用户名: 密码: 验证码:
露天转地下开采边坡爆破动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着矿石资源露天开采不断进行,浅部资源不断减少,国内外露天转地下开采的矿山工程不断涌现。爆破作为矿山开采、岩体开挖等采矿生产与工程建设的必要手段,在提高生产作业效率的同时,其爆破振动动力作用的影响使得矿山露天边坡崩塌、滑移等地质灾害现象屡见不鲜。由此可见,露天转地下开采边坡动力稳定性等相关问题,已成为我国露天转地下开采矿山安全生产的关键科学技术问题。开展露天转地下开采边坡爆破动力特性研究,是边坡爆破动力稳定性问题研究的工作基础,同时也是工程地质学、爆炸力学与岩石动力学等多学科交叉的前沿与热点课题,具有重要的的理论研究价值和重要的工程应用意义。
     本文采用“现场测试”、“数值模拟”、“理论计算分析”综合研究方法,开展了露天转地下开采边坡爆破振动现场测试分析、边坡爆破振动高程效应、地下开采中深孔爆炸应力波荷载特性、露天转地下开采边坡爆破动力响应、露天转地下开采边坡爆破振动安全判据等一系列的研究工作,论文具体研究内容和成果如下:
     (1)露天转地下开采边坡爆破振动传播规律研究。采用TC-4850型爆破振动记录仪及其测试系统,对大冶铁矿地下开采爆破振动进行现场监测,获得了一系列露天边坡岩体爆破振动数据,并对监测数据进行频率分布特征及振动速度回归分析。研究结果表明:爆破振动X、Y、Z各方向的主震频率分布并不一致,X方向爆破振动主振频率主要集中在55Hz,而Y、Z方向爆破振动主振频率分布在<45Hz区间内;对比表征爆破振动传播规律的萨道夫斯基公式发现,南北帮边坡爆破振动传播规律因岩体特性及特地质条件不同而存在明显差异性,以大理岩为主的南帮边坡比以闪长岩为主的北帮边坡衰减更快,地下开采爆破振动对露天边坡的影响分析时应对南北帮边坡分别进行。
     (2)露天转地下开采边坡爆破振动高程效应研究。基于量纲分析原理建立了考虑高程影响的爆破振动速度预测模型,采用改进的预测模型对大冶铁矿地下采矿爆破振动速度传播特征进行了预测分析,并与萨道夫斯基经验公式预测结果进行了对比;同时依托露天采场狮子山北帮边坡采矿工程实际,建立了边坡数值模型计算分析并通过现场实测数据进行了验证,采用已验证模型及参数,分别建立不同坡度边坡模型(坡角依次为15°、30°、45°、60°)进行了爆破动力数值计算,系统探讨了不同坡度边坡爆破振动高程效应。研究结果表明:相比于萨道夫斯基经验公式,改进后的爆破振动速度预测模型对衰减规律的表征更加贴切、误差更小,引入相对坡度的概念爆破振动速度计算模型能更好地表征爆破振动在边坡体上的传播过程中的高程效应;边坡爆破振动速度的放大效应主要以垂直方向振动速度放大为主;对于不同坡度边坡,爆破振动速度以衰减为主,但存在高程放大效应比衰减趋势占主导的现象。
     (3)露天转地下开采扇形中深孔爆破荷载特性研究。采用动力有限元软件LSDYNA建立扇形中深孔爆破计算模型,计算分析得到爆炸应力波荷载的有效应力、矢量叠加振动速度的分布特征;采用相同材料参数分别建立药包半径为30cm、32cm、34cm、36cm、38cm、40cm、42cm、44cm、46cm、48cm球形药包爆破计算模型,通过两种装药结构爆破荷载的有效应力、矢量叠加振动速度对比分析,得到爆炸应力波荷载的等效球形药包模型。研究结果表明:338kg(半径42cm)球形装药结构的计算模型爆破荷载特性与493kg柱状装药的爆破模型基本一致,等效球形装药结构能够较好地反映扇形中深孔爆破中远区荷载特性,消除数值建模过程中因量级不统一造成的网格划分问题。
     (4)露天转地下开采边坡爆破动力响应研究。结合大冶铁矿东露天采场特殊的工程地质条件,通过地质模型的概化分析,建立了包括地下采矿巷道、边坡岩体及主要断层破碎带的三维数值计算模型,爆破动力分析得到南北帮边坡岩体、断层破碎带及稳定性条件较差的A区滑体内坡面岩体爆破振动时程曲线及振动主频。分析结果发现:南帮边坡坡面岩体监测点X、Y、Z方向振动速度最大值分别为0.823cm/s、0.727cm/s、0.866cm/s,各监测点Z方向主振频率位于23.14Hz~31.88Hz;北帮边坡坡面岩体监测点X、Y、Z方向振动速度最大值分别为0.877cm/s、0.737cm/s、0.903cm/s,各监测点Z方向主振频率位于13.89Hz~25.17Hz;A区滑体内坡面岩体监测点爆破振动速度位于0.464cm/s-0.176cm/s,各监测点Z方向主振频率38.22Hz~22.83Hz。
     (5)露天转地下开采边坡爆破振动速度安全判据研究。基于岩石动力学理论及爆破振动荷载作用下岩体的动态强度特征,对大冶铁矿露天边坡主要岩体极限抗拉强度进行了判定;根据边坡爆破动力响应研究成果,建立了各边坡岩体及断层破碎带充填体所受拉应力峰值和振动速度峰值的统计关系,从统计角度近似确定两者的函数方程,结合极限抗拉强度准则并引入重要性修正系数的概念,探讨了基于数值计算的露天转地下开采边坡爆破振动速度安全判据;同时,基于应力波传播理论,对爆炸应力波传播至自由表面、断层交界面处的反射折射进行了理论分析,建立了爆破振动速度判据理论计算模型,并结合大冶铁矿露天边坡工程实际求解分析得到了基于应力波传播理论的爆破振动速度安全判据;最后对理论分析求解结果、数值计算结果及爆破安全规程标准取值进行了对比。根据研究结果得到:基于数值计算方法,南帮边坡爆破振动速度安全判据为9.31cm/s,北帮边坡爆破振动速度安全判据为7.90cm/s;基于应力波传播理论,南帮边坡爆破振动速度安全判据为13.41cm/s,北帮边坡爆破振动速度安全判据为27.79cm/s;数值计算及理论分析结果与爆破安全规程安全允许标准基本相符,理论分析计算结果对于数值计算分析结果相比略微偏大。
With the exploiting of surface mining as ore resources, shallow resources declines and mining is turning from open pit to underground mining projects either at home or abroad. Blasting is an inevitable means of mining production and construction projects in mining, rock excavation, underground mining. Surface slope collapse, slip and other geological disasters are common occurrences because of the influence of blasting vibration dynamic action. Therefore, the problem of slope dynamic stability has become a key scientific and technological issue of safe exploiting in open pit to underground mining. Moreover, the dynamic response of open pit to underground mining slope is not only the basis for the work of the slope blasting dynamic stability problems, but also the hot topics in engineering geology, explosion and rock dynamics, which has significant importance in theoretical and engineering applications.
     In this paper, the field test, combined with numerical simulation, theoretical calculation and analysis were adopted. The analysis of the open pit to underground mining the slope blasting vibration field test, slope altitude effect of blasting vibration velocity, deep hole explosion in underground mining stress Bohol overload characteristics, the dynamic response of the open pit to underground mining blasting, the safety criterion of blasting vibration velocity in open pit to underground mining, etc. were carried out. The main results are listed as followings:
     (1) Study on rule of blasting vibration propagation on open pit to underground mining slope. Daye Iron Mine underground mining blasting vibrations were monitored applying the TC-4850blasting vibration recorder test system. Then, A series of open-pit slope rock blasting vibration test data were obtained which were analyzed on frequency distribution characteristics and velocity attenuation. The results show that:the main vibration frequencies on X, Y and Z direction are not consistent; the frequency on X direction is mainly concentrate in55Hz, but the frequencies on Y and Z direction are less than45Hz. Due to differences of rock mass characteristics and special geological conditions, there are significant differences of vibration propagations on the north and south slope rock mass by comparing the Sadaovsk formulas. The vibration velocity of the south slope which is made of marble attenuates faster. The influences of blasting vibration on the north and south slope should be analyzed separately.
     (2) Study on blasting vibration altitude effect of open pit to underground mining slope. A new forecasting model of blasting vibration velocity which considered the altitude effect was established based on the principle of dimensional analysis; then the blasting vibration velocity propagation characteristics were predictive analyzed separately by the forecasting model and Sadaovsk formula. On the basis of north slope mining engineering practice, the numerical model of the slope was established which was improved by field data. Applying the proved model and parameters, this dissertation establish the different degree slopes which contains15°slope,30°slope,45°slope and60°slope, and investigate the blasting vibration altitude effects of the slope. The results show that:the new forecasting model predicts the blasting vibration attenuation rules more accurate than Sadaovsk formula; the PPV's amplification is obvious, and the vertical PPV plays the main role; The PPVs on the different slope surface attenuate with the slope degree increase, but there is a phenomenon that the amplification effect plays the main role.
     (3) Study on blasting load characteristics of sector medium-length hole in underground mining. The sector medium-length hole blasting model was established by dynamic finite element software LSDYNA, and the distribution characteristics of effective stress and resultant velocity were calculated and analyzed; Applying the same material parameters, this dissertation established the spherical structure blasting models whose radius were0cm,32cm,34cm,36cm,38cm,40cm,42cm,44cm,46cm,48cm; the equivalent spherical charge model was obtained by comparing effective stress and resultant velocity with sector medium-length hole charge model. The results show that:the blasting load characteristics of338kg (radius is42cm) spherical structure model were similar with493kg sector medium-length hole charge model; the equivalent spherical charge model can reflect the load characteristics of sector medium-length hole which can eliminate the meshing problems caused by size disunion.
     (4) Study on blasting dynamic response of open pit to underground mining slope. Based on the special engineering geological conditions of Daye Iron Mine, the three-dimensional numerical model including underground mining tunnel, slope rock mass and fault fracture zone was established; then the blasting vibration velocity-time curves and main frequencies of slope rock mass, fault fracture zone and the A-slope rock mass. The results show that:the vibration velocities of south slope rock mass on X, Y, Z direction are0.823cm/s,0.727cm/s and0.866cm/s separately, and the frequencies are between23.14Hz and31.88Hz; the vibration velocities of North slope rock mass on X, Y, Z direction are0.877cm/s0.737cm/s and0.903cm/s separately, and the frequencies are between13.89Hz and25.17Hz; the vibration velocities of A-slope slope rock mass on X, Y, Z direction are from0.464cm/s to0.176cm/s, and the frequencies are from38.22Hz to22.83Hz.
     (5) Study on blasting vibration velocity safety criterion of open pit to underground mining slope. On the basis of rock dynamic theory and rock dynamic strength characteristics subjected blasting vibration, the dynamic tensile strengths of Daye Iron Mine slope rocks were determined; according previous numerical simulation research on dynamic response of slope rock mass, the relationship models of PPVs and tensile strength of the slope rock mass and fault fractures were established:combined with ultimate tensile strength criterion, the blasting vibration velocity safety criterions based on numerical simulation was calculated by the introduction of the concept of the importance of the correction factor. Meanwhile, based on the theory of stress wave propagation, the reflection and refraction on the free surface and the interface were analyzed, and the blasting vibration velocity criterion theoretical calculation model was established; combined Daye Iron Mine open pit slope engineering practice, the blasting vibration velocity safety criterions based on theoretical analysis was solved. Finally, the numerical analysis results and theoretical analysis compared with the blasting safety standard. The results show that:based on the relationship models of PPVs and tensile strength, the blasting vibration safety criterion of south slope is9.31cm/s, and the blasting vibration safety criterion of north slope is7.90cm/s; based on the theory of stress wave propagation, the blasting vibration safety criterion of south slope is13.41cm/s, and the blasting vibration safety criterion of north slope is27.79cm/s; the blasting vibration safety criterion of numerical calculation and theoretical analysis are both basically consistent with the blasting safety standard, and the theoretical analysis results is slightly larger compared to the results of the analysis for numerical calculation.
引文
[1]宋小林,张继春,郭学彬等.顺倾边坡岩体爆破的振动特性数值研究[J].铁道建筑,2010,2:87-90.
    [2]刘寒鹏,胡高社,史艳娇.人工填土高边坡爆破振动动力响应分析研究[J].工程地质学报,2007,15(2):263-267.
    [3]李宁,张西前,于冲.爆破应力波对边坡预应力锚索的动力影响[J].岩石力学与工程学报,2007,26(增):2593-2600.
    [4]彭德红.某铁路工程边坡爆破开挖动力响应有限元分析[J].铁道工程学报,2006,1:91-95.
    [5]彭德红.露天矿边坡开挖爆破震动动力响应[J].煤炭学报,2005,30(6):705-709.
    [6]许名标,彭德红.某水电站边坡开挖爆破震动动力响应有限元分析[J].岩土工程学报,2006,28(6):770-775.
    [7]何理,钟冬望,陈江伟.爆破载荷作用下混凝土边坡动力响应数值分析[J].武汉科技大学学报,2011,34(2):123-125.
    [8]高文学,刘宏宇,刘洪洋等.爆破开挖对路堑高边坡稳定性影响分析[J].岩石力学与工程学报,2010,29(增1):2982-2987.
    [9]张晓晖,张和,毛彦龙.露天矿复合高边坡爆破振动响应特征研究[J].路基工程,2009,6:38-40.
    [10]赵宝云,刘保县,万贻平.爆破震动对某边坡稳定性影响的数值模拟[J].工程地质学报,2008,16(1):59-62.
    [11]陈占军,朱传云,周小恒.爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J].爆破,2006,22(4):8-13.
    [12]李启月,李夕兵,顾春宏.爆破载荷作用下高陡节理岩质边坡动态响应的3DEC模拟[J].矿冶工程,2008,28(5):18-22.
    [13]李俊如,李海波,高建光,刘亚群.黄麦岭采场边坡爆破振动响应研究[J].岩石力学与工程学报,2004,23(17):2954-2958.
    [14]宋小林,张继春,曹孝君.顺层边坡岩体爆破对软弱层性态的影响研究[J].金属矿山,2008,4:23-27.
    [15]Xiao-lin Song, Ji-chun Zhang, Xue-bin Guo, et al. Influence of blasting on the properties of weak intercalation of a layered rock slope[J]. International Journal of Minerals, Metallurgy and Materials,2009,16(1):7-11.
    [16]Barbero M., Barla G, Zaninetti A.. Dynamic shear strength of rock joints subjects to impulse loading[J]. Rock Mechanics and Mining Science,1996,33(2):141-151.
    [17]Yoshinaka R., Tran T. V., Osada M. Non-linear stress and strain dependent behavior of soft rocks under cyclic triaxial conditions[J]. Rock Mechanics and Mining Science, 1998,35(7):941-955.
    [18]Li N. et al. The mechanical properties and a fatigue-damage model for joint rock masses subjected to dynamic cycling loading[J]. Rock Mechanics and Mining Science,2001, 38:1071-1079.
    [19]Li N., et al. Fatigue properties of cracked saturated and frozen sandstone samples under cyclic loading[J]. Rock Mechanics and Mining Science,2003,40(1):145-150.
    [20]Lee H. S., et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. Rock Mechanics and Mining Science,2001,38:967-980.
    [21]Fox D. J., Kana D. D., Hsiung S. M. Influence of interface roughness on dynamic shear behavior in jointed rock[J]. Rock Mechanics and Mining Science,1998,35(7):923-940.
    [22]Singh U. N., Singh B. Testing of rock joints filled with gouge using a triaxial apparatus[J]. Rock Mechanics and Mining Science,2000,37:963-981.
    [23]Yang Z. Y., Chiang D. Y. An experimental study on the progressive shear behavior of rock joints with tooth-shaped asperities[J]. Rock Mechanics and Mining Science,2000, 37:1247-1259.
    [24]陈寿如,宋光明.确定露天边坡爆破震动临界振速的一种方法[J].矿业研究与开发,2001,21(4增):9-11.
    [25]钟冬望,陈江伟,余刚.边坡爆破振动传播规律的试验研究[J].武汉科技大学学报,2010,33(3):332-336.
    [26]姜立春,陈嘉生.基于AMD和爆破荷载耦合作用下的深凹露天矿边坡失稳研究[J].湖南科技大学学报(自然科学版),2007,22(2):16-21.
    [27]蒋丽丽,林从谋,陈泽观等.岩石高边坡爆破振动传播规律小波包分析[J].有色金属(矿山部分),2009,61(2):43-46.
    [28]谭文辉,璩世杰,毛市龙等.边坡爆破振动高程效应分析[J].岩土工程学报,2010,32(4):619-623.
    [29]Stevenl, Kvamer. Geotechnical earthquake engineering[J]. Prentice Hall Inc., U.S.A,1996,1: 423-462.
    [30]Newmark N. M.. Effects of earthquakes on dams and embankment[J]. Geotechnique,1999, 15(2):139-160.
    [31]Roberto R.. Seimically induced landslide displacements:a predictive model [J]. Eng. Geol., 2000,58(3):337-351.
    [32]Ausilioe, Contee, Denteg. Seismic Stability analysis of reinforced slopes[J]. Soil Dynamics and Earthquake Engineering, Elsevier Science Ltd,2000,19(3):159-172.
    [33]Ling H. I., Cheng M., Alexander H.D.. Rock slid in induced by seismic force[J]. International Journal of Rock Mechanics and Ming Sciences, Elsevier Science Ltd,1997,34(6): 1021-1029.
    [34]Siyahi, Bilge G.. Pseudo static stability analysis in normally consolidated soil slopes subjected to earthquakes[J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers Turkish Chamber of Civil Engineers,1998,9(DEC):457-461.
    [35]Bray J.D., Repetto P.C.. Seismic design considerations for lined solid waste landfills[J]. Geotextiles and Geomembranes, Elsevier Applied Science Public Ltd.,1994,13(8):497-518.
    [36]Leshchinsky D.S.. Pseudostatic seismic stability of slopes:design charts[J]. Journal of Geotechnical Engineering ASCE,1994,120(9):1514-1532.
    [37]Wu X.Y., Law K.T., Selvadurai A.. Examination of the pseudostatic limit equilibrium method for dynamic stability analysis of slopes[M]. Canadian Geotechnical Conference pt 1Sep29-Oct2,1991.
    [38]Ling H.I., Leshchinsky D., Mohriyoshiyuki. Soil slopes under combined horizontal and vertical seismic accelerations earthquake engineering[J]. Structural Dynamics,1997,26(12): 1231-1241.
    [39]Jones J.P., Whittier J.S.. Wave at flexibly bonded interface[J]. J. Appl. Mech,1967,34: 905-909.
    [40]Murty G.S.. A theoretical model for the attenuation and dispersion of stonely waves at the loosely bonded interface of elastic half space[J]. Phys, Earth Planet, Int.,1975,11:65-79.
    [41]Myer L.R., et al. Effects of single fracture on seismic wave propagation[J]. In:Rock Joints(Eds:Barton & Stephansson), Bakema, Rotterdam,1990,467-473.
    [42]许名标.小湾水电站边坡开挖爆破震动动力响应分析[D].武汉:武汉理工大学,2004.
    [43]欧阳吉,郑爽英,张继春等.爆破作用对软弱夹层岩质边坡稳定性影响试验研究[J].武汉科技大学学报,2009,26(1):10-14.
    [44]梁冰,孙维吉,杨冬鹏等.抛掷爆破对内排土场边坡稳定性影响的试验研究[J].岩石力学与工程学报,2009,28(4):710-715.
    [45]唐智超.爆破对边坡影响范围的声波测试与评价[J].爆破,2009,26(3):108-110.
    [46]杨年华.预裂爆破对边坡岩体损伤的试验研究[J].铁道学报,2008,30(3):96-99.
    [47]蒲传金,郭学彬,张志呈等.光面爆破对边坡保留岩体损伤规律分析[J].西南科技大学学报,2006,21(2):26-27.
    [48]Singh V. K., Singh D. P.. Controlled blasting in an open-pit mine for improved slope stability[J]. Geotechnical & Engineering,1995,13(1):51-57.
    [49]蒲传金,郭学彬,冯德润等.边坡岩体初始损伤对爆破作用影响的微观分析[J].爆破,2007,24(3):16-20.
    [50]王代华,刘军,柏德强等.露天边坡在爆破作用下损伤特征试验研究[J].煤炭学报,2004,29(5):532-535.
    [51]王秀杰,朱学贤,吴新霞等.锦屏一级水电站高边坡开挖爆破动力稳定分析[J].工程爆破,2010,16(2):27-30.
    [52]肖正学,郭学彬,张继春等.含软弱夹层顺倾边坡爆破层裂效应的数值模拟与试验研究[J].岩土力学,2009,30(增):15-19.
    [53]李翔龙,庙延钢,杨溢等.爆破震动对边坡稳定性影响分析[J].爆破,2006,23(4):15-20.
    [54]胡益华,李宁,韩信.小湾饮水沟堆积体边坡爆破动力稳定分析[J].岩石力学与工程学报,2005,24(增2):5532-5537.
    [55]林士炎,李长洪,乔兰等.爆破震动对高速路边坡影响的数值模拟[J].北京科技大学学报,2003,25(6):507-509.
    [56]陈清运,刘美山,王香杰等.锦屏一级水电站边坡开挖爆破动力稳定性研究[J].爆破,2011,28(1):35-39.
    [57]许红涛,卢文波,周创兵等.基于时程分析的岩质高边坡开挖爆破动力稳定性计算方法[J].岩石力学与工程学报,2006,25(11):2213-2219.
    [58]李维光,张继春.爆破振动作用下顺层岩质边坡稳定性分析[J].爆炸与冲击,2007,27(5):426-430.
    [59]杨仕教,罗辉,喻清等.高陡边坡爆破震动动力可靠性评价方法研究[J].武汉理工大学学报,2010,32(9):85-88.
    [60]霍宇翔,黄润秋,巨能攀等.爆破影响下岩质高边坡浅表层块体稳定性研究[J].工程地质学报,2009,17(6):793-781.
    [61]郭学彬,张继春,刘泉等.爆破振动对顺层岩质边坡稳定性的影响[J].矿业研究与开发,2006,26(2):77-80.
    [62]高文学,刘运通.路堑高边坡岩体多边界爆破理论及其应用[J].岩石力学与工程学报,2007,26(增1):3397-3401.
    [63]张电吉,夏述光.爆破动应力对岩质边坡损伤破坏作用机理[J].工程爆破,2004,10(3):14.
    [64]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩士力学,2003,24(4):553-557.
    [65]何姣云,张世雄.大冶铁矿露天转地下开采爆破对露天边坡影响的研究[J].矿冶工程,2006,26(5):1-5.
    [66]陈明,卢文波,吴亮等.小湾水电站岩石高边坡爆破振动速度安全阈值研究[J].岩石力学与工程学报,2007,26(1):51-56.
    [67]朱青山.爆破震动下露天矿台阶边坡稳定性能量分析法[J].金属矿山,2005,9:14-17.
    [68]陈寿如,宋光明.确定露天边坡爆破震动临界振速的一种方法[J].矿业研究与开发,2001,21(4增):9-11.
    [69]刘美山,吴从清,张正宇.小湾水电站高边坡爆破震动安全判据试验研究[J].长江科学院院报,2007,24(1):40-43.
    [70]刘亚玲,徐湖林,谢雄耀,刘凤洲.黄衢高速公路节理发育边坡控制爆破试验[J].工程爆破,2009,15(3):35-39.
    [71]吴青山,张继春,曹孝君等.顺层路堑边坡岩体爆破的层裂效应试验研究[J].中国铁道科学,2004,25(3):50-54.
    [72]曹孝君,吴青山,张继春等.顺层岩质边坡的爆破振动控制标准试验研究[J].岩石力学与工程学报,2003,22(11):1924-1928.
    [73]王润和,朱新平,郭昭华等.露天矿爆破对边坡体内巷道的影响分析[J].露天采矿技术,2009,3:27-29.
    [74]林大能,唐业茂,范金国等.爆破震动作用下高陡边坡稳定性分析[J].矿业工程研究,2009,24(1):25-28.
    [75]费鸿禄,赵昕普.爆破振动对岩质边坡累积损伤影响实验研究[J].爆破,2009,26(4):14.
    [76]李俊如,李海波,高建光等.黄麦岭采场边坡爆破振动响应研究[J].岩石力学与工程学报,2004,23(17):2954-2958.
    [77]黎剑华,张龙,颜荣贵.爆破地震波作用下的边坡失稳贾昊与临界振速[J].矿冶,2001,10(1):11-15.
    [78]徐启明,李如忠.南芬露天铁矿台阶爆破降震措施探讨[J].矿业快报,2004,3(3):14-16.
    [79]中国工程爆破协会.爆破安全规程GB6722-2011[S].北京:人民交通出版社,2011.
    [80]唐海.地形地貌对爆破振动波影响的实验和理论研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [81]Chen M., Lu W.B., Yi C.P.. Blasting vibration criterion for a rock-anchored beam in an underground powerhouse[J]. Tunneling and Underground Space Technology,2007,22,69-79.
    [82]LSTC. LS-DYNA Keyword User's Manual[J]. California:Livermore Software Technology Corporation,2003.
    [83]Jiang N., Zhou C.B.. Blasting Vibration Safety Criterion of a Tunnel Liner Structure[J]. Tunneling and Underground Space Technology,2012,32:52-57.
    [84]蒋楠,周传波.爆破振动作用下既有铁路隧道结构动力响应特性[J].中国铁道科学,2011,32(6):63-68.
    [85]戴俊.柱状装药爆破的岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报,2001,20(2):144-147.
    [86]姚颖康.岩质高陡边坡不稳定体失稳机理与预测模型研究[D].武汉:中国地质大学,2008.
    [87]许红涛.岩石高边坡爆破动力稳定性研究[D].武汉:武汉大学,2006.
    [88]李云安,葛修润,糜崇蓉,等.岩-土-混凝土破坏准则及其强度参数估算[J].岩石力学与工程学报,2004,23(5):770-776.
    [89]李洪涛,卢文波,舒大强等.P波作用下衬砌混凝土的爆破安全振动速度研究[J].爆炸与冲击,2007,27(1):34-39.
    [90]蒋楠,周传波,罗钢等.铁路隧道混凝土衬砌爆破振动安全判据研究[J].中南大学学报(自然科学版),2012,43(7):2746-2750.
    [91]张程红.邻近隧道爆破施工引起的既有隧道衬砌振动速度阈值分析[D].兰州:兰州交通大学,2009.
    [92]黎剑华,张龙,颜荣贵.爆破地震波作用下的边坡失稳机理与临界振速[J].矿冶,2001,10(1):144-147.
    [93]交通部公路规划设计院.JTJ 004-89公路工程抗震设计规范[S].北京:人民交通出版社,1990.
    [94]Henrvch. J.爆炸动力学及其应用[M].刘殿中等译.北京:科学出版社,1987.
    [95]Achenbach J. D.. Wave propagation in elastic solids[M]. Amsterdam:North-Holland Publishing Company,1973.
    [96]苏先基,励争.固体力学动态测试技术[M].北京:高等教育出版社,1997.
    [97]Miklowitz J.. The theory of elastic waves and waveguides[M]. Amsterdam:North-Holland Publishing Company,1978.
    [98]于亚伦.工程爆破理论与技术[M].北京:冶金工业出版社,2004.
    [99]中国工程爆破协会.GB6722-2011爆破安全规程[S].北京:中国标准出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700