechanics and Physics of Solids,2003,51:667-693.
    [40]C.L.Martin, D.Bouvard. Study of the cold compaction of composite powders by the discrete element method [J]. Acta Materialia,2003,51:373-386.
    [41]程远方,果世驹,赖和怡.球形颗粒随机排列过程的计算机模拟[J].北京科技大学学报,1999,21(4):387-391.
    [42]程远方.粉体致密化过程的离散元模拟[D].北京:北京科技大学,2000.
    [43]温彤.粉末材料压制过程的DEM分析[J].重庆大学学报(自然科学版),20067:1-4.
    [44]A. Munjiza,. The combined finite-discrete element method [M]. John Wiley &Sons, Ltd,2008.
    [45]K. Han, Y. T. Feng, D. R. J. Owen. Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems [J]. Computers and Structures,2007,85:1080-1088.
    [46]Y. T. Feng, K. Han, C. F. Li, et al. Discrete thermal element modeling of heat conduction in particle systems:Basic formulations [J]. Journal of Computational Physics,2008,227:5072-5089.
    [47]Itasca Consulting Group, Inc, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), ICG/Version 2.1, Minneapolis, Minnesota (2002).
    [48]Paul Skoglund, Hoganas AB. High density PM components by High Velocity Compactions [M]. Sweden:Hoganas Company,2001.
    [49]王建忠.铁粉和铜粉高速压制成形及致密化规律研究[D].北京:北京科技大学,2009.
    [50]王建忠,曲选辉,尹海清等.电解铜粉高速压制成形[J].中国有色金属学报,2008,18(8):1498-1503.
    [51]沈元勋,肖志瑜,温利平等.粉末冶金高速压制技术的原理、特点及其研究进展[J].粉末冶金工业,2006,16(3):19-21.
    [52]迟悦,果世驹,孟飞等.粉末高速压制成形技术[J].粉末冶金工业,2005,15(6):41-45.
    [53]Aslund C. High velocity compaction (HVC) of stainless steel gas atomized powder [C]. Powder Metallurgy World Congress and Exhibition. Shrewsbury: EPMA. Vienna,2004:17-21.
    [54]曲选辉,尹海清.粉末高速压制技术的发展现状[J].中国材料进展,2010,29(2):46-47
    [55]阎志巧,蔡一湘,陈峰.粉末冶金高速压制技术及其应用[J].粉末冶金技术,2009,27(6):456-459.
    [56]B. Bos, C. Fors, T. Larsson. Industrial implementation of high velocity compaction for improved properties [J]. Powder Metallurgy,2006,49(2): 107-109.
    [57]Torsten Ericsson, Petri Luukkonen. Residual Stresses in Green Bodies of Steel Powder after Conventional and High Speed Compaction [J]. Journal of Energy Resources Technology,1992,114:117-138.
    [58]B. Azhdar, B. Stenberg, L. Kari. Determination of springback gradient in the die on compacted polymer powders during high-velocity compaction [J]. Polymer Testing,2006,25 (8):114-123.
    [59]B.Barendvanden, F.Christer, L.Tomas. Industrial implementation of high velocity compaction for improved properties [J]. Powder Metallurgy,2006, 49(2):107-109.
    [60]P. Jons'en, H.A. Haggblad, P. Skoglund, et al. Green body behavior of high velocity pressed metal powder [J]. Materials Science Forum,2007,534/536: 289-292.
    [61]秦宣云,谷成玲,崔彩虹等.高速压制粉末散体空间的分形维数及导热的分形模型[J].湖北民族学报,2008,2(26):131-134.
    [62]B. Azhdar, B. Stenberg, L. Kari. Determination of dynamic and sliding friction and observation of stick-slip phenomenon on compacted polymer powders during high-velocity compaction [J]. Polymer testing,2006,25:1069-1080.
    [63]B. Azhdar, B. Stenberg, L. Kari. Polymer-nanofiller prepared by high-energy ball milling and high velocity cold compaction [J]. Polymer Composites,2008, 29:252-261.
    [64]Zhoushun Zheng, Yuanpeng Zhu, Qinwu Xu, et al. Research of consititutive relation of metal powder in High Velocity Compaction [J]. Advanced Materials Research,2010,97101:1154-1160.
    [65]果世驹,迟悦,孟飞.粉末冶金高速压制成形的压制方程[J].粉末冶金材料科学与工程,2006,11(1):24-27.
    [66]易明军,尹海清,曲选辉等.力与应力波对高速压制压坯质量的影响[J].粉末冶金技,2009,27(3):207-212.
    [67]M. Zhou, A. J. Rosakis, G. Ravichandran. Dynamically propagating shear bands in impact loaded prenotched plates-Ⅰ. Experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids,1996,44(6):981-1006.
    [68]刘心宇,张继忠,占美燕.粉末体成形的有限元数值模拟[J].中南工业大学学报,1999,30(3):279-282.
    [69]Lehmer D. H., Mathematical methods in large-scale computing units [J], Annals of the Computation Laboratory of Harvard University,1951,26:141-146.
    [70]G. E. P. Box, Mervin E. Muller. A Note on the Generation of Random Normal Deviates [J]. The Annals of Mathematical Statistics,1958,29(2):610-611.
    [71]Belytsehko T, Lu Y Y, Gu L. Elementfree Galerkin methods[J]. Intenational Journal for Numerical Methods in Engeering,1994,37:229-256.
    [72]王强,吕西林.离散单元法中数值求解方法的改进[J].同济大学学报(自然科学版),2006,34(12):1573-1577.
    [73]M. A. Papadrakakis. Method for the automatic evaluation of the dynamic relaxation parameters [J]. Computer Method in Applied Mechanics and Engineering,1981,25:35-49.
    [74]Mindlin R.D, Deresiewicz H. Elastic spheres in contact under varying oblique force [J]. J Appl. Mech,1953,20:327-344.
    [75]CEP(?)OKIT, CAXHEHKOAB, CB(?)CTYH(?). The experience of industry application for high velocity compaction of metal powder [J]. Powder Metallurgy,2000(9):108-115.
    [76]G Sethi, E. Hauck, R. M. German. High velocity compation compared with conventional compaction [J]. Materials Science and Technology,2002,8:28-36 2002.
    [77]Wang Jianzhong, Yin Haiqing, Qu Xuanhui, et al. Effect of multiple impacts on high velocity pressed iron powder [J]. Powder Technology,2009,195(3):184-189.
    [78]Chen Puqing, Xia Wei, Zhou Zhaoyao, et al. Threedimensional combined finite-discrete element approach for simulation of single layer powder Compaction process [J]. Trans. Nonferrous. Met. Soc. China,2004,14 (4):751-755.
    [79]K.Tanaka, M.Nishida, T.Kunimochi, et al. Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of spherical projectile [J]. Powder Technology,2002,124:160-173.
    [80]T. Belytschko, T. Hughes. Computational Methods in Mechanics-I. Computational Methods for Transient Analysis [M]. Elsevier Science,1983.
    [81]T. Belytschko, H.J. Yen, R. Mullen. Mixed Method for Time Integration [J]. Computer Methods in Applied Mechanics and Engineering, North Holland, 1979:259-275.
    [82]C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations [M]. Philadelphia:SIAM,1995.
    [83]E.Hairer, C.Lubich, G.Wanner. Geometric numerical integration illustrated by the Stormer-Verlet method [J]. Acta Numerica,2003,12:399-450.
    [84]D.V. Griffiths, I.M. Smith. Numerical methods for engineers:a programming approach [M]. Boca Raton:CRC Press,1991.
    [85]M.Shoaib, L.Kari, B.Azhdar. Simulation of high velocity compaction process with relaxaion assists using the discrete element method [J]. Powder Technology, 2012,217:394-400.
    [86]K. L. Johnson and K. Kendall and A. D. Roberts, Surface energy and the contact of elastic solids [J], Proc. R. Soc. London A,1971,324:301-313
    [87]王等明.密集颗粒系统的离散单元模型及其宏观力学行为特征的理论研究[D].兰州:兰州大学,2009.
    [88]M. L. Hunt. Discrete element simulations for granular material flows:effective thermal conductivity and self-diffusivity [J]. International Journal of Heat and Mass Transfer.1997,40:3059-3068.
    [89]J. Sun, M.M. Chen. A theoretical analysis of heat transfer due to particle impact [J]. Int.J.Heat Mass Transfer.1988,31:969-973.
    [90]K. L. Johnson. Contact Mechanics [M]. Cambridge:Cambridge University Press,1987.
    [91]C. Argento, D. Bouvard. Modeling the effective thermal conductivity of random packing of spheres through densification [J]. International Journal of Heat and Mass Transfer,1996,39 (7):1343-1350.
    [92]V. V. R. Natarajan, M. L. Hunt. Kinetic theory analysis of heat transfer in granular flows. International Journal of Heat and Mass Transfer,1998,41 (13): 1929-1944.
    [93]J. Li, D. J. Mason. A computational investigation of transient heat transfer in pneumatic transport of granular particles [J]. Powder Techology.2000,112: 273-282.
    [94]W.L.Vargas, J.J.McCarthy. Heat Conduction in Granular Materials [J]. AIChE Journal,2001,47:1052-1065.
    [95]Bodhisattwa Chaudhuri, F. J. Muzzio, M. Silvina. Tomassone. Modeling of heat transfer in granular flow in rotating vessels [J]. Chemical Engineering Science, 2006,61:6348-6360.
    [96]D. Richard, I. Iordanoff, M. Renouf, et al. Thermal study of the dry sliding contact with third-body presence [J]. ASME Journal of Tribology,2008,130 (3): 031404.
    [97]高红云,邵明,屈盛官等.粉末流动温压过程中粉末堆积数值模拟与优化[J].制造技术与机床,2010,3:79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700