用户名: 密码: 验证码:
Al_2O_3基微纳复合陶瓷刀具材料及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削加工是未来切削加工技术的发展方向,而刀具材料是发展高速切削加工技术的关键,开发适于高速干式切削加工的陶瓷刀具契合了当今绿色环保的理念。本文以研制高性能微纳复合陶瓷刀具材料为目标,对微纳复合陶瓷刀具材料进行了系统设计,优化了微纳复合陶瓷刀具材料的制备工艺,成功制备出Al2O3/TiC/ZrO2微纳复合陶瓷刀具材料,并对其力学性能、微观组织结构、动态本构模型及切入瞬时仿真、切削性能、失效形式及机理进行了研究。
     基于超高强度钢的切削加工特点,提出了微纳复合陶瓷刀具材料的设计原则,并设计出以微米Al203为基体,微米TiC、纳米TiC和纳米Zr02为添加相的微纳复合陶瓷刀具材料。通过对其进行化学相容性计算分析,可知在烧结及切削加工过程中不会发生化学反应。基于颗粒残余应力模型,计算出微米级TiC和Zr02的最大体积分数,分别为82.8vol%和21.3vol%。根据各组分的物理相容性的计算分析,确定纳米添加相的成分,并基于等径球体紧密排列结构,依据素坯颗粒级配原则,建立了纳米添加相的粒径和体积分数的理论模型,并考虑纳米粒子的团聚效应,确定了纳米TiC的粒径为80nm,含量为4vol%;纳米Zr02的粒径为40nm,含量为1.5-2.0vol%。基于液态金属对TiC的润湿性,确定了添加金属Ni、Mo及含量。
     研究了纳米粉末的分散工艺。研究结果表明,悬浮液为PH值9-10的碱性溶液,分散剂PEG添加量为纳米TiC粉末质量的1.5wt%时,纳米TiC悬浮液的相对沉降体积小;悬浮液为PH值9-10的碱性溶液,分散剂PEG添加量约为纳米Zr02粉末质量的2wt%时,纳米Zr02悬浮液的相对沉降体积小。
     研究了微纳复合陶瓷刀具材料的烧结工艺。对烧结温度和保温时间进行了优化。结果表明,微纳复合陶瓷刀具材料适宜的烧结工艺为:烧结温度1700℃,保温时间10min,烧结压力30MPa。依据烧结体的性能,对组分配比进行优选,成功制备出综合性能优良的ATZ4微纳复合陶瓷刀具材料,其抗弯强度、维氏硬度、断裂韧度和相对密度分别为970MPa、20.3GPa、5.9MPa·m1/2和99.3%。
     研究分析了ATZ4微纳复合陶瓷刀具材料的微观结构和断裂模式。结果表明,其微观结构为晶内/晶间型,且晶粒尺寸大小分布均匀;其断裂模式是以穿晶断裂为主的混合断裂模式。
     研究了ATZ4微纳复合陶瓷刀具材料的强韧化机理。结果表明,其主要的强韧化机理为晶粒细化、晶界强化、位错强韧化、相变增韧、裂纹偏转和颗粒桥接增韧。
     建立了ATZ4微纳复合陶瓷刀具材料动态本构模型,并仿真了瞬时切入过程。基于滑移型裂纹模型,应用细观损伤力学理论,建立了ATZ4微纳复合陶瓷刀具材料单轴压缩下损伤型动态本构方程。通过分离式霍普金森压杆实验获取ATZ4微纳复合陶瓷材料的动态应力-应变曲线,并与理论曲线进行对比分析,验证了理论公式的合理性。建立了ATZ4微纳复合陶瓷刀具切削仿真的有限元模型,获得了切入瞬时刀具前刀面上最大拉应力,并根据第一强度理论,预测了刀具切入工件时可能的破损失效,为切削参数的选择提供了依据。
     建立了ATZ4微纳复合陶瓷刀具切削加工调质300M钢的刀具寿命模型,分析了ATZ4微纳复合陶瓷刀具在合理切削参数下的失效形式及机理。对比分析研究了不同刀具切削调质300M钢时的切削性能、磨损破损形式及其机理。结果表明,在低速车削时,刀具均以磨损为主,其机理为粘结磨损和磨粒磨损;在高速车削时,刀具的失效形式为磨损和破损,其磨损机理为粘结磨损和磨粒磨损,而破损机理为机械应力和热应力的耦合作用。在高速切削条件下,其耦合应力较高,易达到刀具材料的强度极限而造成其破裂。在各切削速度下,ATZ4较其它刀具均表现出更强的耐磨损和抗破损的能力。
High-speed machining is the development direction of future machining technology, and the cutting tool material is the key to the development of high speed machining technology, so the development of ceramic cutting tools is suitable for high speed dry cutting to meet the requirement of green environmental protection today. In this dissertation, the development of high-performance micro-nano-composite ceramic cutting tool material is chosen as the research objective. Through systematically designing the micro-nano-composite ceramic tool material and optimizing the fabrication processing parameters on the micro-nano-composite ceramic tool material, Al2O3/TiC/ZrO2micro-nano-composite ceramic tool material is successfully prepared, then its mechanical properties, microstructure, dynamic constitutive relation, dynamic simulation of cutting process, the cutting performance and failure modes and mechanisms are studied.
     Based on machining characteristics of ultra-high strength steel, the design principles of micro-nano-composite ceramic tool material are proposed, and with the micron Al2O3as matrix, micron TiC, nano TiC and nano ZrO2as additives, the composition of micro-nano-composite ceramic tool material is determined. The analysis and calculation on the chemical compatibility show that there is no chemical reaction in the process of sintering and machining. Based on the particle residual stress model, the largest volume content of micron TiC and ZrO2are determined as82.8%and21.3%, respectively. According to the physical compatibility analysis and calculation of each constituent, the nano additive phase composition is determined. Based on close-packed arrangement of equal diameter balls and the principle of grain composition of green compact, the theoretical models for nano additive particle size and volume content are established. By considering the aggregation effect of nanoparticles, the particle size and content of the nano additive are determined. The volume fraction of nano TiC with the diameter of80nm is4vol%, and the volume fraction of nano ZrO2with the diameter of40nm is1.5~2.0vol%. Based on wettability of TiC, the Ni and Mo additives and its content are determined.
     Dispersion process of nano powder was investigated. Results show when the suspension is an alkaline solution of PH9~10and dispersant PEG amount for nano TiC powder is1.5wt%of nanometer TiC powder quality, relative sedimentation of TiC nanoparticles suspension is lowest, and when suspension is an alkaline solution of PH9-10and dispersant PEG amount is about2wt%of nanometer ZrO2powder quality, relative sedimentation of nanometer ZrO2suspension is smallest.
     The sintering process of micro-nano-composite ceramic tool materials is studied. The sintering temperature and holding time for hot pressing sintering were optimized. The sintering temperature1700℃, holding time10min and sintering pressure30MPa are suitable for micro-nano-composite ceramic tool material. The constituents ratio are optimized on the basis of the performance of the sintered body, then ATZ4micro-nano-composite ceramic tool material with the highest synthetical properties is produced, and its flexural strength, fracture toughness and Vickers' hardness and relative density are970MPa,5.9MPa·m1/2,20.3GPa and99.3%, respectively.
     The microstructure and fracture pattern of ATZ4micro-nano-composite ceramic tool material are studied. Results show that the microstructure is mainly of intragranular/intergranular structure, and uniform grain size distribution. Its fracture modes are mixed by transgranular fracture and intergranular fracture.
     Strenthening and toughening mechanisms for ATZ4micro-nano-composite ceramic tool material are studied. Results show that the main strenthening and toughening mechanisms of ATZ4are grain refining, grain boundary strengthening, dislocation strengthening and toughening, phase transformation toughening, crack deflection and grain bridging.
     The dynamic constitutive model of ATZ4micro-nano-composite ceramic tool material and the machining process simulation are studied. Based on the sliding crack model and applying the theory of meso-damage mechanics, the damage type dynamic constitutive equation of ATZ4under uniaxial compression is established. The dynamic stress-strain curve of ATZ4is obtained by SHPB (Split Hopkinson Pressure Bar) test equipment, and compared with theoretical stress-strain curve, so that the rationality of the theoretical formula was verified. The finite element model of cutting simulation for ATZ4is established and the tool rake face maximum tensile stress is obtained. According to the maximum tensile stress theory, damage failure of cutting tool is predicted when it cut into the workpiece, providing a guidance for cutting parameter selection.
     The empirical formula of cutting tool life in turning300M steel is established, and the cutting parameters are optimized. The failure modes and mechanism of cutting tool under the reasonable cutting parameters are analyzed. Cutting performance, failure mode and mechanisms of different cutting tools in machining300M steel are studied. Results show that in low speed turning, the failure mode of the cutting tool is tool wear, and its mechanism is adhesive wear and abrasive wear. In high-speed turning, the failure mode of cutting tool is tool wear and breakage. The wear mechanism is adhesive wear and abrasive wear. The cutting tool is loaded by the coupling stress of the mechanical stress and thermal stress in machining, and when the couple stress is equal to the ultimate strenghth of the tool material, the cutting tool may fracture. Under different cutting speeds, the fracture and wear resistance properties of ATZ4micro-nano-composite ceramic tool are higher than other cutting tools.
     This work was financially supported by the National Basic Research Program of China(2009CB724402) and the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China(BS2011ZZ010).
引文
[1]艾兴.高速切削技术和刀具材料现状与展望[J].世界制造技术与装备市场,2001,(6):32-36.
    [2]艾兴,刘战强,赵军等.高速切削刀具材料的进展和未来[J].制造技术与机床,2001,(8):21-25.
    [3]艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    [4]王西彬,解丽静.超高速切削技术及其新进展[J].中国机械工程,2000,11(1-2):190-194.
    [5]邓朝晖,刘战强,张晓红.高速高效加工领域科学技术发展研究[J].机械工程学报,2010,46(23):106-120.
    [6]R.C.Dewes, D.K.Aspinwall. A review of ultra high speed milling of hardened steels[J]. Journal of Materials Processing Technology,1997,69(1):1-17.
    [7]F. Klocke, E. Brinksmeier, C. Evans, et al. High-speed grinding fundaments and state of the art in Europe, Japan and the USA[J]. Annal s of the CIRP,1997,46(2):715-724.
    [8]C. Salomon. Process for the machining of metals or similarly acting materials when being worked by cutting tools[J]. German Patent,1931, (4):523-594.
    [9]艾兴,刘战强,黄传真等.高速切削综合技术[J].航空制造技术,2002,(3):20-23.
    [10]刘战强,艾兴,宋世学.高速切削技术的发展与展望[J].制造技术与机床,2001,(7):5-7.
    [11]N. Narutaki, Y. Yamane. High speed machining of Inconel718 with ceramic tools[J]. Annals of the CIRP,1993,42(1):103-106.
    [12]S. Smith, J. Tlusty. Current trends in high-speed machining[J]. Journal of Manufacturing Science and Engineering,1997,119(4):664-666.
    [13]聂鹏,康晓峰,王明海.金刚石工具的性能、应用研究与进展[J].沈阳航空航天大学学报,2011,28(3):60-65.
    [14]张勤俭,曹凤国,王先逵.聚晶金刚石的应用现状和发展趋势[J].金刚石与磨料磨具工程,2006,151(1):71-74.
    [15]王西彬.金刚石刀具高速精密切削加工的研究[J].工具技术,2002,36(2):15-18.
    [16]骆红云,焦红,范猛等.金刚石刀具与精密超精密加工技术[J].长春光学精密机械学院学报,2000,23(11):49-53.
    [17]X. Yu, L. Wang. Effect of various parameters on the surface roughness of an aluminum alloy burnished with a spherical surfaced polycrystalline diamond tool[J]. International Journal of Machine Tools & Manufacture,1999,39(3):459-469.
    [18]Uegami K, Tamamura K, Jang K K. Lapping and frictional properties of diamond and characteristics of diamond cutting tool[J]. Journal of Mechanical Working Technology, 1988,17(8):147-155.
    [19]罗松保.金刚石超精密切削刀具技术概述[J].航空精密制造技术,2007,43(1):1-4.
    [20]J. Angseryd, M. Elfwing, E. Olssonb, et al. Detailed microstructure of a CBN based cutting tool material [J]. International Journal of Refractory Metals and Hard Materials,2009,27(2): 249-255.
    [21]谷勇霞,叶伟昌.立方氮化硼刀具的合理使用[J].硬质合金,2004,21(3):164-167.
    [22]彭进,侯永改,董企铭等.聚晶立方氮化硼(PCBN)的制备及应用研究进展[J].金刚石与磨料磨具工程,2008,166(4):81-86.
    [23]李旭.立方氮化硼(CBN)工具材料及其生产、应用现状与发展趋势[J].硬质合金,1994,11(2):115-122.
    [24]梁玉平.高速切削刀具材料[J].机械工程材料,1994,18(5):4-6.
    [25]李启泉,刘书锋,宗万栓.超硬刀具和材料的研究与应用[J].航空制造技术,2009,(13):71-75.
    [26]J. Angseryd, M. Elfwing, E. Olssonb, et al. Detailed microstructure of a cBN based cutting tool material[J]. International Journal of Refractory Metals and Hard Materials,2009,27(2): 249-255.
    [27]胡兴军.刀具表面涂层技术进展综述[J].精密制造与自动化,2005,(1):14-17.
    [28]张文毓.硬质合金涂层刀具研究进展[J].稀有金属与硬质合金,2008,36(1):59-63.
    [29]刘开琪,徐强,张会军.金属陶瓷的制备与应用[M].北京:冶金工业出版社,2008.
    [30]徐强,张幸红,曲伟等.金属陶瓷的研究进展[J].硬质合金,2002,19(4):221-225.
    [31]黄国权.金属陶瓷材料及其在切削刀具上的应用[J].组合机床与自动化加工技术,2003,(5):37-38.
    [32]J. Zhao, X.L. Yuan, Y.H. Zhou. Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro-nano-composite ceramic tool[J]. International Journal of Refractory Metals & Hard Materials,2010,28:330-337.
    [33]郭景坤.关于先进结构陶瓷的研究[J].无机材料学报,1999,14(2):193-202.
    [34]杨学锋,邓建新,姚淑卿Al2O3/TiC复合陶瓷拉丝模材料的摩擦磨损性能[J].硅酸盐学报,2005,33(12):1522-1526.
    [35]J.H. Gong, H.Z. Miao, Z. Zhao, et al. Effect of TiC particle size on the toughness characteristics of Al2O3-TiC composites[J]. Materials Letters,2001,49(3-4):235-238.
    [36]B. Zhang, B. Freddy. The phases and the toughening mechanisms in (Y) ZrO2-Al2O3-(Ti,W)C ceramics system[J]. Materials Letters,2000,43(4):197-202.
    [37]S. Zbigniew, Rak, C.S. Jerzy. Manufacture and Properties of Al2O3-TiN Paniculate Composites[J]. Journal of the European Ceramic Society,1998,18:373-380.
    [38]H.L. Liu, C.Z. Huang, J. Wang, et al. Fabrication and mechanical properties of Al2O3/Ti(C0.7N0.3) nanocomposites[J]. Materials Research Bulletin,2006,41(7): 1215-1224.
    [39]C.X. Liu, J.H. Zhang, X.H. Zhang, et al. Fabrication of Al2O3/TiB2/AlN/TiN and Al2O3/TiC/AlN composites[J]. Materials Science and Engineering A,2007,465(1-2): 72-77.
    [40]J.X. Deng, T.K. Cao, L.L. Liu. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel[J]. Journal of the European Ceramic Society, 2005,25(7):1073-1079.
    [41]B.Q. Liu, C.Z. Huang, M.L. Gu, et al. Preparation and mechanical properties of in situ growth TiC whiskers toughening Al2O3 ceramic matrix composite[J]. Materials Science and Engineering A,2007,460-461:146-148.
    [42]Jun Zhao, Xunliang Yuan, Yonghui Zhou. Processing and characterization of an Al2O3/WC/TiC micro-nano-composite ceramic tool material [J]. Materials Science and Engineering A,2010,527(7-8):1844-1849
    [43]A. Krell, D. Klaffke. Effects of grain size and humidity on fretting wear in fine-grained alumina Al2O3/TiC and zirconia [J]. Journal of the American Ceramic Society,1996,79(5): 1139-1146.
    [44]陈日耀.金属切削原理[M].北京:机械工业出版社,1995.
    [45]李友生,邓建新,张辉等.硬质合金刀具材料的抗氧化性能研究[J].材料工程,2009,(2):34-42.
    [46]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005.
    [47]邓建新,丁泽良,冯益华.切削刀具与加工对象的匹配研究[J].工具技术,2001,35(10):6-9.
    [48]徐祖耀.自主创新发展超高强度钢[J].上海金属,2009,31(2):1-6.
    [49]范长刚,董瀚,雍岐龙等.低合金超高强度钢的研究进展[J].机械工程材料,2006,30(8):1-4.
    [50]韩荣第,于启勋.难加工材料切削加工[M].北京:机械工业出版社,1996.
    [51]J. Barry, G. Byrne. Cutting tool wear in the machining of hardened steels Part I: alumina/TiC cutting tool wear[J]. Wear,2001,247(2):139-151.
    [52]裴志坚,王育民.一种超高强度钢的切削加工[J].机械设计与制造,1990,(4):28-29.
    [53]龙震海,王西彬,刘志兵.高速铣削难加工材料时硬质合金刀具前刀面磨损机理及切削性能研究[J].摩擦学学报,2005,25(1):83-87.
    [54]刘志兵,王西彬,龙震海等.陶瓷铣刀干切削高强度钢的关系及磨损机理[J].中国机械工程,2004,(11):944-947.
    [55]J.G Lima, R.F. Avila, A.M. Abrao, et al. Hard turning:AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel[J]. Journal of Materials Processing Technology, 2005,169(3):388-395.
    [56]刘志兵,王西彬.硬质合金刀具铣削30CrNi3MoV高强度钢的切削性能研究[J].机械科学与技术,2005,24(4):482-483.
    [57]张保国,陈志同,熊曦耀,等.涂层刀具铣削加工300M钢的刀具磨损试验研究[J].航空精密制造技术,2008,44(2):41-44.
    [58]W. Grzesik. Wear development on wiper Al2O3-TiC mixed ceramic tools in hard machining of high strength steel[J]. Wear,2009,266(9-10):1021-1028.
    [59]艾兴,葛革,萧虹等.陶瓷刀具加工淬硬钢和高强钢的研究[J].山东工业大学学报(工学版),1983,(1):10-18.
    [60]刘志兵,王西彬,杨洪建.陶瓷刀具干铣削超高强度钢的试验研究[J].工具技术,2003,37(5):7-9.
    [61]陆海钰,游顺英.难加工材料的切削技术[J].机械制造,2000,(2):38-41.
    [62]Y. Katsumura, T. Takahashi, H. Suzuki. Flaking phenom-enon of Al2O3-TiC ceramics tools[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1991,38(5): 591-596.
    [63]S. Scheppokat, N. Claussen, R. Hannick. RBAO composites containing TiN and TiN/TiC[J]. Journal of the European Ceramic Society,1996,16:919-927.
    [64]S. Sakaguchi. R-curve behavior of Al2O3-TiC ceramic composites[J]. Silica. Indus.,1997, 62:15-19.
    [65]郝春成,崔作林,尹衍升.颗粒增韧陶瓷的研究进展[J].材料导报,2002,16(2):28-30.
    [66]P.G. Rao, M. Iwasa, T. Tanaka, et al. Preparation and mechanical properties of Al2O3-15wt% ZrO2 composites, Scripta Materialia,2003,48:437-441.
    [67]W. Hsing, J.R. Chen, C.J. Ho. Critical zirconia amount to enhance the strength of alumina. Ceramics International,2008,34:2129-2135.
    [68]P. G.. Rao, M. Iwasa, J.Q. Wu, et al. Effect of Al2O3 addition on ZrO2 phase composition in the Al2O3/ZrO2 system[J]. Ceramics International,2004,30(6):923-926.
    [69]黄传真,艾兴.新型复相陶瓷刀具材料JX-2-I协同增韧补强机理的研究[J].中国陶瓷,1998,34(1):20-22.
    [70]Robert Run. Mechanical and microstrctural characterization of mullite and mullite SiCw hisker and ZrO2 toughened mullite SiCw hisker composites[J]. Journal of the American Ceramic Society,1988,71(6):503-512.
    [71]A.G.. Evans. On toughening of ceramics by strong reinforcements[J]. Acta Metallurgica, 1986,34(2):2435-2441.
    [72]Martin Sternitzke. Review:structural ceramic nanocomposites[J]. Journal of the European Ceramic Society,1997,17(9):1061-1082.
    [73]N. Liu, Y.D. Xu, H. Li, et al. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets[J]. Journal of the European Ceramic Society, 2002,22(13):2409-2414.
    [74]李广海,江安全,张立德.添加纳米Al203对Al203陶瓷增韧和增强的影响[J].金属学报,1996,32(12):1285-1288.
    [75]高濂,李蔚.纳米陶瓷[M].北京:材料科学与工程出版社,2002.
    [76]黄开金.纳米材料的制备及应用[M].北京:冶金工业出版社,2009.
    [77]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [78]K. Niihara. New design concept of structural ceramics:Ceramic Nanocomposites[J]. Journal of the Ceramic Society of Japan,1991,99(10):974-982.
    [79]Jing Sun, Chuanzhen Huang, Jun Wang, et al. Mechanical properties and microstructure of ZrO2-TiN-Al2O3 composite ceramics[J]. Materials Science and Engineering A,2006, 416(1-2):104-108.
    [80]李国军,黄校先,郭景坤.晶内/晶间复合型Al2O3/Ni纳米金属陶瓷显微结构和力学性能的研究[J].无机材料学报,2003,18(1):71-77.
    [81]T. Venkateswaran, D. Sarkar, B. Basu. Tribological properties of WC-ZrO2 nanocomposites [J]. Journal of the American Ceramic Society,2005,88(3):691-697.
    [82]吕志杰.高性能Si3N4/TiC纳米复合陶瓷刀具材料的研制与性能研究[D].济南:山东大学博士学位论文,2005.
    [83]吕志杰,赵军,艾兴.Si3N4/TiC纳米复合陶瓷刀具材料氧化行为[J].硅酸盐学报,2008,36(2):210-214.
    [84]邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].济南:山东大学博士学位论文,2006.
    [85]周咏辉.At203基纳米复合陶瓷刀具材料的研制及切削性能研究[D].济南:山东大学博士学位论文,2009.
    [86]杨发展.新型WC基纳米复合刀具材料及其切削性能研究[D].济南:山东大学博士论文,2009.
    [87]李艳征.A1203基梯度纳米复合陶瓷刀具的研制及切削性能研究[D].济南:山东大学博士学位论文,2011.
    [88]谢峰,刘宁,张崇高等.纳米改性金属陶瓷刀具材料最佳纳米粉添加量的研究[J].中国机械工程,2005,16(15):1395-1397.
    [89]R. X. Shi, J. Li, Y. S. Yin, et al. Toughening mechanisms and microstructure of Al2O3-TiC-Co composites[J]. Materials Science and Engineering A,2011,528(16-17): 5341-5347.
    [90]C. Oelgardt, J. Anderson, J.G. Heinrich, et al. Sintering, microstructure and mechanical properties of Al2O3-Y2O3-ZrO2 (AYZ) eutectic composition ceramic microcomposites[J]. Journal of the European Ceramic Society,2010,30(3):649-656.
    [91]K.F. Cai, D.S. McLachlan, N. Axen, et al. Preparation, microstructures and properties of Al2O3-TiC composites[J]. Ceramics International,2002,28(2):217-222.
    [92]周洋,詹国栋,徐明英等.氧化铝基陶瓷复合材料的微观结构与增韧机理[J].无机材料学报,1997,12(2):161-168.
    [93]肖俊华,徐耀玲.纳米夹杂复合材料的有效反平面剪切模量研究[J].固体力学学报,2011,32(6):297-292.
    [94]王海龙,李庆斌.饱和混凝土的弹性模量预测[J].清华大学学报,2005,45(6):761-763.
    [95]Pin Lu. Further studies on MorieTanaka models for thermal expansion coefficients of composites[J]. Polymer,2013,54(6):1691-1699.
    [96]Guy Anne, Stijn Put, Kim Vanmeensel, et al. Hard, tough and strong Z1O2-WC composites from nanosized powders[J]. Journal of the European Ceramic Society,2005,25:55-63.
    [97]黄自谦,贺跃辉,武从海等.硬质合金残余热应力的理论计算与数值模拟[J].稀有金属材料与工程,2009,38(4):303-307.
    [98]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,22(3):259-269.
    [99]赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析[J].硅酸盐学报,1996,24(5):491-497.
    [100]沈毅,杨正方,张存满.第二相SiC颗粒弥散增韧氧化铝陶瓷的残余应力计算[J].硅酸盐通报,2003,(1):68-70.
    [101]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社,1994.
    [102]朱伯铨,李享成.刚玉-莫来石-锌铝尖晶石复相材料合成的热力学研究[J].耐火材料,2004,38(2):63-65.
    [103]孙志强,张荻,丁剑等.原位增强镁基复合材料研究进展与原位反应体系热力学[J].材料科学与工程,2002,20(4):579-584.
    [104]周立娟,郑永挺,杜善义.AlN-TiN-TiB2复相陶瓷的显微结构和力学性能[J].稀有金属材料与工程,2009,38(增2):502-505.
    [105]Jianghong Gong, Hezhuo Miao, Zhe Zhao. Effect of TiC-particle size on sliding wear of TiC particulate reinforced alumina composites[J]. Materials Letters,2002,53(4-5): 258-261.
    [106]Yun Wan, Jianghong Gong. Influence of TiC particle size on the load-independent hardness of Al2O3-TiC composites[J]. Materials Letters,2003,57(22-23):3439-3443.
    [107]金宗哲,张国军,包亦望,等.复相陶瓷增强颗粒尺寸效应[J].硅酸盐学报,1995,23(6):610-617.
    [108]Tsung-Shou Yeh, Michael D. Sacks. Effect of particle size distribution on the sintering of alumina[J]. Journal of the American Ceramic Society,1988,71(12):484-487.
    [109]李君,员文杰,邓承继等.SiC原料颗粒级配对Si3N4结合SiC复合陶瓷材料的影响[J].中国陶瓷工业,2012,19(6):9-13.
    [110]王倩,金志浩,王永兰.氧化物结合碳化硅复合材料的粒度级配对其性能的影响[J].硅酸盐通报,2003,22(1):38-41.
    [111]施剑林.固相烧结Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998,26(1):1-13.
    [112]张金栋,施剑林.氧化铝粉料的颗粒级配对成型行为和烧结行为的影响[J].无机材料学报,1997,12(2):175-180.
    [113]刘海峰,宁建国.冲击荷载作用下混凝土材料的细观本构模型[J].爆炸与冲击,2009,29(3):261-267.
    [114]李海波,赵坚,李俊如等.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683-1688.
    [115]李英雷,胡时胜,李英华.A95陶瓷材料的动态压缩测试研究[J].爆炸与冲击,2004,24(3):233-239.
    [116]石志勇,汤文辉.A1203陶瓷的损伤型本构关系研究[J].强度与环境,2007,34(3):53-57.
    [117]张晓晴,姚小虎,杨桂通,黄小清.A 1203陶瓷材料高应变率下的动态力学性能[J].太原理工大学学报,2006,37(1):22-25.
    [118]J.M. Zhou, M. Anderson, J.E. Stahl. Cutting tool fracture prediction and strength evaluation by stress identification, part I Stress model[J]. International Journal of Machine Tools andManufacture,1997,37(12):1691-1714.
    [119]张文辉,王海丽.端铣刀切入过程应力场有限元分析[J].工具技术,2011,45(3):23-27.
    [120]K. Komvopoulos, S. A. Erpenbeck. Finite element modeling of orthogonal metal cutting[J]. Journal of Engineering for Industry,1991,113(3):253-267.
    [121]C Outeiro, D Umbrello, R M Saoubi. Experimental and numerical modeling of the residual stresses induced in orthogonal cutting of AISI 316L steel[J]. International Journal of Machine Tools and Manufacture,2006,46(14):1786-1794.
    [122]Wuming Yang, Liu Xian. Distribution principle of face force density and stress state for the waved-edge milling insert [J]. Journal of Harbin Institute of Technology,2009,41(9): 156-159.
    [123]王殿龙,于贻鹏.金属切削过程的有限元法仿真研究[J].大连理工大学学报,2007,47(6):831-833.
    [124]X. Ai, Z.Q. Liu, J.X. Deng. DeveloPment and Perspective of Advanced Ceramic Cutting Tool Material[J]. Key Engineering Materials,1995,108-110:53-66.
    [125]E. D. Whitney. Ceramic CuttingTools[M]. New Jersey:Noyes Publications,1994.
    [126]李君,员文杰,邓承继,祝洪喜.SiC原料颗粒级配对Si3N4结合SiC复合陶瓷材料的影响[J].中国陶瓷工业,2012,19(6):9-13.
    [127]M. Sternitzke. Review:Structural Ceramic Nanocomposites[J]. Journal of the European Ceramic Society,1997,17:1061-1082.
    [128]邓建新,艾兴,冯益华.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究[J].机械工程学报,2002,38(4):40-45.
    [129]陆佩文.无机材料科学基础[M].武汉:武汉大学出版社,1996.
    [130]李立碑,孙玉福.金属材料物理性能手册[M].北京:机械工业出版社,2011.
    [131]李荣久主编.陶瓷-金属复合材料[M].北京:冶金工业出版社,2002.
    [132]叶大伦,胡建华.实用无机物热力学数据手册(第二版)[M].北京:冶金工业出版社,2002.
    [133]许崇海,丁文亮,黄传真等.基于残余应力增韧机制的陶瓷材料增强相的极限含量模型及应用[J].应用科学学报,2001,19(1):73-76.
    [134]J. Selsing. Internal Stresses in Ceramics[J]. Journal of The American Ceramic Society, 1961,44(8):419-419.
    [135]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002.
    [136]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报,1995,23(4):365-372.
    [137]陈顒,尹祥础.脆性固体断裂力学[M].北京:地震出版社,1985.10.
    [138]邓建新.添加TiB2的新型陶瓷刀刀具材料的开发及其摩擦磨损行为和应用研究[D].济南:山东工业大学,1995.
    [139]A.G. Evans, K. T. Faber. Toughening of ceramics by circumferential cicrocracking[J]. Journal of the American Ceramic Society,1981,64(7):394-398.
    [140]T.F. Katherine, T. Iwagosh, A. Ghosh. Toughening by stress-induced microcracking in two-phase ceramics. Journal of the American Ceramic Society,1988,71(9):399-401.
    [141]M. Taya, S. Hayashi, S. Albert, et al. Toughening of a particulate reinforced ceramic matrix composite by thermal residual Stress[J]. Journal of the American Ceramic Society,1990, 73(5):1382-1391.
    [142]杨云鹏,徐更生.莫来石基复相陶瓷的晶界应力及其设计[C].泰安:第九届全国特种陶瓷学术年会,1996:511-514.
    [143]李凤照,刘援朝,刘玉先等.Al2O3-TiC系陶瓷的组织结构和性能[J].机械工程材料,1996,20(1):27-29.
    [144]宋世学.高性能A1203系陶瓷刀具材料的研制及其性能研究[D].济南:山东大学博士学位论文,2002.
    [145]周玉.陶瓷材料学[M].北京:科学出版社,2004.
    [146]R.L. Coble. Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models[J]. Journal of Applied Physics,1961,32(5):787-792.
    [147]崔国文.缺陷、扩散与烧结[M].北京:清华大学出版社,1990.
    [148]李继光,孙旭东,王雅蓉等.α-Al2O3纳米粉的烧结初期机理研究[J].硅酸盐学报,1998,26(4):471-475.
    [149]William, M.Visscher, M. Bolsterli. Random Packing of Equal and Unequal Spheres in Two and Three Dimensions[J]. Nature,1972,239(10):504-507.
    [150]吴成宝,胡小芳,段百涛.粉体堆积密度的理论计算[J].中国粉体技术,2009,15(5):76-81.
    [151]欧阳鸿武,刘咏,王海兵,黄伯云.球形粉末堆积密度的计算方法[J].粉末冶金材料科学与工程,2002,7(2):87-92.
    [152]崔洪梅,刘宏,王继扬等.纳米粉体的团聚与分散[J].机械工程材料,2004,28(8):38-41.
    [153]陈建,潘复生.合金元素影响铝/陶瓷界面润湿性的研究现状[J].兵器材料科学与工程,1999,22(4):53-58.
    [154]徐强,张幸红,曲伟等.金属陶瓷的研究进展[J].硬质合金,2002,19(4):221-225.
    [155]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(上)[J].材料科学与工程,1997,15(3):6-10.
    [156]张幸红,赫晓东,王华彬等.TiC-Ni-Mo金属陶瓷的SHS法合成[J].中国有色金属学报,1999,9(1):106-110.
    [157]王零森.特种陶瓷[M].长沙:中南工业大学出版社,1994.
    [158]J. C. LaSalvia, D. K. Kim, M. A. Meyers. Effect of Mo on microstructure and mechanical properties of TiC-Ni-based cermets produced by combustion synthesis-impact forging technique[J]. Materials Science and Engineering A,1996,206(1):71-80.
    [159]刘宁,崔昆,胡镇华等.TiC基金属陶瓷的组织、性能及发展[J].硬质合金,1992,9(3):166-172.
    [160]秦凯旋,蒋阳,陈进等.Mo含量对TiC基金属陶瓷组织和力学性能的影响[J].金属功能材料,2011,18(4):32-36.
    [161]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [162]邓祥义,胡海平.纳米粉体材料的团聚问题及解决措施[J].化工进展,2002,21(10):761-787.
    [163]贾晓林,谭伟.纳米粉体分散技术发展概况[J].非金属矿,2003,26(7):1-3.
    [164]高家化,沈志坚,丁子上.陶瓷基纳米复合材料[J].复合材料学报,1994,11(3):1-6.
    [165]L.H. Thompson, L.K.Doraiswamy. Sonochemistry:science and engineering[J]. Ind. Eng. Chem. Res.,1999,38(4):1215-1249.
    [166]郭小龙,陈沙鸥,戚凭等.纳米陶瓷粉末分散的微观过程和机理[J].青岛大学学报,2002,15(1):78-88.
    [167]周细应,李卫红,何亮.纳米颗粒的分散稳定性及其评估方法[J].材料保护,2006,39(6):51-54.
    [168]R.G. Horn. Surface forces and their action in ceramic materials[J]. Journal of the American Ceramic Society,1990,73(5):1117-1135.
    [169]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D].济南:山东大学博士论文,2005.
    [170]冯绪胜,刘洪国,郝京诚.胶体化学[M].北京:化学工业出版社,2005.
    [171]T. F. Tadros. Steric Stabilisation and Flocculation by Polymers[J]. Polymer Journal,1991, 23(5):683-696.
    [172]王瑞刚,吴厚政,陈玉如等.陶瓷料浆稳定分散进展[J].陶瓷学报,1999,20(1):35-40.
    [173]陈庆春,邓慧宇,马燕明.聚乙二醇在新材料制备中的作用及其机理[J].日用化学工业,2002,32(5):35-37.
    [174]李超,杜建华,韩文政.聚乙二醇对纳米Si02水悬浮液分散稳定性的影响[J].装甲兵工程学院学报,2007,21(6):74-77.
    [175]汤枫秋,黄校先,张玉峰等.纳米Zr02悬浮体的表面化学特性[J].材料科学与工程,1999,17(3):23-26.
    [176]J. Cesarano, A. Aksay. Stability of aqueous α-A12O3 suspensions with poly(methacry1ic acid) Polyelectrolyte. Journal of the American Ceramic Society,1988,71(4):250-255.
    [177]周细应,李卫红,何亮.纳米颗粒的分散稳定性及其评估方法[J].材料保护,2006,39(6):51-54.
    [178]周艺,何小川,王炎根.Tween-80和SDBS对纳米TiO2在水溶液中分散稳定性的影响[J].长沙电力学院学报(自然科学版),2002,17(4):72-75.
    [179]韩凤麟.粉末冶金基础教程[M].广州:华南理工大学出版社,2006.
    [180]李晓贺,丰平.纳米复相陶瓷材料的烧结技术[J].中国陶瓷,2007,43(7):43-46.
    [181]陆佩文.无机材料学基础[M].武汉:武汉工业大学出版社,1996.
    [182]R. L. Coble. Sintering crystalline solids Ⅱ experimental test of diffusion models in powder compacts[J]. Journal of Applied Physics,1961,32(5):793-799.
    [183]赖和怡.烧结与扩散——在烧结过程中通过扩散机构的物质迁移[J].稀有金属合金加工,1978,6(2):1-22.
    [184]施剑林,林祖纕,杨芝洲.热压烧结Na-Beta-Al2O3 Ⅱ Na-Beta-Al2O3的热压致密化机理[J].硅酸盐学报,1987,15(6):241-247.
    [185]孙其诚,金峰,王光谦等.二维颗粒体系单轴压缩形成的力链结构[J].物理学报,2010,59(1):30-37.
    [186]郭领军,李贺军,张秀莲.模压压力对焦炭粉体堆积密度影响的试验研究[J].炭素技术,2003,125(2):1-4.
    [187]林广涌,雷廷权,周玉.陶瓷材料断裂韧性的评定方法[J].宇航材料工艺,1995,25(4):12-19.
    [188]A. G. Evans, E. A. Charles. Fracture toughness determination by indentation[J]. Journal of the American Ceramic Society,1976,59(7-8):371-372.
    [189]葛启录,周玉,雷廷权.Zr02-2mol %Y2O3陶瓷显微结构及性能的研究[J].硅酸盐学报,1990,18(1):47-53.
    [190]钟金豹.纳米氧化锆增韧氧化铝基陶瓷刀具及切削性能研究[D].济南:山东大学硕士 学位论文,2007.
    [191]孙兰,贾成厂,曹瑞军.纳米粉末烧结的研究现状与前景[J].粉末冶金技术,2006,24(2):146-150.
    [192]雷燕,熊帷皓.陶瓷材料纳米烧结研究进展[J].材料导报,2003,17(5):28-30.
    [193]王兴庆,贺小祥,郭海亮.Mo对TiC基金属陶瓷组织和性能的影响[J].粉末冶金材料科学与工程,2008,13(5):274-277.
    [194]Yoshimura H., Sugizawa T, et al. The reaction occurring during sintering and the characteristics of TiC-20 TiN-15 WC-10 TaC-9 Mo-5.5 Ni-11 Co cermet [J]. International Journal of Refractory & Hard Metals,1983,2(4):170-174.
    [195]D. I. Chun, D. Y. Kim, K. Y. Eun. Microstructural evolution during the sintering of TiC-Mo-Ni cermets [J]. Journal of the American Ceramic Society,1993,76(8):2049-2052.
    [196]仝建峰,陈大明,陈宇航.纳米SiC-Al2O3/TiC多相陶瓷复合材料显微结构的研究[J].硅酸盐学报,2001,29(5):427-430.
    [197]陈进化.位错与强化[M].沈阳:辽宁教育出版社,1991。
    [198]W. H. Tuan, R.Z. Chen, T.C. Wang, et al. Mechanical properties of Al2O3/ZrO2 composites[J]. Journal of the European Ceramic Society,2002,22(16):2827-2833.
    [199]P.G Rao, M. Iwasa. T. Tanaka, et al. Preparation and mechanical properties of Al2O3-15wt.% ZrO2 composites[J]. Scripta Materialia,2003,48(4):437-441.
    [200]宋慎泰,刘开琪.特种陶瓷与耐火材料[J].北京:冶金工业出版社,2004.
    [201]周泽华,丁培道,陈蓓等.相含量的变化对氧化锆陶瓷性能的影响[J].材料热处理字报,2002,23(1):43-45.
    [202]阚艳梅,靳喜海.复相陶瓷的内在增韧机制及其影响因素[J].陶瓷学报,1998,19(4):221-224.
    [203]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [204]朱哲明,汪元,周章涛等.脆性材料在压缩载荷作用下的断裂破坏准则.四川大学学报(工程科学版),2008,40(5):13-21.
    [205]黄传真,李久立,张树生等.新型A1203基陶瓷刀具材料颗粒弥散增韧与晶须增韧的协同作用[J].山东工业大学学报,1998,28(2):112-117.
    [206]张长瑞,郝元恺.陶瓷基复合材料[M].长沙:国防科技大学出版社,2001.
    [207]P. F. Becher. Microstructural design of toughened ceramics[J]. Journal of the American Ceramic Society,1991,74(2):255-269.
    [208]M. Ashby, S. Hallam. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica,1986,34(3):497-510.
    [209]M. Basista, D. Gross. The sliding crack model of brittle deformation:an internal variable approach[J]. International Journal of Solids and Structures,1998,35(5-6):487-509.
    [210]D. Fanella, D. Krajcinovic. A micromechanical model for concrete in compression[J]. Engineering Fracture Mechanics,1988,29(1):49-66.
    [211]G.. Ravichandran, G.. Subhash. A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and Structures,1995,32(17-18):2627-2646.
    [212]任会兰,宁建国.冲击压缩下准脆性材料含微裂纹损伤的本构模型[J].材料工程,2007,(3):18-21.
    [213]G. R. Johnson, W. H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[C]. Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands (1983):541-547.
    [214]张晓晴,姚小虎,杨桂通等.A 1203陶瓷材料高应变率下的动态力学性能[J].太原理工大学学报,2006,37(1):22-25.
    [215]Fredrich J T, Evens B. Effect of grain size on brittle and semibritlle strength:implication for micromechanics modelling of failure in compression[J]. Journal of Geophysical Research,1990,95:10907-10920.
    [216]任会兰,宁建国.陶瓷材料动态压缩损伤本构模型[J].固体力学学报,2006,27(3):303-305.
    [217]鲁世红,何宁.TC4钛合金动态本构模型与高速切削有限元模拟[J].兵器材料科学与工程,2008,32(1):5-9.
    [218]N.N. Zorev. Inter-relationship between shear processes occurring along tool face and on shear plane in metal cutting[C]. International Research in Production Engineering, ASME, 1963:42-49.
    [219]刘维民,艾兴,赵军等.A1203基陶瓷刀具车削300M超高强度钢的刀具寿命研究[J].制造技术与机床,2012,599(6):53-56.
    [220]张文辉.基于有限元法的铣刀切入过程研究及破损预测[D].上海:上海交通大学硕士学位论文,2011.
    [221]刘鸿文.材料力学[M].北京:高等教育出版社,2005.
    [222]包亦望,金宗哲,黎晓瑞.脆性材料弯曲强度尺寸效应及抗拉强度[J].武汉工业大学学报,1990,(3):25-29.
    [223]仇启源,庞思勤.现代金属切削技术[M].北京:机械工业出版社,1989.
    [224]陈章燕.研究切削过程的新方法[J].北京工业学院学报,1989,15(2):96-106.
    [225]洛拉得泽T.H.切削刀具的强度和耐磨性[M].艾兴等译.北京:机械工业出版社,1980.
    [226]吴承建.金属材料学[M].北京:冶金工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700