用户名: 密码: 验证码:
基于MEMS的TEM/SEM原位纳米结构拉伸实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物质结构的特征尺度减小至纳米尺度时,材料的物理性质将表现出与体材料很大的差异,这就是纳米尺度效应。了解材料在纳米尺度下的物理性质对未来纳米器件的研制是必要的。在对纳米材料物理性质众多的研究手段中,对纳米结构的力学加载研究是探索纳米结构物理本质的手段之一。实验上对纳米结构进行力学加载和测量极为困难。目前国际上主要利用AFM/探针技术和MEMS微执行器技术对纳米结构进行TEM/SEM原位机械加载从而获得纳米结构的力学特性。但目前国际上利用AFM/探针技术对纳米结构进行机械加载的实验系统尺寸较大、可控性差且非常复杂。相比之下MEMS执行器具有可控性高、尺寸小、功耗低、等众多优点。但目前国际上少数几个利用MEMS技术对纳米结构进行TEM/SEM原位力学加载的器件中由于集成了力学传感结构而使得结构和测试系统都非常复杂;而且难以实现在原位加载的过程中对纳米结构的力学性能和电学性能进行同时表征。
     针对以上的问题,本论文设计并制备出了结构简单、容易制备、可用于SEM/TEM原位纳米结构机械加载的MEMS器件,利用此器件对不同的纳米结构进行了TEM/SEM原位拉伸实验并表征其力学特性或者是拉伸过程中的电学特性,最终根据实验中所获得的经验对MEMS器件提出改进。研究内容具体包括以下几个方面:
     (1)在前人的研究基础上,搭建了单晶硅纳米梁在TEM内处于单轴拉伸状态下晶格常数测量的实验平台,进而在TEM中利用选区电子衍射成像模式对处于拉伸过程中的单晶硅纳米梁晶格常数进行测量,从而表征出处于拉伸过程中的单晶硅纳米梁晶格行为;并用单晶硅的晶格拉伸模型和位错模型对测量结果作出理论解释。
     (2)针对目前国际上难以实现对纳米结构力学特性和电学特性同时进行表征或表征系统过于复杂的问题,设计并制备出适用于对纳米结构进行SEM原位拉伸加载的、能在拉伸过程中对纳米结构电学特性进行测量的、结构简单易于制备的原位静电拉伸芯片;通过纳米操纵和组装技术将Cu纳米线以及SiC纳米线组装到此拉伸器件上并进行了SEM原位拉伸试验;分别获得了Cu纳米线和SiC纳米线的应力应变关系以及在不同拉伸应力下的I-V特性曲线。
     (4)本文还对Cu纳米线以及SiC纳米线的SEM原位拉伸实验结果进行了理论的探讨和研究。通过结合这两种纳米线的TEM高分辨原子图像以及相关文献调研结果,以Cu纳米线的表面氧化层电学阻隔效应来解释Cu纳米线的非线性电学特性,并以SiC纳米线在应力作用下表面能级模型来解释SiC纳米线的显著纳米压阻现象。
     (4)针对前面的静电拉伸器件占用面积大导致在TEM原位表征实验中只能用于单轴倾转样品杆的问题,以及静电梳齿的振动容易导致纳米结构断裂的问题提出占用面积小、适用于双轴倾转TEM样品杆、不容易发生振动而避免纳米线发生断裂的热驱动原位拉伸器件;利用弹性力学理论和热膨胀理论对热驱动拉伸芯片进行了力学和结构设计,利用多物理场模拟软件对热驱动原位拉伸器件进行进一步优化;并提出可行的器件微加工制作流程。
Nanostructures exhibit physical properties that are dramatically different from their bulk forms due to their extremely high surface-to-volume ratio, which we call nano-size effect. Therefore, understanding the physical properties of nanostructure would be essential for developing nanodevice when it is used as functional components. Among various experimental methods for exploring physical properties of nanostructure, mechanical loading would be the most important one since it varies the internal structure directly. However, applying mechanical load to nanostructure would be experimentally challenging due to the nanoscale of the specimen. There have been several experimental researches on applying mechanical load on nanostructure in TEM/SEM using AFM/probe technology or MEMS technology. AFM/probe loading technology has the disadvantages of low controllability and high complexity of testing system. Compared with AFM/probe, MEMS actuator has the advantage of smaller volume, lower power consumption, higher precision and easy to fabricate. However, most of the in-situ TEM/SEM MEMS devices for performing mechanical test on nanostructure is very complicated due to the integrated microforce/displacement sensing structure. Furthermore, there has been few experimental researches which are capable of performing mechanical and electrical test on nanostructure simultaneously, or their testing system is too complicated.
     To solve the problems mentioned above, this doctoral dissertation, based on former experimental achievements, designs and fabricates a simple and easier-to-fabricate MEMS actuator for performing in-situ TEM/SEM mechanical test on nanostructures. Using this device, in-situ TEM/SEM tensile test is performed on different nanostructures, and mechanical/electrical properties are characterized in process of the tensile test. Furthermore, a modified design is given for the MEMS actuator to improve the tensile experiment. Detailed work includes:
     (1) Based on previous work, an experimental platform for measuring lattice parameters of single crystal silicon (SCS) nanobeam is developed. And selected-area electron diffraction working mode of TEM is used to measure the lattice parameters of SCS nanobeam in process of tensile test, from which the lattice behavior of SCS nanobeam is studied.[110]-stretched lattice model and dislocation model are used to explain the experimental results.
     (2) In order to achieve simultaneous characterization of mechanical and electrical properties of nanostructure using simple testing device, a simple and easy-to-fabricate electrostatic actuator is developed for performing in-situ SEM mechanical and electrical test on nanowire simultaneously. A Cu nanowire and a SiC nanowire are integrated to the actuator using nanomanipulation and tested by the actuator. Stress-strain relations and I-V characteristic of both nanowires are obtained.
     (3) In order to explain the results of tensile experiments on Cu nanowire and SiC nanowire, high resolution TEM images are taken and possible theories are investigated. As a result, the oxide layer surrounding Cu nanowire acting as a tunneling barrier is responsible for the obvious nonlinearity of I-V curves, and the significant nano-piezoresistive effect of SiC nanowire is attributed to the stress-induced modulation of the surface potential barrier.
     (4) Finally, in order to overcome the disadvantage of electrostatic actuator being only compliant for single-tilt TEM specimen holder due to the its comparably big size and, more importantly, the disadvantage of movable combs'vibration which would break nanowire easily, a thermally actuated tensile device which is much smaller and has the advantages of being compliant for double-tilt TEM holder and generates less vibration is described. Dimensional parameters are designed for the thermal actuator using elastic mechanics and thermal expansion theory. Finite element method simulation is adopted to optimize the thermal tensile device, and possible fabrication process is designed.
引文
[1]张立德.2003.第四次浪潮:纳米冲击波[M].中国经济出版社,pp 1.
    [2]Li D, Wu Y, Kim P, et al.2003. Thermal conductivity of individual silicon nanowires[J]. Appl. Phys. Lett.,83(4):2934-2936
    [3]Li X X, Ono T, Wang Y L, et al.2003. Ultrathin single-crystalline-silicon cantilever resonators:Fabrication technology and significant specimen size effect on Young's modulus[J]. Appl. Phys. Lett.,83(15):3081-3083
    [4]Namazu T, Isono Y and Tanaka T.2000. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM[J]. J. Microelectromech. Syst., 9(4):450-459.
    [5]He R and Yang P.2006. Giant piezoresistance effect in silicon nanowires[J]. Nat. Nanotechnol.,1(1):42-46.
    [6]Yang Y and Li X.2011. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement[J]. Nanotechnology.,22: 015501.
    [7]Gao A, Lu N, Li T, Wang Y, Fan C, et al.2011. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nuleic acids [J]. Nano Lett.,11(9):3974-3978.
    [8]Bhushan B.2010. Springer handbook of nanotechnology[M].3rd ed. Columbus: Springer, 137
    [9]Ma D D D, Lee C S, Au F C K, Tong S Y and Lee S T.2009. Small-diameter silicon nanowire surfaces[J]. SCIENCE,299:1874-1877.
    [10]Polyakov B, Dorogin L M, Vlassov S, et al.2012. In situ measurement of ultimate bending strength of CuO and ZnO nanowires[J]. Eur. Phys. J. B,85:366
    [11]Yu M, Lourie O, Dyer M J, et al.2000. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science.,287:637-640
    [12]Polyakov B, Dorogon L M, Lohmus A, et al.2011. In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope[J]. Appl. Surf. Sci.,258: 3227-3231.
    [13]Polyakov B, Dorogon L M, Vlassov S, et al.2012. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope [J]. Micron., 43:1140-1146.
    [14]Golberg D, Costa P M F J, Wang M-S, Wei X, Tang D-M, Xu Z, et al.2012. Nanomaterial engineering and property studies in a transmission electron microscopy [J]. Adv. Mater.,24: 177-194.
    [15]Haque M A, Saif M T A.2001. In-situ tensile testing of nano-scale specimens in SEM and TEM[J]. Exp. Mech.,42(1):123-128.
    [16]Han J H, Saif M T.2006. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films[J]. Rev. Sci. Instrum.,77:045102.
    [17]Jin Q H, Wang Y L, Li T, Li X X and Xu F F.2008. A MEMS device for in-situ TEM test of SCS nanobeam[J]. Sci. China. Ser. E-Tech. Sci.,51(9):1491-1496.
    [18]Jin Q H, Li T, Wang Y L, Li X X, Yang H and Xu F F.2009. Young's modulus size effect of SCS nanobeam by tensile testing in electron microscopy [J]. IEEE SENSORS 2009 Conference,205-208.
    [19]Zhang D, Breguet J-M, Clavel R, et al.2010. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tesile stages[J]. J. Microelectromech. Syst.,19:663-674.
    [20]Zhang Y, Liu X, Ru C, Zhang Y, Dong L, Woo P, et al.2011. Piezoresistivity characterization of silicon nanowires using a MEMS device[J]. MEMS 2011, Cancun, MEXICO, January 2011,625-628.
    [21]Zhu Y, Espinosa D.2005. An electromechanical material testing system for in situ electron microscopy and applications [J]. P. Natl. Acad. Sci. USA,102(41):14503-14508.
    [22]Bernal R A, Agrawal R, Peng B, et al.2008. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements[J]. Nat. Nanotechnol.,3:626-631.
    [23]Bernal R A, Agrawal R, Peng B, et al.2011. Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomisitic modeling investigation[J]. Nano. Lett.,11:548-555.
    [24]Zhang Y, Han X, Zheng K, Zhang Z, Zhang X, Fu J, et al.2007. Direct observation of super-plasticity of beta-SiC nanowires at low temperature[J]. Adv. Funct. Mater.,17: 3435-3440.
    [25]Wang L, Zheng K, Zhang Z, et al.2011. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires[J]. Nano Lett.,11:2382-2385.
    [26]Li D, Wu Y, Kim P, Majumdar A, et al.2003. Thermal conductivity of individual silicon nanowires[J]. Appl. Phys. Lett.,83(14):2934-2936.
    [27]Zhang Y, Liu X, Ru C, et al. Piezoresistivity characterization of silicon nanowires using a MEMS device[J]. IEEE MEMS, Cancun, Mexico, January 2011.
    [28]Kim K S, Lim S C, Lee I B, et al.2003. In situ manipulation and characterizations using nanomanipulators inside a field emission-scanning electron microscope[J]. Rev. Sci. Instrum.,74(9):4021-4025.
    [29]Xie H, Regnier S.2011. Development of a flexible robotic system for multiscale applications of micro/nanoscale manipulation and assembly[J]. IEEE-ASME T. Mech.,16(2): 266-276.
    [30]Brown J J, Baca AI, Bertness K A, et al.2010. Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages[J]. Sensor. Actuat. A: Phys.,166: 177-186.
    [31]Smith C S.1954. Piezoresistance effect in Germanium and Silicon[J]. Phys. Rev.,94:42.
    [32]Shor J S, Goldstein D, and Kurtz A D.1993. Characterization of n-typeβ-SiC as a piezoresistor[J]. IEEE T. Electron. Dev.,40(6):1093-1099.
    [33]杨永亮.2010.基于微机械悬臂梁结构的MEMS探测器与传感器[D]:[博士].上海:中国科学院上海微系统与信息技术研究所,75-78.
    [34]Bir G L and Pikus G E.1974. Symmetry and strain-induced effects in semiconductors[M]. New York: Wiley.
    [35]Rowe A. C. H.2008. Silicon nanowires feel the pinch[J]. Nat. Nanotechnol.,3(6):311-312.
    [36]杨永亮.2010.基于微机械悬臂梁结构的MEMS探测器与传感器[D]:[博士],上海:中国科学院上海微系统与信息技术研究所,100-106.
    [37]Nicollian E H and Brews J R.1982. MOS (Metal Oxide Semiconductor) physics and technology[M]. New York: Wiley-Interscience,
    [38]Zhang P P, Tevaarwerk E, Park B N, Savage D E, Celler G K, Knezevic I, et al.2006. Electronic transport in nanometre-scale silicon-on-insulator membranes., Nature.,439: 703-706.
    [39]Teverovsky A.2007. Effect of mechanical stresses on characteristics of chip tantalum capacitors[J]. IEEE T. Device. Mat. Re.,7:399-406.
    [40]Tuttle B and Van de Walle C G.1999. Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon[J]. Phys. Rev. B,59:12884.
    [41]Yount J T, Lenahan P M, and Wyatt P W.1995. The effects of thermal nitridation and reoxidation on the interfacial stress and structure of silicon dioxide gate dielectrics[J]. J. Appl. Phys.,77:699-705.
    [42]Hamada A and Takeda E.1992. AC hot-carrier effect under mechanical stress[M]//1992 Symposium on Digest of Technical Papers.1992. City. Number of 98-99.
    [43]Legtenberg R, Groeneveld A W, Elwenspoek M.1996. Comb-drive actuators for large displacements[J]. J. Micromech. Microeng.,6:320-329.
    [44]Bao M.2005. Analysis and Design Principles of MEMS Devices[M]. Amsterdam: Elsevier, 76-77.
    [45]戎咏华.2006.分析电子显微学导论[M].北京:高等教育出版社,59-60.
    [46]戎咏华.2006.分析电子显微学导论[M].北京:高等教育出版社,67.
    [47]Liang J, Bi H, Wan D and Huang F.2012. Novel Cu nanowires/Graphene as the back contact for CdTe solar cells[J], Adv. Funt. Mater.22:1267-1271.
    [48]Http://en.wikipedia.org/wiki/Copper
    [49]Guo Z, Wang X, Yang X, Jiang D, Ma X and Song H.2008. Relationships between Young's modulus, hardness and orientation of grain in polycrystalline copper[J]. Acta. Metall. Sin.44: 901-904.
    [50]Cao A, Wei Y, and Ma E.2008. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowire: Molecular dynamics simulations[J]. Phys. Rev. B,77:195429.
    [51]Yue Y, Liu P, Zhang Z, Han X and Ma E.2011. Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano. Lett.,11:3151-3155.
    [52]Han X D, Zhang Y F, Zhang K, Zhang X N, Zhang Z, Hao Y J, et al.2007. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism[J]. Nano. Lett.,7:452-457.
    [53]Wang J, Lu C, Wang Q, Xiao P, Ke F J, Bai Y L, et al.2011. Understanding large plastic deformation of SiC nanowires and its atomic-scale mechanism[J]. EPL.95:63003.
    [54]Perisanu S, Gouttenoire V, Vincent P, Ayari A, Choueib M, Bechelany M, et al.2008. Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies[J]. Phys. Rev. B,77:165434.
    [55]Petrovic J J, Milewski J V, Rohr D L and Gac F D.1985. Tensile mechanical properties of SiC whiskers[J]. J. Mater. Sci.,20:116-1177.
    [56]Shor J S, Bemis L, and Kurtz A D.1994. Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements[J]. IEEET. Electron. Dev.,41(5):661-665.
    [57]Fraga M A, Pessoa R S, Maciel H S and Massi M.2011. Recent developments on silicon carbide thin films for piezoresistive sensors applications[M]//Mukherjee M. Silicon Carbide-Materials, Processing and Applications in Electronic Devices. Croatia: InTech, 369-388.
    [58]Choi Y S, Nishida T, and Thompson S E.2008. Inpact of mechanical stress on direct and trap-assisted gate leakage currents in p-type silicon metal-oxide-semiconductor capacitors[J]. Appl. Phys. Lett.,92:173507.
    [59]Lenahan P M, and Conley J F.1998. What can electron paramagnetic resonance tell us about the Si/SiO2 system?[J]. J. Vac. Sci. Technol. B,16:2134-2153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700