用户名: 密码: 验证码:
汽车排气歧管用耐热铸铁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车的排气系统中,汽车排气歧管通过法兰直接与发动机连接,将发动机各气缸排出的高温废气汇集到一起排出车外。汽车在行驶过程中,排气歧管内部温度一直处于800℃以上高温工作状态,而外部直接与自然环境相接触,温度保持在100℃-200℃左右;汽车在行驶中的停车和启动致使排气歧管的工作状态会经历短期内的降温、升温的交替变换过程。考虑到排气歧管复杂的工作环境,故对其使用材料特性要求很高。从结构上看,排气歧管的构成依赖于发动机的结构,而随着汽车工业的快速发展越来越复杂的发动机结构会带动排气歧管结构的连锁变化。随着发动机排放标准和其效率的不断提高,汽车用排气歧管材质主要经历了普通灰铸铁、高强度灰铸铁、普通球铁、蠕墨铸铁、普通不锈钢、网状钢、高硅钼球铁、高镍球墨铸铁、高合金的不锈钢的发展过程。而我国目前的汽车工业尚处于稳定发展阶段。十二五期间,吉林省将以一汽为中心,构建整车研发制造、零部件配套和服务体系,提升整车制造能力。特别是长春市300万辆和吉林市100万辆汽车扩能工程更是推进了吉林省汽车产业的快速发展。到2015年,全省将实现整车产能达到400万辆、汽车工业增加值达到2000亿元的宏伟目标。这种情况下,铸造技术便成了汽车排气歧管量产的主要制造手段,所选择的材料主要是铸铁或合金。而近些年来,一汽集团的汽车排气管材料一直采用德国汽车标准进行制作,考虑到自主品牌的必要性和企业经营成本的降低,提出汽车排气歧管材料国产化的目标。为实现这一目标,吉林大学与一汽铸造公司合作开发新型的高硅钼球墨铸铁和高镍球墨铸铁,以满足近期一汽集团新型汽车的使用要求。本文以所开发出的高硅钼球墨铸铁和高镍球墨铸铁为基础,系统研究了排气歧管材料所需抗氧化性、抗热疲劳性、力学性能、抗生长性以及抗电化学腐蚀性。探索其在实际生产以及预测分析其工作温度下的服役行为和失效预期,从而能更好的进行生产和应用。希望通过具体研究为一汽集团开发符合性能要求的新型汽车排气歧管新材料提供可靠的理论依据和实验参考。
     本文的主要研究工作和取得研究成果概述如下:
     1、所研究的高硅钼球墨铸铁和高镍球墨铸铁参照德国标准GGG-SiMo51和GGG-NiSiCr3552进行材料设计和熔炼,熔炼过程中采用75SiFe进行孕育处理,利用砂型铸造成“Y”形试样。通过采用OLYMPUS-PMG3光学显微镜、OLYMPUS LEXTOLS3000激光显微镜、D/max2500pc型超大功率X射线衍射仪、JSM-5310型扫描电子显微镜进行观察分析。在高硅钼球墨铸铁中,其组织主要由铁素体和球状石墨构成,大量硅融入到铁素体中,在晶界处偶尔存在一些呈骨骼状的钼的碳化物;在高镍球墨铸铁中,其组织主要由奥氏体、金属间化合物FeNi3和富锰、铬的碳化物构成,同时,Ni容易在晶界处偏析,形成Fe、Ni、Si等元素的化合物。由于碳当量的差异,相同的熔炼工艺下,高硅钼球墨铸铁的球化率高于高镍球墨铸铁,而高镍球墨铸铁的球状石墨的直径小于高硅钼球墨铸铁的。高镍球墨铸铁因饱和度大于4.4,熔炼时存在球化率衰退现象,而高硅钼球墨铸铁的饱和度小于4.4而不存在球化率衰退现象。
     2、在热疲劳测试过程中,通过金相检测合格的试样通过箱式电阻炉对其进行加热,加热温度范围从800℃到950℃,每50℃为一梯度进行温度选取,也就是上限温度(Tmax)。为保证试样的温度均匀,加热试样在实验温度下保温10分钟,利用自来水进行淬火,水温作为测试的下限温度(Tmin)。待试样冷却到内外温度一致时方可继续试验。热循环温度区间(ΔT)对热疲劳的影响实质就是上限温度的影响。记录各实验温度下的裂纹形成与扩展同热循环次数的关系及此过程中试样形状变化情况。在本项研究中定义尺寸超过0.5毫米的裂纹为主裂纹。热疲劳裂纹的长度随冷热循环次数的增加而变长。冷热循环温度差值越高,产生热疲劳裂纹所需的次数越少。主裂纹的形成依赖于显微裂纹,裂纹一般形成于晶界处或碳化物附近;裂纹的扩展受碳化物的粗化作用和氧化作用的影响较大。热疲劳裂纹不是一开始就出现的,而是要经过一定的次数积累。相同测试情况下,高硅钼球墨铸铁热疲劳裂纹出现时的热循环次数远小于高镍球墨铸铁的;在测试中发现,显微裂纹的数目经历由多到少的变化,符合裂纹屏蔽效应的特征。高硅钼球墨铸铁和高镍球墨铸铁在测试过程中都产生热变形,但同种测试条件下,高硅钼球墨铸铁的变形远大于高镍球墨铸铁。热疲劳寿命受材料性能、冷却速度、工作的温度梯度等因素影响。根据研究结果表明高镍球墨铸铁的热疲劳性远优于高硅钼球墨铸铁。所生产的高硅钼球墨铸铁和高镍球墨铸铁理想的最大工作温度分别为850℃和950℃。
     3、通过对一定时期的高温加热后测量氧化膜厚度和重量变化来评价高硅钼球墨铸铁和高镍球墨铸铁的抗氧化性。抗氧化性过程中,试样分别在箱式电阻炉中加热到800℃至1000℃。无论是高硅钼球墨铸铁还是高镍球墨铸铁的氧化皮厚度都随加热时间的延长而增厚,一定程度上其变化特征基本呈现抛物线规律。通过利用扫描电镜对测试试样的观察认为,前期因表层石墨的流失而使重量减少,后期因氧元素的侵入而使试样的重量增加。氧化膜的产生在一定程度上减缓了氧化速度,所以氧化初期的氧化速度小。通过研究发现高镍球墨铸铁的抗氧化性明显好于高硅钼球墨铸铁。
     4、在电化学综合测试系统环境下对高硅钼球墨铸铁和高镍球墨铸铁的电化学腐蚀行为进行简单的测试分析,通过测试与计算,高硅钼球墨铸铁和高镍球墨铸铁的腐蚀电位为-1.002V和-0.523V,腐蚀电流分别为2.73×10~(-4)A/cm~2和0.36×10~(-4)A/cm~2,并且,高硅钼球墨铸铁在阳极极化过程中存在明显的钝化区域。
     5、为使汽车排气歧管在工作过程中尺寸保持稳定,从而使其与发动机保持良好的密封状况,对高硅钼球墨铸铁和高镍球墨铸铁进行抗生长测试。该项测试通过热膨胀仪完成。结果表明,加热后的尺寸恢复到初始状态的能力随工作温度的升高而逐渐变差,但高硅钼球墨铸铁的尺寸增幅明显大于高镍球墨铸铁的增幅。
     通过对抗热疲劳性、高温抗氧化性、耐腐蚀性和抗生长性测试,并对测试结果分析比较,在所开发的汽车排气歧管材料中,高镍球墨铸铁优于高硅钼球墨铸铁。
Exhaust manifold is connected directly to the engine in the exhaust system. The hightemperature flue gases which are given off in the engine are fed and accomplished throughexhaust manifold. In the course of driving cars, the exhaust manifold has been working athigh temperature. And external automobile exhaust manifold directly contact with the naturalenvironment. At last, exhaust manifold internal temperature is up to several hundred degrees,especially, beyond one thousand degrees, but external temperature of the exhaust manifold isbetween100℃and200℃. So that, the exhaust manifold worked in the large temperaturedifference between inside and outside. The exhaust manifold usually works on alternativethermal cycle of quick-cooling and quick-heating during start-up or stop. Considering thecomplex working conditions, the exhaust manifold material requirement is very high. Theexhaust manifold shape depends on the engine's structure. With the rapid development ofautomobile industry, the structure of the engine becomes more and more complex. In result,the structure of exhaust manifold also changes. Manufacturing the exhaust manifoldbecomes more and more difficult. With attention focused on global environmental problems,reduced pollutant emissions and increased engine efficiency will increase the exhaust gastemperature. In developed countries of Europe and America, the exhaust manifold materialschanged from gray iron to high strength gray iron, to ductile cast iron, to compacted graphiteiron, to Stainless Steel, to high Si-Mo ductile cast iron, to ductile Ni-resist cast iron, to highalloy stainless steel. In contrast, the automobile industry development of our time is short.The exhaust manifold materials changed from gray iron to high strength gray iron, to ductilecast iron, to compacted graphite iron, to alloy cast iron, to Stainless Steel. China's autoindustry is still in a stage of stable development. In the12th Five Year Plan Period, Jilinprovince will take FAW as the center, and construct the system of vehicle R&D andmanufacturing and supporting parts and service. Especially, the project of three million carsin Changchun and one million cars in Jilin will help the rapid development of the automobileindustry of Jilin Province. According to the Jilin provincial government planning, to2015,the ambitious goal of four milion cars and2000million Yuan of automotive industrial addedvalue will be achieved. Considering the complex structure of automobile exhaust manifold,exhaust manifold selected materials are mainly iron because their main manufacturing arecast. For a long time, the automobile exhaust manifold material has been using the Germanautomotive standards. Sothat, automobile manufacturing cost is high in First Automotive Works (FAW). Considerating of China's reality, the target of exhaust manifold materialslocalization is set up by FAW. In order to achieve this goal, the Jilin University and R&DCenter of FAW Foundry Co., Ltd research new high Si-Mo ductile cast iron (DCI) andductile Ni-resist cast iron (DNCI) to meet the need of new car. The results of the paper arebased on the newly developed high Si-Mo DCI and DNCI. Oxidation resistance and thermalfatigue resistance and mechanical properties and corrosion resistance which the exhaustmanifold materials required were systematically researched. The actual production situationwas simulated. And Service behavior and failure time were presented and analyzed in orderto produce and applicate better exhaust manifold materials. To hope to reaearch the project,the reliable experimental references will be provided to develop new performancerequirements material for exhaust manifold of FAW automobile. The produced resultsprovide the therretical basis for the naxt work.
     The main conclusions and the results obtained are listed as following:
     1. To refer with GGG-SiMo51and GGG-NiSiCr3552, high Si-Mo ductile cast iron andductile Ni-resist cast iron which are researched in the study are designed and melted. Duringsmelting operation,75SiFe was used in spheroidizing operation. Finally, the melts werepoured into Y-shaped sand molds. Analysis and measuring instruments of OLYMPUS-PMG3light optical microscopy (LOM) and OLYPUS LEXT OLS3000laser microscope andJSM-5310scanning electron microscopy (SEM) and D/max2500pc X-ray diffractometerand energy dispersive spectroscopy (EDS) were used to observe and analys test samples. Inhigh Si-Mo ductile cast iron, its organization is made of ferrite and spheroidal graphite. A lotof Si was integrated into the ferrite. There are some bone shaped carbides on grain boundary.In ductile Ni-resist cast iron, its organization is mainly made of austenite and intermetalliccompound FeNi3and carbide of Mn and Cr. At this time, Ni can produce segregation ongrain boundary. And compound of Fe and Ni and Si can be produced. Under the samemelting process, nodularity of high Si-Mo DCI is higher than that of DNCI. And sphericalgraphite diameter of DNCI is less than that of high Si-Mo DCI.
     2. During the thermal fatigue test, after metallographic analysis, the acceptable sampleswere put into a high temperature electric resistance furnaces and heated temperatures weredecided from700℃to1000℃on base of material, respectively. After holding time forabout10min, the heated samples were quenched with tap-water. The samples were put intothe furnace again after cool-down terminate. The cycle was done again. A low temperature(Tmin) is the tap-water temperature. The water temperature is always kept constant. It is about 20℃. So, the effect of test temperature gradient (ΔT) on fatigue is essentially superior limittemperature(Tmax). ΔT is equal that Tmax subtract Tmin. In fact, changing test temperaturegradient is changing the maximum temperature. Number of the thermal cycles was recorded.In this study, it was defined that a crack whichever is longer than0.5mm as one crack, andthat the total length of the longest crack as the length of crack. During thermal cycles, moredistortions and more cracks and oxidations were created. With the maximum cycletemperature and the cycle number increased, the distortions would be bigger and bigger, andthe main crack length became longer and longer, and oxidation degree became more andmore massive. At the same messuring conditions, the distortions of ductile Ni-resist cast ironare less than that of high Si-Mo DCI. And with cycle number increased, and manymicro-cracks expanded into the main crack. The cracks were always found at the biggersurface, and appeared cross shaped budding in the end. Micro-cracks could not occurrenceimmediately when the thermal cycle initiated. Initiations of micro-cracks need some energyaccumulations. At the same conditions, the cycle number of ductile Ni-resist cast iron ishigher than that of high Si-Mo DCI. And the thermal cracks were zig-zag-shaped across thesample's surface. During thermal cycles, the number of micro-crack varied from multi tolittle. The thermal fatigue life is governed by many material properties and cooling velocityand the working temperature gradient. Based on these results, it is thought that thermalfatigue resistance of DNCI is better than that of high Si-Mo DCI. The maximum reasonableworking temperature of high Si-Mo DCI and DNCI is840℃and950℃, respectively.
     3. To evaluate oxidation resistance properties during high temperature service, somesheet specimens of high Si-Mo DCI and DNCI were aged at between800°C and1000°C forthe maximum of80h in a high temperature electric resistance furnace. The oxide thicknessof both high Si-Mo DCI and DNCI vary larger and larger with the development of time. Thethickness of oxide layer of high Si-Mo DCI is much thicker than that of DNCI during thesame heating time. The oxide consists of Fe2O3at the gas/oxide interface, then Fe3O4andfinally FeO. The porous iron oxide allows fast diffusion of oxygen and thus internaloxidation of the alloy. Protective silica may form or transform into Fe2SiO4in presence ofFeO or Fe3O4. In the cases, protective nickelous oxides can protect DNCI from the oxidedeeper into the material. The relations of between the oxide added weight and heat time atdifferent temperature are obstained. The oxidation process of the two materials was up toparabolic curve law. It has been found that DNCI has an excellent property of the oxidationresistance.
     4. To evaluate the corrosion resistance of high Si-Mo DCI and DNCI, the electro-chemical test is operated. By testing and analyzing, the corrosion potential of high Si-MoDCI and DNCI is-1.002V and-0.523V. And their corrosion current is2.73×10~(-4)A/cm~2and0.36×10~(-4)A/cm~2. There is a transpassive region during anodic polarization.
     5. In order to keep exhaust manifold size from varying in operation, because it is relateto the seal condition of engine, it is important to measure growth resistance. To use thermalexpansion instrument, it is found that the size of both high Si-Mo DCI and DNCI can changeafter working at high temperature. The size growth of DNCI is less than that of high Si-MoDCI.
引文
[1].荣惠康.中国汽车产业发展对钢铁产品质量的需求.中国冶金[J].2005,3:41-42.
    [2].杨云龙,曹占义,崔雷,等.汽车发动机排气歧管用耐热铸造合金的研究与发展[J].汽车工艺与材料,2009,5:1-5.
    [3].崔磊.高硅钼球铁和高镍球铁排气管的组织和性能[D].长春:吉林大学材料科学与工程学院,2009.
    [4].黄风.汽车用不锈钢、耐热钢的现状和未来[J].国外汽车,1990,2:55-57.
    [5].张文茹,杨成义,谢建国.汽车排气系统用铁素体不锈钢的发展[J].机械管理开发,1999,11:46-48.
    [6]. Yusuf ay, Adem i ek, Fuat Kara, et al. Prediction of engine performance for analternative fuel using artificial neural network [J]. Applied Thermal Engineering,2012(37):217-225.
    [7].毕洪运,潘国强,李鑫.宝钢汽车排气系统用铁素体不锈钢产品开发[J].宝钢技术,2011,2:6-11.
    [8].李青.汽车排气系统的材料的现状与发展[J].汽车工艺与材料,1997,11:5-8.
    [9].郭全领,赵新武.发动机排气歧管用铸铁材料工作温度[J].现代铸铁,2011,2(S2):82-85.
    [10].李青.汽车排气系统的材料的研究[J].世界汽车,1997,11:8-11.
    [11].张宏波,李岐,马建军,等.汽车排气系统材料应用的验证方法研究[J].内燃机工程,2011,10(32):64-67.
    [12].崔晓鹏,刘海峰,王成刚,等.汽车用排气歧管材料的应用现状及发展方向[J].铸造,2008,10(57):1001-1004.
    [13]. Lei Shi, Shaoming Wang, Kangyao Deng, et al. Variable geometry exhaust manifoldturbocharging system for an8-cylinder marine diesel engine [J]. Journal of MarineScience and Technology,2012,6(17):252-259.
    [14]. M. Sekav nik, T. Ogorevc, T. Katra nik, et al. Three-dimensional approach to exhaustgas energy analysis [J]. Heat Mass Transfer,2012,6(48):923-931.
    [15]. R.J.Yang, S.C.Poe. Shape optimal design of an engine exhaust manifold [J].Structural optimization,1993,4(5):233-239.
    [16]. K.H.Park, B.L.Choi, K.W.Lee, et al. Modeling and design of exhaust manifold underthermomechanical loading [J]. Journal of Automobile Engineering,2006,12(220):1755-1764.
    [17].夏兰廷,李晓琴,韦华,等.汽车发动机排气岐管的优良材质—高硅钼球墨铸铁[J].太原重型机械学院学报,2000,12(21):279-280.
    [18].王贻青,吕一力.灰铸铁组织中的初生奥氏体对机械性能的影响[J].铸造技术,1985,5:43-47.
    [19].支德瑜.铸铁在重要汽车零件上的应用实例以及与其他材质的比较[J].现代铸铁,2002,2:1-8.
    [20].洪首宗,盛志云,何玉洁,等.新型低合金耐蚀铸铁的研究及生产应用[J].铸造技术,1989,1:3-6.
    [21].薛留虎,田新社,袁东洲,等.高炉与中频炉双联短流程工艺生产机床灰铸铁件[J].铸造设备与工艺,2012,5:30-35.
    [22].李传栻.排气歧管材料更新换代的概况[J].现代铸铁,2011,2(S2):2-27.
    [23]. J.P.Singh, K.Niihara, D.P.H.Hasselman. Analysis of thermal fatigue behaviour ofbrittle structural materials [J]. Journal of materials science,1981,10(16):2789-2797.
    [24]. N.M. Rendtorff, L.B. Garrido, E.F. Aglietti. Thermal shock resistance and fatigue ofZircon–Mullite composite materials [J]. Ceramics International,2011,4(37):1427–1434.
    [25].司乃潮,张亮,孙少纯,等.高强度灰铸铁汽车发动机缸体铸件的研制与应用[J].铸造,2005,5(54):501-505.
    [26].侯起飞,刘胜新,孙玉福,等.高强度灰铸铁生产技术新进展[J].现代铸铁,2010,1:49-53.
    [27].宗俊峰,果吉,柳葆恺,等.汽车发动机高强度灰铸铁铸件的研究[J].铸造,1993,3:17-21.
    [28].张宝庆.国内外高强度灰铸铁发展概况综述[J].现代铸铁,1985,2:11-14.
    [29].苏华钦,徐洪庆,郭新立.我国灰铸铁研究和生产的最新进展[J].江苏冶金,1989,6:2-7.
    [30].郝远魏,邦全,李子全,等.用RE-Sb合金制取高碳当量高强度灰铸铁[J].汽车工艺与材料,1994,11:17-20.
    [31].李伟,刘柯军,张义和,等.发动机排气歧管断裂分析[J].汽车工艺与材料,2006,6:26-26.
    [32].房贵如,王云昭.现代球墨铸铁的诞生、应用及技术发展趋势[J].现代铸铁,2000,1(77):3-10.
    [33].齐洋.高镍球铁耐热性能与排气歧管数值模拟研究[D].长春:吉林大学材料科学与工程学院,2010.
    [34]. H. Q. Xue, E. Bayraktar, C. Bathias. Damage mechanism of a nodular cast iron underthe very high cycle fatigue regime [J]. Journal of materials processing technology,2008(202):216-223.
    [35].谭银元.薄壁高强韧铸态球墨铸铁排气管的研制[J].机械工程材料,2003,10(27):31-33.
    [36].古可成,刘红.国内耐热铸铁的进展[J].铸造,1998,3:49-52.
    [37]. R. Vijayaraghavan, F. J. Bradley. A MICRO-MODEL FOR EUTECTOID PHASETRANSFORMATIONS IN AS-CAST DUCTILE IRON [J]. Scripta Materialia,1999(41):1247–1253.
    [38]. L.C. Chang. Carbon content of austenite in austempered ductile iron [J]. ScriptaMaterialia.1998(39):35–38.
    [39]. Ductile iron society. DUCTILE IRON DATA FOR DESIGN ENGINEERS [M/OL].http://www.ductile.org/didata/Section5/5intro.htm.
    [40].李晓琴,焦正音,夏兰廷.高硅钼球铁—美国汽车发动机排气歧管的首选材料[J].山西机械,2000,9(108):44-46.
    [41].张逸,凌振国.钼系耐热球墨铸铁材料应用[J].机械工程材料,2006,4(30):83-85.
    [42]. Lena Magnusson Aberg, Cathrine Hartung. Solidification of SiMo Nodular Cast Ironfor High Temperature Applications [J]. Trans Indian Inst Met,2012(12):633-636.
    [43]. Kyutae Han, Sanghoon Kim, Seunggab Hong, et al. Liquation behavior in the weldHAZ of high Si nodular iron [J]. Metals and Materials International,2012(2):371-377.
    [44]. V. Di Cocco, F. Iacoviello, M. Cavallini. Damaging micromechanismscharacterization of a ferritic ductile cast iron [J]. Engineering Fracture Mechanics,2010(77):2016-2023.
    [45].徐掌印,姜银举,张庆生,等.几种球铁热疲劳性能的研究[J].热加工工艺.2007,9(36):33-37.
    [46].张逸,凌振国.高硅钼球墨铸铁在内燃机排气系统中的设计应用[J].大型铸锻件,2005,2(108):49-52.
    [47]. T.N. Chakherlou, Y.V. Mahdinia, A. Akbari. Influence of lustrous carbon defects onthe fatigue life of ductile iron castings using lost foam process [J]. Materials andDesign,2011(32):162–169.
    [48].安柏令,袁献文. RTSi-5.5耐热铸铁脆裂分析及其解决途径[J].铸造,1985,1:39-43.
    [49].袁征峰.康明斯6BT排气歧管铸件的生产技术[J].铸造技术,2001,4:22-24.
    [50]. Jin Yongxi. Material and technique of Si-Mo heat-resistant vermicular iron exhaustmanifold [J]. CHINA FOUNDRY,2006,3:175-183.
    [51].霍柏震. RTCr2低铬耐热铸铁的熔炼工艺[J].现代铸造,2007,2:38-39.
    [52].黄重伯,公志光,耿学庆,等. RQTAl4Si4耐热铸铁熔铸工艺研究[J].中国铸机,1994,5:35-37.
    [53].王贵玲,华志敏.耐热球铁排气管的铸造新工艺[J].中国铸造装备与技术,2001,1:38.
    [54]. Glen weber. High-Si-Mo Ductile Iron: Views from Users and Pr oducers [J]. Moderncasting,1998(3):48-51.
    [55]. Havva Kazdal Zeytin, Ceylan Kubilay, Huseyin Aydin, et al. Effect of Microstructureon Exhaust Manifold Cracks Produced From SiMo Ductile Iron [J]. Journal of ironand steel research, international,2009,3(16):32-36.
    [56].姜守本,郑黎明,丁立英,等. Si-Mo耐热铸铁热疲劳性能的研究[J].热加工工艺,1991,4:100-107.
    [57]. A. Ghahremaninezhad, K. Ravi-Chandar. Deformation and failure in nodular cast iron[J]. Acta Materialia,2012,5(60):2359-2368.
    [58]. J. Lacaze, P. Larranaga, I. Asenjo, et al. Influence of1wt%addition of Ni onstructural and mechanical properties of ferritic ductile irons [J]. Materials science andtechnology,2012,5(28):603-608.
    [59]. Cheng-Hsun Hsu, Ming-Li Chen. Corrosion behavior of nickel alloyed andaustempered ductile irons in3.5%sodium chloride [J]. Corrosion Science,2010,9(52):2945-2949.
    [60]. Olivera Eric, Dragan Rajnovic, Slavica Zec, Eet al. Microstructure and fracture ofalloyed austempered ductile iron [J]. Materials characterization,2006,4-5(57):211-217.
    [61]. A. Basso, R. Martinez, J. Sikora. Influence of chemical composition and holding timeon austenite (γ)→ferric(α) transformation in ductile iron occurring within theintercritical interval [J]. Journal of alloys and compounds,2011,41(509):9884-9889.
    [62]. D. Mandal, M. Ghosh, J. Pal, et al. Effect of austempering treatment onmicrostructure and mechanical properties of high-Si steel [J]. Journal of MaterialsScience,2009,4(44):1069-1075.
    [63]. M. J. Perez, M. M. Cisneros, H. F. Lopez. Wear resistance of Cu-Ni-Mo austemperedductile iron [J]. Wear,2006,7-8(260):879-885.
    [64]. O. Eric, L. Sidjanin, Z. Miskovic, et al. Microstructure and toughness of CuNiMoaustempered ductile iron [J]. Materials Letters,2004,22-23(58):2707-2711.
    [65]. J. Yang, T. S. Wang, B. Zhang, et al. Microstructure and mechanical properties ofhigh-carbon Si-Al-rich steel by low-temperature austempering [J]. Materials anddesign,2012,3(35):170-174.
    [66]. H. R. Erfanian-naziftoosi, N. Haghdadi, A. R. Kiani-rashid. The effect of isothermalheat treatment time on the microstructure and properties of2.11%Al austemperedductile iron [J]. Journal of materials engineer and performance,2012,8(21):1785-1792.
    [67].朱同列.回火奥氏体球墨铸铁的研究[J].船艇,1992,7:24-26.
    [68]. L. C. Chang. Carbon content of austenite in austempered ductile iron [J]. Scriptamaterialia,1998,1(39):35-38.
    [69]. Chen-hsun Hsu, Kuan-Ting Lin. A study on microstructure and toughness of copperalloyed and austempered ductile irons [J]. Materials science and engineering,2011,18(528):5706-5712.
    [70]. C.哈通, O.克努斯卡特, K.瓦尔典内尔.球墨铸铁件的碎块状石墨问题[J].现代铸铁,2009,2:43-48.
    [71].吴明海,杨士浩.石墨形态对耐热铸铁抗氧化性影响的研究[J].铸造,1992,5:6-10.
    [72]. R. Vijayaraghavan, F. J. Bradley. A micro-model for eutectoid phase transformationsin as-cast ductile iron [J]. Pergamon,1999,11(41):1247-1253.
    [73]. A. D. Sosa, O. J. Moncada, J. Sikora. Influence of nodule count, austenitisingvariables and matrix on ductile iron decarburization [J]. International journal of castmetals research,2010,6(23):321-329.
    [74].耿学芳,朱旅洲,王民毅.镁团块低硅球化剂在球铁生产中的应用[J].现代铸铁,2004,2:38-40.
    [75].陈平昌,熊国庆,黄志光,等.石墨和碳化物形态对高镍奥氏体球墨铸铁抗热冲击性能的影响[J].华中理工大学学报,1989,1(17):71-75.
    [76].王迎战,马云昭,赵新武,等.耐热球铁排气歧管用球化剂的配制[J].现代铸铁,2011,2(S2):60-64.
    [77].金永锡,范仲嘉.高镍奥氏体球墨铸铁涡轮增压器壳体材质及工艺研究[J].铸造,2005,5(54):494-500.
    [78]. Roxana maria ghergu, jon sertucha, yannick thebault,et al. Critical temperature rangein standard and Ni-bearing spheroidal graphite cast irons [J]. ISIJ international,2012,11(52):2036-2041.
    [79]. The iron and steel institute of Japan. Production and technology of iron and steel injapan during2010[J]. ISIJ international,2011,6(51):857-869.
    [80].赵新武,张居卿.高Ni奥氏体球墨铸铁的生产[J].现代铸铁增刊,2011,2(S2):28-35.
    [81].张承甫,熊国庆,陈平昌.高镍奥氏体球墨铸铁性能的研究[J].华中工学院学报,1985,2(13):71-78.
    [82].陈平昌,黄志光,肖理明.高镍奥氏体球墨铸铁高温性能研究[J].华中理工大学学报,1995,1(23):104-108.
    [83].湘东化工机械厂设计科.奥氏体球墨铸铁的铸造与热处理问题[J].现代铸铁,1984,3:34-36.
    [84].郑平. Ni20Cr2奥氏体球墨铸铁件[J].现代铸铁,1987,4:37-39.
    [85].黄志光,肖理明,陈平昌,等.在950℃工作的Ni25奥氏体球墨铸铁高温性能的改善[J].现代铸铁,1992,1:3-6.
    [86].陈平昌,熊庆国,黄志光,等. Ni20奥氏体球墨铸铁抗热冲击性能研究[J].铸造,1988,7:12-15.
    [87]. Y. A. Alzafin, A. H. I. Mourad, M. Abou Zour, O. A. Abuzeid. A study on the failureof pump casings made of ductile Ni-resist cast irons used in desalination plant [J].Engineering Failure Analysis,2007,7(14):1294-1300.
    [88].赵新武,赵希勇,田书涛,等.均衡凝固技术在高镍球铁(D5B)排气管上的应用[J].铸造技术,2008,10:1421-1423.
    [89].赵新武.高镍D5B奥氏体球铁排气管的生产工艺[J].铸造技术,2008,11:1456-1460.
    [90].王成刚,刘文辉,孙树臣,等.高镍球铁汽车发动机排气管的研究与开发[J].汽车工艺与材料,2009,5:4-8.
    [91]. J. HAbbound, K. Y. Benyounis, A. G. Olabi, et al. Laser surface treatments ofiron-based substrates for automotive application [J]. Materials processing technology,2007,1-3(182):427-431.
    [92].王成刚,刘文辉,马顺龙.高Ni球铁汽车排气管的研制[J].现代铸铁增刊,2011,2:36-40.
    [93]. S.Vasudevan, B. E.(Hons) M. E.锰对奥氏体球墨铸铁的影响[J].铸造,1987,11:39-42.
    [94].黄芬芬,朱定一,宋卫涛,等. Mn含量对高强韧TWIP球墨铸铁组织和性能的影响[J].铸造,2011,9(60):831-835.
    [95]. Nikhil Gupa, Nguyen Q. Nguyen, Pradeep K. Rohatgi. Analysis of active coolingthrough nickel coated carbon fibers in the solidification processing of aluminummatrix composites [J]. Composites part B: Engineering,2011,4(42):916-925.
    [96]. D. W. Zeng, C. S. Xie, K. C. Yung. Investigation of laser surface alloying of copperon high nickel austenitic ductile iron [J]. Materials science and engineering A,2002,1-2(333):223-331.
    [97].万仁芳.从汽车行业的发展看蠕墨铸铁的应用前景[J].现代铸铁,1999,4:5-9.
    [98].张伯明.蠕墨铸铁的最新发展[J].铸造,2004,5(53):341-344.
    [99].盛达.国内外研究与生产蠕墨铸铁的现状及其发展前景[J].现代铸铁,1991,3:21-28.
    [100].楼恩贤,周世康,陈勉己,等.蠕墨铸铁排气管及其在流水线上稳定生产研究[J].北京农业机械化学院学报,1983,1:69-87.
    [101].李炳华,杜欣.蠕墨铸铁在柴油机部件上的应用[J].国外机车车辆工艺,2001,3:1-7.
    [102].蠕铁课题组.稀土镁钛蠕墨铸铁的性能[J].铸造,1986,9:7-14.
    [103].万仁芳,彭元亨,陈勉己.蠕铁排气管的研究与大量生产[J].汽车科技,1994,6(123):1-7.
    [104].裴炎奎.蠕墨铸铁在汽车排气管上的应用[J].机械工人(热加工),2000,3:6-7.
    [105].李秀真,于化顺,刘太强,等.中硅耐热蠕墨铸铁的研究及应用[J].铸造,1997,2:18-20.
    [106].吴海明,杨士浩.中硅耐热蠕墨铸铁性能的研究[J].铸造技术,1990,1:18-21.
    [107].金永锡.中硅钼耐热蠕墨铸铁排气歧管材质和工艺探讨[J].现代铸铁,2006,1:32-38.
    [108].黄风,文雨.汽车用不锈钢、耐热钢的现状和未来[J].国外汽车,1990,2:55-59.
    [109].张新宝.汽车排气系统用的铁素体不锈钢[J].上海钢研,2005,4:46-50.
    [110].颜海涛,毕洪运,李鑫,等.汽车排气系统用铁素体不锈钢的抗高温氧化性能[J].上海金属,2008,5(30):8-11.
    [111].石永泉,李健医,熊远梅.汽车排气管用不锈钢及发展趋势,第五届河南省汽车工程科技学术研讨会论文集[C].郑州:2008年.
    [112]. Susil K.Putatunda, Arjun V.Singar, Ronald Tackett, et al. Development of a highstrength high toughness ausferritic steel [J]. Materials science and engineering A,2009,7(513-514):329-339.
    [113]. Susil K. Putatunda. Influence of austempering temperature on microstructure andfracture toughness of a high-carbon, high-silicon and high-manganese cast steel [J].Materials and design,2003,6(24):435-443.
    [114]. Xiang Chen, Yanxiang Li. Fracture toughness improvement of austempered highsilicon steel by titanium, vanadium and rare earth elements modification [J].Materials science and engineering A,2007,1-2(444):298-305.
    [115].张新宝.汽车排气系统用铁素体不锈钢[J].上海钢研,2005,4:46-50.
    [116]. Nobuhiro Fujita, Keiichi Ohmura, Akio Yamamoto. Changes of microstructures andhigh temperature properties during high temperature service of Niobium addedferritic stainless steels [J]. Materials Science and Engineering A,2003,1-2(351):272-281.
    [117]. Changjing Fu, Kening Sun, Xinbing Chen, et al. Effects of the nickel-coated ferriticstainless steel for solid oxide fuel cells interconnects [J]. Corrosion Science,2008,7(50):1926-1931.
    [118]. N. El-Bagoury, M. Waly, A. Nofal. Effect of various heat treatment conditions onmicrostructure of cast polycrystalline IN738LC alloy [J]. Materials Science andEngineering A,2008,1-2(487):152-161.
    [119].刘尚潭,纪仁峰,胡弘剑.提高汽车排气管用不锈钢综合性能的实验研究[J].特钢技术,2008,2(14):13-14.
    [120]. C. San Marchi, B.P. Somerday, J. Zelinski, et al. Mechanical properties of superduplex stainless steel2507after gas phase thermal precharging with hydrogen [J].Metallurgical and Materials Transactions A,2007,11(38):2763-2775.
    [121]. Luiz Henrique de Almeida, André Freitas Ribeiro, Iain Le May. Microstructuralcharacterization of modified25Cr–35Ni centrifugally cast steel furnace tubes [J].Materials Characterization,2003,3(49):219-229.
    [122]. D. J. Carmo, J. F. Dias, D. B. Santos. High cycle rotating bending fatigue property inhigh strength casting steel with carbide free bainite [J]. Materials science andtechnology,2012,8(28):991-993.
    [123].张文茹,杨成义,谢建国.汽车排气系统用铁素体不锈钢的发展[J].机械管理开发,1999,11(56):46-48.
    [124]. Cem Akca, Nihat G Kinikoglu. Effect of the atomic radius of alloying elements onformation of strain martensite in bainitic ductile iron [J]. Metal science and heattreatment,2010,9-10(52):420-424.
    [125]. A. Fernández-Vicente, M. Pellizzari, J.L. Arias. Feasibility of laser surface treatmentof pearlitic and bainitic ductile irons for hot rolls [J]. Journal of materials processingtechnology,2012,5(212):989-1002.
    [126]. F. Y. Hung, L. H. Chen, T. S. Lui. A study on erosion of upper bainitic ADI and PDI[J]. Wear,2006,9-10(260):1003-1012.
    [127]. H. R. Abedi, A. Fareghi, H. Saghafian, et al. Sliding wear behavior of aferritic-pearlitic ductile cast iron with different nodule count [J]. Wear,2010,3-4(268):622-628.
    [128]. Frances Wang, Derek O. Northwood. The effect of carbon content on themicrostructure of an experimental heat-resistant steel [J]. Materials characterization,1993,1(31):3-10.
    [129].申泽骥,唐骥,苏贵桥.高镍奥氏体铸铁的生产工艺特征[J].铸造技术,2003,2:91-93.
    [130]. Qin Hua, Yuhui Zhang, Yongshen Yan. On-line prediction of carbon equivalent onhigh-nickel austenitic ductile iron [J]. Materials Science and Engineering A,2005,1-2(393):310-314.
    [131]. Andrei Constantinescu, Eric Charkaluk, Guy Lederer, et al. A computational approachto thermomechanical fatigue [J]. International Journal of Fatigue,2004,8(26):805-818.
    [132]. D. Mandal. M. Ghosh. J. Pal. P. K. De, S. Ghosh Chowdhury. S. K. Das. G. Das,Sukomal Ghosh. Effect of austempering treatment on microstructure and mechanicalproperties of high-Si steel [J]. Journal of Materials Science,2009,4(44):1069-1075.
    [133].傅恒志.钼、铌对镍铬基铸造耐热合金组织及性能的影响[J].金属学报,1965,2(8):212-220.
    [134]. Pablo Rodriguez CALVILLO, Tanya ROS-YANEZ, Daniel RUIZ, et al. StrainingBehaviour of High Si-alloys Determined by Hot Torsion Tests [J]. ISIJ International,2006,11(46):1685-1692.
    [135]. J. Sertucha, J. Lacaze, J. Serrallach, et al. Effect of alloying on mechanical propertiesof as cast ferritic nodular cast irons [J]. Materials Science and Technology,2012,2(28):184-191.
    [136].黄笑梅. Si、Mo对铁素体球铁耐热性的影响[J].汽车工艺与材料,2002,12:26-28.
    [137]. Houan Zhang, Siwen Tang, Jianhui Yan, et al. Fabrication and wear characteristics ofMoSi2matrix composites reinforced by by La2O3and Mo5Si3[J]. InternationalJournal of Refractory Metals and Hard Materials,2008(26):115-119.
    [138].张朝生.添加Mo型高耐热性和高加工性汽车排气歧管用不锈钢的开发[J].焊管,2003,3(26):57-60.
    [139]. V. Di Cocco, F. Iacoviello, M. Cavallini. Damaging micromechanismscharacterization of a ferritic ductile cast iron [J]. Engineering fracture mechanics,2010,11(77):2016-2023.
    [140]. Q. Z. Chen, C. W. Thomas, D. M. Knowles. Charaterisation of20Cr32Ni1Nb alloysin as-cast and ex-service conditions by SEM, TEM and EDX [J]. Materials Scienceand Engineering A,2004,1-2(374):398-408.
    [141].李秀真,赵升旭,陈保华,等.铬系铁素体耐热钢的脆性[J].铸造,1994,8:27-30.
    [142]. Hua-Nan Liu, Mikio Nomura, Keisaku Ogi, et al. Abrasion resistance of high Cr castirons at an elevated temperature [J]. Wear,2001,1-2(250):71-75.
    [143]. Sergio Haro, Rafael Colás, Abraham Velasco, et al. Study of weldability of a Cr–Simodified heat-resisting alloy [J]. Materials Chemistry and Physics,2002,3(77):831-835.
    [144]. Y. Yamamoto, M. L. Santella, C. T. Liu, et al. Evaluation of Mn substitution for Ni inalumina-forming austenitic [J]. Materials Science and Engineering A,2009,1-2(524):176-185.
    [145].韩增祥.金属热疲劳试验方法的探索[J].理化检验-物理分册,2008,5:250-255.
    [146].韩增祥.金属热疲劳a2N曲线测定方法的研究[J].材料工程,2007,11:45-49.
    [147].姜守本,郑黎明,黄龙,等. Si-Mo、Cr-Mo耐热铸铁导热性能的研究[J].热加工工艺,1991,6:17-19.
    [148]. D. Li, R. Perrin, G. Burger, D. McFarlan, B. Black, R. Logan, et, al. SolidificationBehavior, Microstructure, Mechanical Properties, Hot Oxidation and Thermal FatigueResistance of High Silicon SiMo Nodular Cast Irons. Available from:http://www.joinville.udesc.br/portal/professores/guesser/materiais/SiMo1.pdf
    [149]. G. Nicoletto, L. Collini, R. Konecna, et al. Analysis of Nodular Cast IronMicrostructures for Micromechanical Model Development [J]. Strain,2006,2(42):89-96.
    [150]. F. Tholence, M. Norell. High temperature corrosion of cast irons and cast steels in dryair [J]. Materials Science Forum,2001(369-372):197-204.
    [151]. Hongliang Zheng, Yucheng SUN, Ning zhang, et al. An evaluation model for thenodule count of graphite particles in ductile iron castings [J]. ISIJ international,2010,12(50):1981-1984.
    [152]. Nabil Fatahalla, Aly AbuElEzz, Moenes Semeida. C, Si and Ni as alloying elementsto vary carbon equivalent of austenitic ductile cast iron: Microstructure andmechanical properties [J]. Materials Science and Engineering A,2009,1-2(504):81-89.
    [153]. P. Bose, S. Bid, S. K. Pradhan, et al. X-ray characterization of nanocrystallin Ni3Fe[J]. Journal of alloys and compounds,2002,1-2(343):192-198.
    [154]. F. Tholence, M. Norell. High Temperature Corrosion of Cast Alloys in ExhaustEnvironments I-Ductile Cast Irons [J]. Oxidation of Metals,2008,1-2(69):13-36.
    [155]. Luiz Henrique de Almeida, Andre Freitas Ribeiro, Iain Le May. Microstructuralcharacterization of modified25Cr–35Ni centrifugally cast steel furnace tubes [J].Materials Characterization,2003,3(49):219-229.
    [156].程武超,赵新武,党波涛,等.高镍奥氏体球墨铸铁饱和度和碳当量的验证[J].铸造技术,2009,9(30):1097-1101.
    [157]. L. Collini, A. Pirondi, R. Bianchi, et al. Influence of casting defects on fatigue crackinitiation and fatigue limit of ductile cast iron [J]. Procedia Engineering,2011(10):2898-2903.
    [158]. Dhouha Melloulia, Nader Haddar, Alain K ster, et al. Thermal fatigue of cast ironsfor automotive application [J]. Materials and Design,2011,3(32):1508-1514.
    [159]. Xin Tong, Hong Zhou, Zhi-hui Zhang, et al. Effects of surface shape on thermalfatigue resistance of biomimetic non-smooth cast iron [J]. Materials Science andEngineering A,2007,1–2(467):97–103.
    [160]. M. Sch bel, J. Jonke, H. P. Degischer, et al. Thermal fatigue damage in monofilamentreinforced copper for heat sink applications in divertor elements [J]. Journal ofNuclear Materials,2011,3(409):225-234.
    [161].杨正山.国外硅钼(4Si-Mo)耐热球铁排气歧管的研究与发展[J].铸造工程.造型材料,1999,1:32-35.
    [162]. Y.A. Alzafin, A.-H. I. Mourad, M. Abou Zour, et al. Stress corrosion cracking ofNi-resist ductile iron used in manufacturing brine circulating pumps of desalinationplants [J]. Engineering Failure Analysis,2009,3(16):733-739.
    [163].廉贞松,杨云龙,曹占义,等.汽车排气歧管用球墨铸铁的热疲劳性研究[J].铸造技术,2011,11:1517-1519.
    [164].闫明,孙志礼,杨强,等.两平行热疲劳裂纹的屏蔽效应[J].失效分析与预防,2008,1(3):19-23.
    [165].闫明,王世杰,孙淑霞,等.热疲劳裂纹网的屏蔽规律及主裂纹应力强度因子的计算方法[J].机械工程学报,2009,12:284-288.
    [166]. W.S. Dai, M. Ma, J.H. Chen. The thermal fatigue behavior and crackingcharacteristics of hot-rolling material [J]. Materials Science and Engineering A,2007,1-2(448):25–32.
    [167]. Chang Li-min, Liu Jian-hua. Effect of Hot Deformation on Formation and Growth ofThermal Fatigue Crack in Chromium Wear Resistant Cast Iron [J]. Journal of Ironand Steel Research, International,2006,1(13):36-39.
    [168]. Xin Tong, Hong Zhou, Wei Zhang. Thermal fatigue behavior of gray cast iron withstriated biomimetic non-smooth surface [J]. Journal of Materials ProcessingTechnology,2008(206):473-480.
    [169]. M. FRANCOIS, L. REMY. Metall. Influence of Microstructure on the ThermalFatigue Behavior of a Cast Cobalt-Base Superalloy [J]. Metallurgical Transactions A,1990,3(21):949-957.
    [170]. Yang Yun-long, Cao Zhan-yi, Lian Zhen-song, etal. Thermal fatigue behavior andcracking characteristics of high Si-Mo nodular cast iron for exhaust manifolds [J].Journal of iron and steel research, international,2013,6(20):52-57.
    [171]. Corr. Member Ac. Sci. USSR L. A. ODING, Eng. YU. V. KOSTOCHKIN.Deformation and failure in thermal fatigue [J]. Metallovedenie I Term,OBRABOTKA,1960,4:26-29.
    [172]. E. Hug, C. Keller, J. Favergeon, et al. Application of the monkman-grant law to thecreep fracture of nodular cast irons with various matrix compositions and structures[J]. Materials Science and Engineering A,2009,1-2(518):65-75.
    [173]. Kyung Min Kim, Yun Heung Jeon, Namgeon Yun, et al. Thermo-mechanical lifeprediction for material lifetime improvement of an internal cooling system in acombustion liner [J]. Energy,2011,2(36):942–949.
    [174]. Yoon-jun Kim, Ho jiang, Yoon-jun OH. High-Temperature low-cycle fatigue propertyof heat-resistant ductile-cast irons [J]. Metallurgical and Materials Transactions A,2009,9(40A):2087-2097.
    [175]. W. Eichlseder, G. Winter, H. K berl. Material and fatigue life models forthermomechanical loaded components [J]. Materialwissenschaft andWerkstofftechnik,2008,10(39):777-782.
    [176]. Nicolas Malésys, Ludovic Vincent, Francois Hild. A probabilistic model to predict theformation and propagation of crack networks in thermal fatigue [J]. InternationalJournal of Fatigue,2009,(31):565-574.
    [177]. J. P. Singh, K. Niihara, D. P. H. Hasselman. Analysis of thermal fatigue behaviour ofbrittle structural materials [J]. Journal of Materials Science,1981,10(16):2789-2797.
    [178]. H. P. Lieurade.热疲劳裂纹形核与扩展的实验模拟与理论模型[J].轧钢,1991,2:21-27.
    [179]. Jianghuai Yang, Susil K. Putatunda. Near threshold fatigue crack growth behavior ofaustempered ductile cast iron (ADI) processed by a novel two-step austemperingprocess [J]. Materials Science and Engineering A,2005,2(393):254-268.
    [180].黄汝清,隋育栋,蒋业华,等. WCp/钢基表面复合材料热疲劳裂纹萌生及扩展机理[J].材料热处理学报,2013,3(34):40-43.
    [181]. P. Ferro, P. Lazzarin, F. Berto. Fatigue properties of ductile cast iron containingchunky graphite [J]. Materials Science and Engineering A,2012,30(554):122-128.
    [182]. M. Caldera, M. Chapetti, J. M. Massone, et al. Fatigue propagation of long cracks inferritic thin wall ductile iron castings [J]. Materials Science and Technology,2010,9(26):1102-1107.
    [183]. YANG Jinxia, ZHENG Qi, SUN Xiaofeng, et al. Thermal fatigue behavior of K465superalloy [J]. RARE METALS,2006,3(25):202-208.
    [184]. Z.W. Huang, Z.G. Wang, S.J. Zhu, et al. Thermomechanical fatigue behavior and lifeprediction of a cast nickel-based superalloy [J]. Materials Science and Engineering A,2006,1-2(432):308-316.
    [185]. Y. G. ZHAO, Y. H. LIANG, W. ZHOU, et al. Effect of a current pulse on the thermalfatigue behavior of cast hot work die steel [J]. ISIJ international,2005,3(45):410-412.
    [186]. C. P. Cheng, T. S. Lui, L. H. Chen. Effect of heating temperature and magnesiumcontent on the thermal cyclic failure behaviour of ductile irons [J]. Materials scienceand technology,2004,2(20):243-250.
    [187]. Andrea Spagnoli, Anna Maria Ferrero, Maria Migliazza. A micromechanical model todescribe thermal fatigue and bowing of marble [J]. International Journal of Solids andStructures,2011,18(48):2557-2564.
    [188].刘北兴,吴晓玲,何世禹,等.合金白口铸铁的热疲劳行为与碳化物的作用[J].金属热处理学报,1997,1(18):14-19.
    [189].胡心彬,李麟. H13钢热疲劳后碳化物形态和组分的变化[J].材料热处理学报,2007,6(28):82-87.
    [190]. S. F. Chen, T. S. Lui, L. H. Chen. The effect of phosphorus segregation on theintermediate-temperature embrittlement of ferritic, spheroidal graphite cast iron [J].Metallurgical and Materials Transactions A,1994,3(25):557-561.
    [191]. Hung-Mao Lin, Truan-Sheng Lui, Li-Hui Chen. Effect of Maximum Temperature onthe Cyclic-Heating-Induced Embrittlement of High-Silicon Ferritic SpheroidalGraphite Cast Iron [J]. Materials Transactions,2004,2(45):569-576.
    [192]. Kai Qi, Fengyun Yu, Fudong Bai, et al. Research on the hot deformation behavior andgraphite morphology of spheroidal graphite cast iron at high strain rate [J]. Materialsand Design,2009(30):4511-4515.
    [193]. C. P. Cheng, S. M. Chen, T. S. Lui, S. M. Chen. High-temperature tensile deformationand thermal cracking of ferritic spheroidal graphite cast iron [J]. Metallurgical andMaterials Transactions A,1997,2(28):325-333.
    [194]. Julián Rodríguez, Martha P. Guerrero-Mata, Rafael Colás. Crack propagation in ahard-faced AISI type304stainless steel [J]. Materials Characterization,2003,2-3(51):95–99.
    [195]. Jeong-Du Kim, Jueng-Keun Ji. Effect of super-rapid induction quenching on fatiguefracture behavior of spherical graphite cast iron FCD500[J]. Journal of MaterialsProcessing Technology,2006,1-3(176):19–23.
    [196]. Xin Tong, Hong Zhou, Lu-quan Ren, et al. Effects of graphite shape on thermalfatigue resistance of cast iron with biomimetic non-smooth surface [J]. Internationaljournal of fatigue,2009,4(31):668-677.
    [197].孙小捞,贾利晓,温广宇,等.石墨形态对铸铁热疲劳性能的影响[J].中国铸造装备与技术,2006,4:13-15.
    [198]. Hung-mao Lin, Truan-sheng Lui, Li-hui Chen. Effect of maximum temperature on thecyclic heating induced embrittlement of high-silicon ferritic spheroidal graphite castiron [J]. Materials transactions,2004,2(45):569-576.
    [199]. S.F.CHEN, T.S.LUI, L.H.CHEN. The role of magnesium containing spheroidizaerand counteraction of misch metal in the intermediate temperature intergranularembrittlement of ferritic nodule iron [J]. Metallurgical and materials transactions, A,1994,10(25A):2305-2309.
    [200]. Da SHENG, Shu-jiang LI, Yue-mei LU, et al. Critical Content of MgO inSpheroidisers [J]. Journal of Iron and Steel Research, International,2006,1(13):1-4.
    [201]. C.P. CHENG, T.S. LUI, L.H. CHEN. Effect of Residual Magnesium Content onThermal Fatigue Cracking Behavior of High-Silicon Spheroidal Graphite Cast Iron[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,1999,6(30A):1549-1558.
    [202]. B. M. Drapkin, A. A. Zhukov, Yu. V. Piguzov. The initial stage in thermal fatiguefailure of cast iron [J]. Metal Science and Heat Treatment,1973,11(15):964-966.
    [203]. A. A. Zhukov, B. M. Drapkin. A study of the initial stage of the thermal fatigue failureof cast iron [J]. Strength of Materials,1973,5(8):1002-1006.
    [204].华中工学院.耐热铸铁译文集[M].湖北:华中工学院,1983.
    [205]. Beomkeun Kim, Seong Beom Lee, Eunhyun Lee. Effect of a fastener hole design ofinlet flanges on the durability of the exhaust manifold for a turbo-diesel engine [J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2007,3(221):327-333.
    [206].郭领军.关于铸铁氧化性能参数的讨论[J].铸造技术,1994,2:38-42.
    [207].哈胜男,任颂赞,谢春生,等.高硅钼球铁排气歧管高温氧化开裂原因分析[J].金属热处理,2009,2(34):99-102.
    [208].于思荣,朱先勇,高乾等.合金元素对球墨铸铁抗高温氧化性能的影响[J].现代铸铁,2010,3:42-45.
    [209]. W. Fairhurst, K.R hrig. High Silicon Nodular Irons [J]. Foundry Trade Journal,1979,3(146):657-681.
    [210]. Li-xin Wang, Chang-jiang Song, Feng-mei Sun, et al. Microstructure and mechanicalproperties of12wt.%Cr ferritic stainless steel with Ti and Nb dual stabilization [J].Materials and Design,2009,1(30):49–56.
    [211].朱洪波,闫永生,孙小亮,等. Nb对灰铸铁高温抗拉强度和抗氧化性的影响[J].现代铸铁,2011,2:49-51.
    [212]. A. R. Kiani Rashid, D. V. Edmonds. Oxidation behaviour of Al-alloyed ductile castirons at elevated temperature [J]. SURFACE AND INTERFACE ANALYSIS,2004,8(36):1011-1013.
    [213]. M. Martínez-Madrid, M. A. Acosta, A. Torres-Acosta, et al. Effects of AustemperingTemperature on Fatigue Crack Rate Propagation in a Series of Modified (Cu, Ni,and/or Mo) Nodular Irons [J]. Journal of Materials Engineering and Performance,2002,11:651-658.
    [214]. F. Tholence, M. Norell. High Temperature Corrosion of Cast Alloys in ExhaustEnvironments II-Cast Stainless Steels [J]. Oxidation of Metals,2008,1-2(69):37–62.
    [215].廉贞松.用于排气歧管铸造的合金球铁组织和性能研究[D].长春:吉林大学材料科学与工程学院,2012.
    [216]. S. Rebeyrat, J. L. Grosseau-Poussard, J. F. Dinhut, et al. Oxidation of phosphated ironpowders [J]. Thin solid films,2000,1-2(379):139-146.
    [217]. F. Tholence, M. Norell. AES characterization of oxide grains formed on ductile castirons in exhaust environments [J]. SURFACE AND INTERFACE ANALYSIS,2002,1(34):535-539.
    [218]. F. Tholence, M. Norell. High Temperature Corrosion of Cast Alloys in ExhaustEnvironments I-Ductile Cast Irons [J]. Oxidation of Metals,2008,1-2(69):13–36.
    [219].王学成,柴慧芬,王笑天. MoSi2新型高温结构材料的研究与开发[J].材料工程,1993,11:16-17.
    [220]. Shouichi Ochiai. Improvement of the oxidation-proof property and the scale structureof Mo3Si intermetallic alloy through the addition of chromium and aluminumelements [J]. Intermetallics,2006,10-11(14):1351-1357.
    [221].李秀真,刘太强,于化顺,等.耐热铸铁的氧化与脱碳[J].山东工业大学学报,1996,2(26):155-160.
    [222]. J. Janowak.高温下使用的铁素体球墨铸铁[J].现代铸铁,1983,7:46-51.
    [223].张安峰,邢建东,陆文华.高铬铸铁的氧化行为[J].金属学报,1993,6(29):263-268.
    [224].姜守本,黄龙,丁立英. Cr-Mo合金铸铁抗氧化性能研究[J].热加工工艺,1990,6:16-19.
    [225]. M. H nsel, C. A. Boddington, D. J. Young. Internal oxidation and carburization ofheat-resistant alloys [J]. Corrosion science,2003(45):967-981.
    [226]. Y. Yamamoto, M. L. Santella, C. T. Liu. Evaluation of Mn substitution for Ni inalumina-forming austenitic stainless steels [J]. Materials Science and Engineering A,2009(524):176–185.
    [227]. NACE International. CORROSION2003[C]. San Diego Ca:(2003. NACEInternational),2003.
    [228].夏青,杨涤心.高铬白口铸铁高温氧化性能的研究[J].铸造,2006,6(55):629-631.
    [229]. Yun Long Yang, Zhan Yi Cao, Zhen Song Lian, et al. A Study on Microstructure ofDuctile Ni-Resist Cast Iron for Exhaust Manifolds and Mechanical Property at theCondition of Altermative Thermal Cycles [J]. Advanced Materials Research,2011(194-196):95-99.
    [230]. M. Petrenec, H. Tesaǐrová, P. Beran,et al. Comparison of low cycle fatigue of ductilecast irons with different matrix alloyed with nickel [J]. Procedia Engineering,2010,2:2307-2316.
    [231]. F. Tholence, M. Norell. Nitride precipitation during high temperature corrosion ofductile cast irons in synthetic exhaust gases [J]. Journal of Physics and Chemistry ofSolids,2005(66):530-534.
    [232]. Yun-Long Yang, Zhan-Yi Cao, Yang Qi, et al. The Study on Oxidation ResistanceProperties of Ductile Cast Irons for Exhaust Manifold at High Temperatures [J].Advanced Materials Research,2010(97-101):530-535.
    [233].樊子民,王晓刚,强云霄,等.新型汽车尾气净化器载体材料性能及净化效果研究[J].环境污染与防治,2009,8(31):63-66.
    [234].李忠民,姜丽燕.铸铁中的化学成分对热导率的影响[J].山东机械,2002,2:14-16.
    [235]. Mohan C. Rukadikar, G. P. Reddy. Influence of chemical composition andmicrostructure on thermal conductivity of alloyed pearlitic flake graphite cast irons[J]. Journal of materials science,1986(21):4403-4410.
    [236]. Keiichi Kuniya, Hideo Arakawa, Tsuneyuki Kanai, etal. Thermal conductivity,electrical conductivity and specific heat of copper-carbon fiber composites [J].Transactions of Japan institute of metals,1987,10(28):819-826.
    [237].毕洪运,李鑫,欧响波,等.汽车尾气排放系统低温端用铁素体不锈钢开发[J].宝钢技术,2007,4:1-4.
    [238].李荻.电化学原理[M].北京:北京航空航天大学出版社,1988.
    [239].季德霖.铸铁的腐蚀破坏及控制[J].安徽科技,1994,4:43-46.
    [240].朱双春,王宝森,许轲.汽车排气管用铁素体不锈钢的性能发展[J].金属加工,2009,12:33-35.
    [241].刘继明,梁建宇.合金元素对铁素体不锈钢抗腐蚀性能的影响[J].山西冶金,2005,4:9-12.
    [242].周永欣,张冰毅,时慧英,等.合金元素对马氏体球墨铸铁腐蚀磨损的影响[J].铸造技术,2001,4:51-53.
    [243].饶启昌,高义民,刘福玲.高铬铸铁三体腐蚀磨损机理及影响因素的研究[J].西安交通大学学报,1992,2(26):81-91.
    [244].申泽骥,苏贵桥.铸铁的电化学腐蚀机理[J].现代铸铁,2002,1:13-16.
    [245].余竹焕,强军锋,刘林,等.高硅铸铁耐腐蚀性的研究[J].铸造,2006,6(55):636-639.
    [246].余竹焕,强军锋,李会录.高硅铸铁在多种环境下的腐蚀行为研究[J].西安科技大学学报,2007,1(27):69-73.
    [247].肖志云,孙玉福,赵靖宇,等.镍和硅对低温高韧性球墨铸铁耐蚀性能的影响[J].铸造,2011,9(60):836-840.
    [248].张一民,陈跃,徐晓峰,等.中铬铸铁腐蚀磨损特性的研究[J].矿山机械,1994,10:25-27.
    [249]. T. S. Sidhu, Ajay Malik, S. Prakash, et al. Cyclic oxidation behavior of Ni-andFe-based superalloys in air and Na2SO4-25%NaCl molten salt environment at800℃[J]. International Journal of Physical Sciences,2006,9(1):027-033.
    [250].耐热铸铁研究小组.球墨铸铁及高硅球墨铸铁耐热性能试验报告[J].浙江大学学报,1959,3:33-45.
    [251].夏兰廷,李鸿义,李晓琴.高Si-Mo球铁的高温性能[J].山西机械,2002,12(117):35-37.
    [252].马状,赵越超,张心渊.中硅耐热球墨铸铁在铸铝柑祸上的应用[J].辽宁工程技术大学学报(自然科学版),1998,2(17):13-16.
    [253]. M. K. Kim, J. Namkung, Y. S. Ahn. The effect of Si and microstructure evolution onthe thermal expansion properties of Fe42NiSi alloy strips [J]. Journal of MaterialsScience,2008(43):3112-3117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700