用户名: 密码: 验证码:
基于模拟对比的水封液化气库地下结构设计参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化气是液化石油气的简称,也叫液态烃,是在气田或油田的开采及石油炼制过程中产生的一部分气态烃类,经液化后分离出干气而得到的可燃液体。它是一种清洁、高效、低成本的优质能源,除了作为化工原料、发电燃料以外,在工程领域也得到了广泛的应用。世界各国都已将液化石油气能源作为战略能源,随着世界各国工业进程的不断深入发展,各国对液化气能源的储备更加重视,在世界各地修建了许多各种类型的油气储库,而储气库的类型也慢慢由刚开始的地上储气库逐渐转为地下洞室储存。地下空间作为一种资源已经得到业界的广泛认可,在相关规划和调研的基础上,如何充分利用该资源类型来建设地下储库也得到大量研究,其中的一个主要利用方式就是利用已有的或者人工挖掘的空间,而其中应用最多的大型储库是油气储库。
     液化石油气地下洞室存储目的可以分为国家战略储备、商业存储和个人存储。液化气的战略储备一般是国家直接投资或以其他方式拥有和控制一定数量的液化气,属于保障能源安全的一种重要手段,可以保证在发生战事、大规模禁运等非常时期,液化气的储备可应对国际液化气市场的剧烈动荡,从而减缓因此可能给国民经济带来的冲击。
     地下水封液化气库是埋藏在一定的地下水位以下,依靠地下水的压力来封存液化气,一般建造在围岩条件较好的地区,洞室围岩在不做支护或者较少支护的条件下,裸洞储存液化石油气。目前,国内建设的地下水封液化气库数量不多,可供借鉴和参考的类似的设计和施工经验很少,尚处于试验摸索的阶段,还有许多技术问题须进行深人研究。由于液化气属于易燃易爆物品,对其进行封存,不仅要求洞室处于稳定的地下水位以下,还对地下洞室的结构设计有较高要求,要求科学合理的选择结构设计参数以保证洞室围岩的稳定和储气库的安全运行。因此研究水封液化气库地下结构设计参数具有重要的实践意义和工程应用价值。
     烟台万华搬迁工程液化烃地下水封洞库项目是我国第一个大型地下水封液化气洞库,为保证地下水封液化气洞库的安全性、耐久性以及设计的合理性,需要对洞库的地下结构设计参数进行科学研究。论文以烟台万华老厂搬迁工程项目液化烃地下水封洞库的建设为工程背景,运用物理模型模拟试验及数值模拟试验,分别就洞室埋深、高跨比、间距等地下结构参数进行计算分析,为地下水封洞库工程设计提供可靠结构参数,为设计和施工提供理论指导。
     地下水封液化气库的特点决定了必须要充分依靠和利用建库区的天然地质环境条件,才能保证其自身的安全与稳定。本文在研究地下水封液化气库储气基本理论和洞库物理模拟试验原理的基础上,以烟台万华地下水封液化气库项目为依托,以环氧树脂为材料制作了一批光弹试验模型,运用409-2型光弹仪进行光弹试验。由于原出厂的光弹仪存在一些缺陷,为此,对其进行了升级改造,运用改造后的设备进行洞室模型光弹试验研究,同时采用数值模拟试验的方法对水封液化气库地下结构设计参数进行了研究,通过物理模拟和数值模拟的结果综合分析得出比较合理的结构设计参数值,为该洞库的设计和施工提供依据和参考。
     论文第二章从液化气的物理特性出发,对地下水封液化气库的基本理论进行了介绍和研究。介绍了液化气库的储存方式,阐述了水封液化气库的储存原理理论,对建设液化气库所必须具备的地质条件进行了论述,并对地下水封液化气库的优越性进行了说明,总结出地下油气储备库具有节约土地、投资省、污染小、保护环境、节省钢材、使用寿命长等特点,建设地下油气储备库是保障国家能源安全的重要措施,是确保安全平稳供气的最有效途径。
     论文第三章对光弹试验的基本原理进行了研究。光弹性试验方法是一种迅速、准确,经济、有效的应力分析方法,该方法的主要特点是直观性强,可以获取全场信息,通过光弹性试验,可直接观测到模型受力后的应力分布情况,特别是对那些理论计算较为困难、形状及载荷复杂的构件,光弹性试验方法更能显示出其优越性。它能迅速、准确地确定构件的应力集中系数,为改进结构设计,提高结构性能提供试验依据。光弹性试验方法已有一百多年的历史,试验技术也日益成熟和完善。目前。光弹性试验分析方法已广泛应用于航空、造船、机械、石化、水利和土木建筑等部门。论文介绍了平面偏振光、圆偏振光、光的干涉、双折射等光学基本原理,论证了平面应力-光学定律和平面偏振光的光弹效应,对等差线和等倾线的原理进行了详细分析,叙述了白光下的等色线特征和等差线级数的读取方法。在介绍模型相似定理的基础上,分析了模型相似条件。
     光弹性材料是光弹性应力分析中的一个关键问题。只有良好的材料才能充分显示出光弹性效应,才能据此分析各种力学问题。一个多世纪前,光弹性效应被发现,逐渐形成光弹性原理。由于当时材料不灵敏,模型难以加工,导致光弹试验发展缓慢。二十世纪环氧树脂材料出现以后,逐渐形成了以环氧树脂这种高分子聚合物为基础原料的光弹性材料,大大推动了光弹性法的发展。论文在对地下水封洞库建库原理和物理模拟试验原理进行研究后,第四章以烟台万华液化烃地下水封洞库为依托,采用环氧树脂材料制作了一批光弹试验模型用于物理模拟试验研究。对研究区的工程概况、研究区基本地质条件以及洞库区域地应力情况进行了详细介绍,为洞室物理模型加工制作和后期光弹试验奠定基础。在介绍模洞室模型选取原则的基础上,阐述了烟台万华液化烃地下水封洞库的模型选取方法和采用环氧树脂加工制作洞室模型的过程,共制作出单洞室模型6块,洞室群模型6块,共12块。
     光弹试验是运用某些特殊透明材料的应力-光学效应,采用光学原理去测量模型的应力场的实验应力分析方法,是一种全场应力测量法,具有直观性强、可靠性高等特点,对分析复杂构件应力场和应力集中现象尤为有利,在土木工程、机械工程等领域应用十分广泛。本次研究物理模拟试验采用了409-2型光弹仪,由于原出厂的409-2型光弹仪主要用于教学演示实验,为了将其运用到洞室研究中,需要对该光弹仪的部分设备进行设计改造。论文第五章介绍了用于试验的409-2型光弹仪及该光弹仪的光路图,提出了实现研究目标设备所存在的缺陷。针对试验设备的缺陷,运用机械设计与制造相关理论对原出厂的409-2型光弹仪的加载部分进行升级改造,改造后的加载系统由加载架和液压传动两部分组成,改造完成后的设备可以进行洞室模型的物理模拟试验。
     研究地下结构设计参数的方法很多,目前应用较多的有理论分析法、物理模拟法、数值模拟法、工程地质类比法、块体理论法等。物理模拟试验是建立在量纲分析原理和相似原理的基础之上的,一般是通过设计出与原型相似的模型,然后利用该模型来间接的研究原型的一种试验方法。物理模拟试验是人类改造和认识世界的基本方法,随着科学技术和生产力的发展而不断的发展。常用的物理模拟方法主要有模型试验(相似材料法)和光弹试验(光测弹性法)。第六章论文从洞室埋深,洞室高跨比和洞室间距等方面展开了研究,采用光学方法测量具有双折射性能的透明材料制作的受力摸型上各点应力状态,并在模型上施加外荷载,把承载的模型置于偏振光场中,观察与模型上各点应力状态有关的干涉条纹图,按照光弹性原理,确定受力模型各点的主应力差。针对烟台万华洞库,对其地下结构设计参数进行了定量分析。
     水封液化气库的地下结构设计属于工程力学的范畴,工程力学中的许多问题可用数值分析法划归为大型线性方程组来求解,如微分方程、多未知量等问题。尤其是在近几年的发展中,数值分析法得到了快速的发展,其主要原因是因为计算机的迅速发展推动了数值分析方法的快速发展。针对烟台万华水封液化气库,论文第七章采用数值模拟试验研究水封液化气库的地下结构设计参数,运用FLAC软件分别对地下洞室的埋深、高跨比和洞室间距进行了研究。通过与光弹试验的结论相互比较,综合分析,得出了科学的地下结构设计参数,为该项目的设计与施工提供了依据和参考。
     本论文主要有以下几个创新点:
     (1)通过物理模拟试验和数值模拟试验对比研究水封液化气库地下结构设计参数,得出科学可靠的洞室埋深、高跨比、间距等结构设计参数,为地下水封液化气库的结构设计和施工提供理论依据。
     (2)运用机械设计与制造相关理论对原出厂的409-2型光弹仪的加载部分进行升级改造,改造完成后的设备可以进行洞室模型的物理模拟试验研究。
     (3)运用光测弹性法对地下洞室的应力状态和变形特性进行分析,为准确获取地下结构设计参数提供理论支撑。
Liquefied gas is short for liquefied petroleum gas (LPG), also known as liquid hydrocarbon. It is an inflammable liquid separated from the liquefaction the gaseous hydrocarbon produced in gas-field exploitation, oilfield exploitation, or the process of petroleum refining with removal of dry gas. It is a clean, efficient, low-cost, and high-quality energy. Except as chemical raw material and fuel for power generation, it has been widely used in the field of industry and for civil use. Along with the development of the world industrial progress, various countries are paying more attention to the reserve of petrochemical energy as a national strategic energy, and all kinds of oil and gas storage caverns have been built around the world, with the their types changing gradually from aboveground at first to underground. The underground space has been a widely recognized resource in the industry. On the basis of related planning and research, much study has been conducted on how to make full use of this type of resource to build underground storage cavern. And one of the main utilization patterns is to use existing space or space dug out by hand. Most of large storage caverns are used for oil and gas reserve.
     The purposes of oil and gas storage include national strategy purpose, commercial storage purpose and personal storage purpose. Strategic reserve of oil and gas refers to a certain quantity of crude oil, refined oil and natural gas possessed and controlled by the central government through means of direct investment or other methods, which is an important means to ensure energy security. In emergency period of war and wide embargo, oil and gas reserves can cope with volatility of international oil market, and cushion or shield its possible impacts on national economy.
     At present, there are few domestic liquefied gas storage caverns under construction, therefore no similar design or construction experience can be used for reference. We are still in the stage of exploration and test, with many technical problems to be deeply studied. Due to particularity of substances stored, a high requirement is posed on the physical design of underground cavern. During the excavation process and after excavation, initial ground stress inside the cavern will redistribute, changes of internal force and deformation of surrounding rock, especially quantitative analysis on the internal force and deformation of surrounding rock under complex geological conditions and working conditions (such as high water level and dynamic loading, etc.) will help make the right judgment on safety and stability of the surrounding rock and provide theoretical basis for physical design and scientific construction. Therefore, study of physical design parameters of water-sealed liquefied gas storage cavern under specific geological conditions is of important value for engineering application.
     The underground water-sealed liquefied gas storage cavern project in the relocating project of Yantai Wanhua Group is China's first large-scale underground water-sealed liquefied gas storage cavern. In order to ensure the security, durability of the cavern and its reasonability of design, scientific research should be conducted on its underground physical design parameters. Based on the construction of underground water-sealed liquefied hydrocarbon cavern in the relocating project of the old Yantai Wanhua Factory, this paper uses numerical simulation test and physical model test to make computational analysis on parameters such as buried depth, depth-span ratio and spacing of the cavern, providing reliable structure parameters for the engineering design of underground water-sealed cavern and theoretical guidance for its design and construction.
     The characteristics of underground water-sealed liquefied gas storage cavern DECide that its safety and stability can only be ensured with a full dependence and use of the natural geological environmental conditions in cavern area. Based on the research of basic theory of gas storage in the cavern and principle of physical model tests, this paper relies on the Yantai Wanhua underground water-sealed liquefied gas storage cavern project to make a series of photoelastic test models with epoxy resin, and conducts photoelastic tests by Type409-2polariscope. Due to the defects of the factory-fresh polariscope, it has been upgraded before conducting the test. Meanwhile, we've also studied the structure parameters of the underground cavern with the method of numerical simulation test. The comprehensive analysis of physical model and numerical simulation results in reasonable structure parameters, which can be used as the basis and reference for the design and construction of the cavern.
     As a kind of basic chemical raw material and new type fuel, LPG has drew more attention from people. Boasting of its advantages of high calorific value, no dust, no carbon residue and convenient operation and use, the fuel of LPG has been widely used in life field. It is also used to cut metal, bake agricultural products and roast industrial kilns, etc. Chapter Two of this paper introduces storage mode of LPG cavern proceeding from its physical characteristics, illustrates the storage principle of water-sealed LPG cavern, discusses on the necessary geological conditions of constructing an LPG cavern, and illustrates the advantages of underground water-sealed liquid gas storage cavern. With many advantages of land saving, small investment, small pollution, environmental protection, steel saving and long service life, the construction of underground oil and gas storage cavern is an important measure to ensure national energy security, and also the most effective way to ensure safe and stable gas supply.
     Chapter Three gives a study on the basic principles of photoelastic test. This test is a rapid, accurate, economic and effective stress analysis method, with its main characteristic of strong intuitive. Through the test, you can get whole field information and can directly observe the stress distribution of stressed model, especially for the components with complicated shapes and load and difficult for theoretical calculation, it shows superiority. It can determine the stress concentration factor of component quickly and accurately, which provides experimental basis for improving structure design and structural performance. Photoelastic test has a history of over one hundred years, with its test technology becoming increasingly mature and perfect. At present, this test and analysis method has been widely used in aviation, shipbuilding, machinery, petrochemical, water conservancy and civil construction. This paper introduces basic principles of optics including plane-polarized light, circularly polarized light, interference of light and birefringence, demonstrates theorem of plane stress-optical and photoelastic effect of plane-polarized light, makes a detailed analysis on the principle of isochromatics and isoclinic, and describes the reading method of the features of isochromatics and series of isochromatics in the white light line. It analyzes the similarity of models on the basis of introducing model similarity theorem.
     Photoelastic materials is the key to photoelastic stress analysis. Only good materials can fully show the photoelastic effect, and therefore work as the basis for analyzing various mechanical problems. More than a century ago, photoelastic effect was found, and gradually evolved into the photoelastic principle. Due to the then insensitive material, it was difficult to process a model, leading to slow development of photoelastic experiment. Since epoxy resin material appeared in the twentieth century, polymer of epoxy resin has gradually become the basic raw material of photoelastic materials, which greatly promotes the development of the photoelastic method. After the research into construction principle of water-sealed cavern and principle physical model test, Chapter Four bases on Yantai Wanhua underground water-sealed liquefied hydrocarbon cavern, makes a series of photoelastic test models with epoxy resin for physical model test. It gives a detailed introduction of the project profile, basic geological conditions of the research area and the stress of cavern area, laying foundation for the processing and manufacturing of cavern physical models and photoelastic experiment in later period. It illustrates the method of selecting the model of Yantai Wanhua and the processing progress of making the model with epoxy resin on the basis of the principle of selecting the cavern model.12pieces of models have been made in total, including6pieces of single cavity and6pieces of multiple cavities.
     Photoelastic test is an experimental stress analysis method to measure the stress field of model using the stress-optical effect and optical theories of special transparent materials. It is a kind of whole field stress measurement method with features such as strong intuitive and high reliability, which is especially good for analyzing stress field in a complex structure and stress concentration, and is widely used in civil engineering, mechanical engineering and other fields. The study of physical model test uses the Type409-2polariscope. As the factory-fresh polariscope is mainly used in teaching demonstrative experiments, some components of the polariscope need to be transformed in design in order to be applied to the study of cavity. Chapter Five introduces the Type409-2polariscope used in tests and its beam path diagram, and puts forward the defects to realize the target device. Aimed at the defects, the loading system of the factory-fresh Type409-2polariscope has been upgraded and transformed according to related theory of mechanical design and manufacturing. After transforming, it consists of load frame part and hydraulic transmission part, and can be used for cavity model and physical model tests.
     There are many methods to study underground structure design parameters, of which the currently widely used are theoretical analysis method, physical simulation method, numerical simulation method, engineering geological analogy method, block theory method, etc. Physical simulation test is based on similarity theory and dimensional analysis, using model that is designed similar to its prototype to study the prototype indirectly. Simulation test develops with the development of production and science and technology, and has become one of the basic methods for human to understand and change the world. Commonly used methods of physical simulation include model test (similar material method) and photoelastic test (photoelastic method). In Chapter Six, the paper conducts research into aspects such as cavity depth, cavity depth-span ratio and cavern spacing, etc, uses optical method to measure the stress state of various points on the stressed model made of birefringent transparent material, imposes external force on the model, puts it into polarized light field and then observes fringe patterns related to the stress state. The fringe pattern is associated with stressed model boundary and its internal stress. The main stress difference and stress direction of various points on the model can be determined according to the principle of photoelastic.
     The underground physical design of water-sealed liquefied gas storage cavern belongs to the category of engineering mechanics, many problems of which can be classified to large-scale linear equations through numerical analysis method and be solved, such as differential equation and multiple unknown variables. Especially in recent years, numerical analysis method enjoys a great boom. The main reason for this is the rapid development of computer pushes forward the development of this method. Chapter Seven uses numerical simulation to study the design parameters of underground structure of water-sealed liquefied gas storage cavern, researches the cavity depth, cavity depth-span ratio and cavern spacing by means of FLAC software, and comes to the scientific design parameters of underground structure after comparison with photoelastic test and comprehensive analysis.
     There are three innovative points of this paper:
     (1) Make a comparative study of design parameters of underground structure of water-sealed liquefied gas storage cavern through physical model test and numerical simulation, obtain the scientific and reliable design parameters including cavity depth, cavity depth-span ratio and cavern spacing, and lays a theoretical foundation for physical design and scientific construction of underground water-sealed liquefied gas storage cavern.
     (2)Aimed at the defects, the loading system of the factory-fresh Type409-2polariscope has been upgraded and transformed according to related theory of mechanical design and manufacturing. After transforming, it can be used for cavity model and physical model tests.
     (3)Analyze the stress state and deformation characteristics of underground cavern by means of photoelastic test, and provide a theoretical basis for obtaining the accurate underground structure design parameters.
引文
[1]杨明举.地下水封裸洞储气应力场、渗流场、储气场耦合模型的研究及其工程应用[D].成都:西南交通大学,2001.
    [2]吴忠鹤,贺宇.地下储气库的功能和作用[J].天然气与石油,2004,22(2):1-4.
    [3]陈家新,谭羽飞,余其铮.天然气地下储气库规划设计要点[J].油气储运,2001,20(7)13-16.
    [4]李林宏.LPG地下储库安全性浅析[J].广州化工,2010,38(4):256-258.
    [5]杨明举,关宝树,钟新樵.水封式地下储气洞库的应用及研究[J].地下空间,2000,20(3):171-175.
    [6]丁国生,谢萍.中国地下储气库现状与发展展望[J].天然气工业,2006,26(6):111-113.
    [7]杨伟,王雪亮.国内外地下储气库现状及发展趋势[J].油气储运,2007,26(6)15-19.
    [8]王希勇,熊继有,袁宗明,等.国内外天然气地下储气库现状调研[J].天然气勘探与开发,2004,27(1):49-51.
    [9]何庆华,何文渊.国内外地下储备库发展现状与启示[J].天然气技术,2007,1(4):13-15.
    [10]宋杰,刘双双,李巧云等.国外地下储气库技术[J].内蒙古石油化工,2007(8):209-212.
    [11]丁国生,李文阳.国内外地下储气库现状与发展趋势[J].国际石油经济,2002,10(6):23-26.
    [12]闫光灿.世界地下储气库[J].天然气与石油,1997,19(3):4-9.
    [13]李铁,刘广文.地下储气库的建设与发展[J].油气储运,2000,19(3):1-8.
    [14]李国兴.地下储气库的建设与发展趋势[J].油气储运,2006,25(8):4-6.
    [15]高发连.地下储气库建设的发展趋势[J].油气储运,2005,24(6):15-18.
    [16]夏喜林.LPG地下水封岩洞储库断面设计与研究[D].东营:石油大学,2003.
    [17]王梦恕,杨会军.地下水封岩洞油库设计、施工的基本原则[J].中国工程科学,2008,10(4):11-16.
    [18]高飞.不同埋深情况下地下水封洞库稳定性分析[J].中国科技财富,2010,(16):180.
    [19]刘琦,卢耀如,张风娥,等.地下水封储油库库址的水文地质工程地质问题[J].水文地质工程地质,2008(4):1-5.
    [20]李莉,何江达,余挺,等.关于地下厂房纵轴线方位的优化设计[J].四川大学学报(工程科学),2003,35(3):35-37.
    [21]张玉升.黄岛地下水封洞库洞室群合理主轴线方位探讨[J].勘察科学技术,2011,(4):43-45.
    [22]涂希贤,张辅纲.广蓄电站库址及地下厂房洞室群位置选择[J].水力发电.1993,(7).
    [23]米应中.板桥峪抽水蓄能电站地下厂房位置及其轴线方向的选择[J].水利水电技术.1999,30(9):21-23.
    [24]王成菊,成旭东,黄建新.江垭电站地下厂房设计[J].水力发电.1999,(7).
    [25]李锦飞,琅砑山抽水蓄能电站厂房位置及轴线方向的优化选择[J].工程地质学报.2003,11(4):416-420.
    [26]冯明权,冉隆田,秦建彬,等.乌江彭水水电站地下主厂房选址工程地质研究[J].人民长 江.2007,38(9):106-109.
    [27]袁广祥,尚彦军,史永跃,等.与地下石油储备库有关工程地质问题研究现状和对策[J].工程地质学报,2006,14(06):792-799.
    [28]王芝银,李云鹏,郭书太,等.大型地下储油洞粘弹性稳定性分析[J].岩土力学,2005,26(11):1705-1710.
    [29]Bjorkman G. S. and Richards R.:Harmonic hole-an inverse problem in elasticity. ASME Journal of Applied Mechanics,1976,43:414-418.
    [30]Bjorkman G. S. and Richards R.:Harmonic hole for nonconstant field. ASME Journal of Applied Mechanics,1979,46:573-576.
    [31]Richards R. and Bjorkman G. S.:Optimum shapes for tunnels an d cavities. Proceedings of the 17th United States Symposium on Rock Mechanics. University of Utah, Salt Lake City, Utah:1976.
    [32]Richards R. and Bjorkman G. S.:Optimum shapes for unlined tunnels and cavities. Engineering Geology,1978,12:171-179.
    [33]Dhir S. K.:Optimization in a class of h ole shapes in plate structures. ASM E Journal of Applied Mechanics,1981,48:905-908.
    [34]孙焕纯,张巨勇,严国梅,等.弹性平面孔洞形状优化复变函数方法[J].应用数学和力学,1978,8(2):133-141.
    [35]吕爱钟.地下洞室最优开挖形状的确定方法[J].岩石力学与工程学报,1996,15(3):275-281.
    [36]段亚刚.地下大型储备库洞室断面形状优化及合理间距研究[D].北京:北京交通大学,2007.
    [37]中华人民共和国水利部.SL266-2001,水电站厂房设计规范[S].北京:中国水利水电出版社,2001.
    [38]中华人民共和国水利部.JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.
    [39]葛玉芹.六潜高速小净距隧道施工方法及合理净距的数值模拟研究[D].合肥:合肥工业大学,2008.
    [40]门妮.小净距隧道最小合理净距及支护研究[D].长春:吉林大学,2007.
    [41]王后裕,陈上明,言志信,等.地下洞室断面和间距优化计算的分布密度法[J].工程力学,2004,21(3):204-208.
    [42]杨万斌,薛玺成.地下洞室的间距和断面优化计算方法[J].岩土工程学报,2001,23(1):61-63.
    [43]王伟,夏才初,朱合华,等.双线盾构越江隧道合理间距优化与分析[J].岩石力学与工程学报,2006,25(1):3311-3316.
    [44]刘艳青,钟世航,卢汝绥,等.小净距并行隧道力学状态的试验研究[J].岩石力学与工程学报,2000,19(5):590-594.
    [45]Fumagalli E. Slatical and Geomechanical Model. New York:Springer,1973.
    [46]Muller L, Reik G, Fecker E, et al. Importance of model studies on geomechanics//The International Conference on Geomechanical model. Bergamo, Italy,1979.
    [47]Fumagalli E. Geomechanical models of dam foundation//The International Conference on Geomechanical model. Bergamo, Italy,1979.
    [48]Barton N R. A low strength material for simulation of the mechanical properties of intact rock mechanics//The International Conference on Geomechanical model. Bergamo, Italy,1979.
    [49]Kulatilake P H, He W, Um J, et al. A physical model study of jointed rock mass strength under uniaxial compressive loading. International Journal of Rock Mechanics and Mining Sciences,1997,34:3-4.
    [50]Khosrow B. Impact of joints and discontinuities on the blast-response of responding tunnels studied under physical modeling. International Journal of Rock Mechanics and Mining Sciences,1997,34:3-4.
    [51]Liu J, Feng X T. Stability assessment of the three-gorges dam foundation, China using physical and numerical modeling-Part 1:Physical model tests. International Journal of Rock mechanics and Mining Science,2003,40:609-631.
    [52]Li Z K, Liu H, Dai R, et al. Application of numerical analysis principles and key technology for high fidelity simulation to 3-D physical model tests for underground caverns. Tunnelling and Underground Space Technology,2005,20:390-399.
    [53]Castro R, Trueman R, Halim A. A study of isolated draw zones in block caving mines by means of a large 3D physical model. International Journal of Rock Mechanics and Mining Science,2007,44:860-870.
    [54]Jong H S. Model testing for pipe-reinforced tunnel heading in a granular soil. Tunnelling and Underground Space Technology,2008,23:241-250.
    [55]Meguid M A. Physical modeling of tunnels in soft ground. Tunnelling and Underground Space Technology,2008,23:185-198.
    [56]张强勇,李术才,李勇,等.地下工程模型试验新方法、新技术及工程应用[M].北京:科学出版社,2012.
    [57]韩伯鲤,陈霞龄,宋一乐.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [58]马芳平,李仲奎,罗光福NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-52.
    [59]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [60]李树忱,冯现大,李术才,等.新型固流藕合相似材料的研制及应用[J].岩石力学与工程学报,2010,29(2):281-288.
    [61]徐文胜,许迎年,王元汉,等.岩爆模拟相似材料的筛选试验研究[J].岩石学与工程学报,2000,19(sup):873-877.
    [62]何显朴,马洪琪,张林,等.地质力学模型试验方块与变混相似模型材料研究[J].岩石力学与工程学报,2009,28(5):980-985.
    [63]张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [64]张强勇,刘德军,贾超,等.盐岩油气储库介质地质力学模型相似材料的研制[J].岩士力学,2009,30(12):3581-3586.
    [65]刘德军,吕晶,张强勇,等.具有流变特性的盐岩相似材料的研制及应用[J].岩土工程学 报,2011,33(10):1590-1595.
    [66]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学模型试验[J].水利学报,2002,5(5):31-36.
    [67]陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究[J].武汉水利电力大学学报,1994,27(1):18-23.
    [68]陈安敏,顾金才,沈俊,等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [69]陈安敏,顾欣,顾雷雨,等.锚固边坡楔体稳定性地质力学模型试验研究[J].岩石力学与工程学报,2006,25(10):2092-2101.
    [70]朱维申,李勇,张磊,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.
    [71]孙晓明,何满潮,刘成禹,等.真三轴软岩非线性力学试验系统研制[J].岩石力学与工程学报,2005,24(16):2870-2873.
    [72]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004,23(21):3727-3731.
    [73]蒋树屏,刘洪洲,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报,2000,19(5):567-572.
    [74]张强勇,李术才,尤春安.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(1):143-148.
    [75]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2001,42(1):131-139.
    [76]张强勇,李术才,李勇,等.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(sup2):4051-4059.
    [77]Zhang Q Y, Li S C, Guo X H. Research on 3D geomechanics models test for a large scale bifurcation tunnel project//Lee S B, et al. Key Engineering Material. Zurich, Switzerland: Trans Tech Publication Company Limited,2006:557-560.
    [78]张强勇,陈旭光,林波.高地应力真二维加载模型试验系统的研制及其应用[J].岩土工程学报,2010,32(10):1588-1593.
    [79]张强勇,陈旭光,张宁,等.交变气压风险条件下层状盐岩地下储气库注采气大型二维地质力学试验研究[J].岩石力学与工程学报,2010,29(12):2410-2419.
    [80]Frocht M.M.Photoelasticity(Ⅰ).New York:John Wiley & Sons, Inc.,1941(陈森译.光测弹性力学Ⅰ[M].北京:科学出版社,1964)
    [81]贾有权.光弹性原理及测试技术[M].北京:科学出版社,1964.
    [82]谢文广,周静,王强.光弹性法的发展与应用[J].现代物理知识,2006,18(3):34-36.
    [83]云大真,于万明.结构分析光测力学[M].大连:大连理工大学出版社,1996.
    [84]云大真.光弹性实验[M].北京:国防工业出版社,1978.
    [85]李伯芹,刘光廷,彭光履,等.水二建筑物光测应力分析[M].北京:水利电力出版社,1988.
    [86]丁皓江,何福保,谢贻权,等.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989.
    [87]Coker EG, Filon LNG. A treatise on photoelasticity. First edn 1931. Revised edn Jessop HT, Cambridge University Press, London.1967.
    [88]雷振坤.彩色域数字光弹性中数据采集技术的应用研究[D].大连:大连理工大学,2002.
    [89]关祥慧,谢卫红.用Koch曲线模拟岩石结构面粗糙度的光弹试验[J].岩石力学与工程学报,1999,18(4):451453.
    [90]连志颖,陆渝生,叶琳,等.地质断层对地下结构震塌影响机理的动光弹试验研究[J].爆炸与冲击,2003,23(6):565-568.
    [91]冯小琴,宋文爱,马锦红.光弹性技术测试应力[J].电子测试,2009,(2):6-8.
    [92]任春红.光弹性实验中研究应力集中的两个问题[J].河南机电高等专科学校学报,2004,12(2):18-19.
    [93]马寅生,曾庆利,张兴.黄骅坳陷新生代构造应力场演化的光弹模拟与石油地质条件分析[J].地质力学学报,2002,8(3):219-228.
    [94]李寻昌,门玉明,翟越,等.锚杆抗滑桩受力特性的光弹试验研究[J].水文地质工程地质,2011,38(2):63-6.
    [95]陆渝生,连志颖,邹同彬,等.柔性与刚性分配层防护机理的动光弹试验分析[J].解放军理工大学学报(自然科学版),2003,4(16):54-57.
    [96]程勃,孙毅民,许梦国,等.深部矿井卸压开采的光弹试验与模拟研究[J].化工矿物与加工,2011,(6):20-23.
    [97]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001.
    [98]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [99]刘贯群,韩曼,宋涛,等.地下水封石油洞库渗流场的数值分析[J].中国海洋大学学报(自然科学版),2007,37(5):819-824.
    [100]巫润建,李国敏,董艳辉,等.锦州某地下水封洞库工程渗流场数值分析[[J].长江科学院院报,2009,26(10):87-91.
    [101]刘青勇,万力,张保祥,等.地下水封石洞油库对地下水的影响数值模拟分析[J].水利水电科技进展,2009,29(2):61-65.
    [102]廖红建.岩土工程数值分析[M].北京:机械工业出版社,2009.
    [103]崔俊芝,梁俊.现代有限元方法[M].北京:国防工业出版社,1995.
    [104]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    [105]饶寿期.有限元法和边界元法基础[M].北京:北京航空航天大学出版社,1990.
    [106]周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005.
    [107]Cundall P A. A computer model for simulating progressive large scale movement in block rock system. Symposium ISRM,1971, Proc 2:129-136.
    [108]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483490.
    [109]魏群.散体单元法的基本原理、数值方法及程序[M].北京:科学出版社,1991.
    [110]陈文胜,土桂尧,刘辉,等.岩石力学离散单元计算方法中的若干问题探讨[J].岩石力学与工程学报,2005,24(10):1639-1644.
    [111]郑榕明,陈文胜,葛修润,等.金山店铁矿地下开采引起地表变形规律的离散元模拟研究[J].岩石力学与工程学报,2002,21(8):1130-1135.
    [112]Cundall P A, Hart R D. Development of generalized 2-D and 3-D distinct element programs for modeling jointed rock[R].[s.l.]:ITASCA Consulting Group, Misc.U.A.Army Corps of Engineers,1985.
    [113]Cundall P A. Formulation of a three-dimensiona distinct element model-part 1:A scheme to detect and represent contacts in system composed of many polyhedral blocks[J]. Int. J Rock Mech., Min. Sci. & Geomech. Abstr.,1988,25(3):107-116.
    [114]Hart R, Cundall P A, Lemos J. Formulation of a three-dimensional distinct element model-part II:mechanical calculations of motion and interaction of a system composed of many polyhedral blocks[J]. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1988,25(3):117-120.
    [115]王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [116]王泳嘉,刘连峰.三维离散元软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):201-210.
    [117]刘连峰,王泳嘉.Cundall离散单元法的计算复杂性研究[J].有色金属(矿山部分),1995,(3):16-19.
    [118]陶连金,张卓元,姜德义.复杂工程岩体稳定性评价.成都:城都科技大学出版社,1998.
    [119]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [120]Itasca Consulting Group, Inc.. Fast Language Analysis of continua in 3 dimensions, version3.0, user's manual[R]. Itasca Consulting Group, Inc.,2005.
    [121]孙书伟,林杭,任连伟,等.FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011.
    [122]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [123]黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14(4):346-354.
    [124]梁海波,李仲奎,谷兆祺.FLAC程序及其在我国水电工程中的应用[J].岩石力学与工程学报,1996,15(3):225-230.
    [125]陈文胜,冯夏庭,葛修润.静态松弛快速拉格朗日分析方法原理[J].岩石力学与工程学报,1999,18(6):680-684.
    [126]谢和平,周宏伟,王金安,等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [127]寇晓东,周维垣,杨若琼.FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-10.
    [128]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [129]王芝银,王思敬,杨志法.岩石大变形分析的流形方法[J].岩石力学与工程学报,1997,16(5):399-404.
    [130]蔡永昌.流形方法的理论与应用研究[D].重庆:重庆大学,2001.
    [131]Amirsoleylnani.T. Geometrie. Design of tunnel in highly stressed rock, international symposium on tunnelling for water resources and power project. New Delhi, India,1988, 111-116.
    [132]Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support[J].Rock Mech,1974,6(4):183-236.
    [133]DhirS.K. Optimization in a class of hole shapes in plate structures. ASME Journal of Applied Mechanics,1981,48:905-908.
    [134]Lee C.J., Wu B.R., Chen H.T. Tunnel stability and arching effects during tunneling in soft clayed soil[J]. Tunnelling and Underground SPaceTeehnology.2006,21:119-132.
    [135]Richards R., Bjorkman G. S. Optimum shapes for tunnels and cavities. Proceedings of the 17th United States Symposium on Rock Mechanics. University of Utah, Salt Lake City, Utah:1976.
    [136]Schimit L.A. Structural design by systematic synthesis. Proe.2nd Conf, Elect. Compu. A SCE.1960:105-132.
    [137]安红刚.大型洞室稳定性分析与优化的综合集成智能方法研究[D].武汉:中国科学院武汉岩士力学研究所,2002.
    [138]毕继红,丛蓉.各种形状洞室的围岩压力分析[J].地下空间,2004,24(1):23-26.
    [139]Dr.E Hoek. Practical Rock Engineering[M].2000.
    [140]N. Barton. Some new Q-value correlations to assist insite characterisation and tunnel design[J]. International Journal of Rock Mechanics&Mining Sciences 39 (2002) 185-216.
    [141]John Kemeny, Randy Post.2003. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces[J]. Computers&Geosciences,(29):65-77.
    [142]Ladandyi B. Archambault G.1979. Shear stress and deformation of filled indented joints, Proc. int. Symp[J].Geotechnique of structurally complex Formations.
    [143]Lee Y H, Carr J R, Bars D J,Hass C J. The fractal dimension as a measure of the roughness of Rock discontinuity profiles[J].INT J.Rock Mech. MIN. Sci.1990,27:453-464.
    [144]Zhang Xingqiang, Qi Lan, Research on Complicated Dam Foundation During Excavation with Three-Dimension Visc-Elastic Plastic Condensed FEM [J].Transaction of Tianjin University,2000,6(1):60-64.
    [145]Yoon. W. S, Jeong U J. Kinematics analysis for sliding failure of multi-faced rock slopes [J] Engineering Geology,2002,67(1):51-61.
    [146]Tan Tjong kie.Kang wenfa. Lockes in stresses, Creep and Dilatancy of Rocks and Constitutive Equations [J].Rock Mech.,1981 (113):5-22.
    [147]Sia Nemat-Nasser.A micromechanically-based constitutive model for frictional deformation of granular materials[J].Journal of the Mechanics and Physics of Solids 2000(48): 1541-1563.
    [148]J.L.Chaboche, J.F.Maire.A new micromechanics based CDM model and its application to CMC's[J].Aerospace Science and Technology,2002(6):131-145.
    [149]S.Murakami and K.Kamiya.Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermo dynamics[J]. Int.J.Mech.Sci.1997(39): 473-486.
    [150]K.Hayakawa, S.Murakami and Y.Liu.An irreversible thermodynamics theory for elastic-plastic-damage materials[J].Int.J.Mech.Sci.1997(39):473-486.
    [151]杜国敏,耿晓梅,徐宝华.国外地下水封岩洞石油库的建设与发展[J].油气储运.2006(4):5-6.
    [152]Lee C I, Song J J. Rock engineering in underground energy storage in Korea[J]. Tunnelling and Underground Space Technology.2003,18(5):467-483.
    [153]Aberg B. Prevention of gas leakage from unlined reservoirs in rock[C].Stoekholm:Oxford, New York, Pergamon Press,1977.
    [154]Goodall D C. Containment of gas in rock caverns[D].Berkley:University of California, 1986.
    [155]Suh J, Chung H, Kim C. A study on the condition of preventing gas leakage from the unlined rock cavern[Z].Helsinki, Finland:1986:725-736.
    [156]Rehbinder G, Karlsson R, Dahlkild A. A study of a water curtain around a gas store in rock[J]. Applied Scientific Researeh.1988,45(2):107-127.
    [157]Nilsen, Olsen. Storage of gases in rock caverns[M].Rotterdam, Netherlands:A. A. Balkema,1989.
    [158]Hamberger U. Case history:Blowout at an LPG storage cavern in Sweden[J]. Tunnelling and Underground Space Technology.1991,6(1):119-120.
    [159]Yang D W, Kim D S. Preliminary study for determining Water curtain design factor by optimization technique in underground energy storage[J]. International Journal of Rock Mechanics and Mining Sciences.1998,35(4-5):409.
    [160]Kim T, Lee K K, Ko K S, et al. Ground water flow system inferred from hydraulic stresses and heads at an underground LPG storage cavern site[J]. Journal of Hydrology.2000, 23(3-4):165-184.
    [161]Eric A, Francois C, Anne M. Groundwater management during the construction of underground hydrocarbon storage in rock caverns[Z]. University of Oviedo, Oviedo; Strain: 2005,311-315.
    [162]Yamamoto H, Pruess K. Numerical Simulations of Leakage from Underground LPG Storage Caverns[R].2004.
    [163]Chung I, Cho W, Heo J. Stochastic hydraulic safety factor for gas containment in underground storage caverns[J]. Journal of Hydrology.2003,28(1-4):77-91.
    [164]高翔,谷兆棋.人工水幕在不衬砌地下贮气洞室工程中的应用[J].岩石力学与工程学报.1997,16(2):178-187.
    [165]Park J J, Jeon S, Chung Y S. Design of Pyongtaek LPG storage terminal underneath Lake Namyang:A case study[J]. Tunnelling and Underground Space Technology.2005,20(5): 463-478.
    [166]Levinsson L, Ajling G, Nord G. Design and construction of the Ningbo underground LPG storage project in China[J]. Tunnelling and Underground Space Technology Underground space for sustainable urban development. Proceedings of the 30th ITA-AITES World Tunnel Congress.2004,19(4-5):374-375.
    [167]Benardos A G, Kaliampakos D C. Hydrocarbon storage in unlined rock caverns in Greek limestone[J]. Tunnelling and Underground Space Technology.2005,20(2):175-182.
    [168]Sturk R, Stille H. Design and excavation of rock caverns for fuel storage-a case study from Zimbabwe[J].Tunnelling and Underground Space Teehnology.1995,10(2):193-201.
    [169]Lee Y N, Yun S P, Kim D Y, et al. Design and construction aspects of unlined oil storage caverns in rock[J].Tunnelling and Underground Space Technology.1996,11(1):33-37.
    [170]Lee Y N, Suh Y H, Kim D Y, et al. Stress and deformation behavior of oil storage caverns during excavation[J].International Journal of Rock Mechanics and Mining Sciences. 1997,34(3-4):301-305.
    [171]Lu M. Finite element analysis of a pilot gas storage in rock cavern under high pressure[J]. Engineering Geology,1998,49(3-4):353-361.
    [172]Tezuka M, Seoka T. Latest technology of underground rock cavern excavation in Japan[J]. Tunnelling and Underground Space Technology,2003,18(2-3):127-144.
    [173]连建发.锦州大型地下水封LPG洞库岩体完整性参数及围岩稳定性评价研究[D].北京:中国地质大学(北京),2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700