用户名: 密码: 验证码:
有机废水乙醇型发酵产氢系统快速启动及其生物强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于生物制氢技术具有清洁无污染和可再生性等优点,被普遍认定是符合低碳战略和可持续发展战略的一种新型生物技术。在生物制氢技术中,发酵法生物制氢因稳定性好、产氢能力高而具有更好的工业化前景。乙醇型发酵产氢是一种新发现的混合培养发酵法生物制氢方法。本文围绕着乙醇型发酵产氢过程的快速启动和生物强化进一步提高产氢效能开展研究,以期为生物制氢技术的工业化提供技术依据和理论支撑。
     采用糖蜜废水作为有机碳源,利用连续流完全混合搅拌槽式反应器(CSTR),探讨了乙醇型发酵和丁酸型发酵产氢过程的差异,证实了前者具有更优的产氢特性。通过探讨乙醇型发酵产氢过程的快速启动、控制方法及控制参数,以及系统的运行稳定性,表明以控制有机负荷(OLR)为主,以pH值监测和调节为辅助的手段能够较快地形成乙醇型发酵类型。实验结果表明,接种活性污泥量(以VSS计)为17.7g/L,温度为35℃,HRT为6h,当厌氧发酵产氢系统的pH降低到3.2时,产乙醇菌群受到的抑制程度是最小的;当发酵产氢系统的pH恢复到4.6时,产乙醇菌群的代谢活性恢复较快,通过调节进水COD浓度(启动初期4000mg/L下降到2000mg/L),并以调节系统pH值为辅助手段,厌氧发酵制氢系统可在11d左右完成乙醇型发酵的快速启动。
     利用颗粒活性炭的吸附性能,对CSTR生物产氢反应器的活性污泥进行固定化,形成完全混合生物膜法制氢工艺。在连续流运行过程中,获得了不同的产酸发酵类型及产氢能力。丁酸型发酵和乙醇型发酵适宜的pH值范围分别为4.4~4.7和4.0~4.2,ORP范围分别为-200~-350mV和-330~-350mV。乙醇型发酵获得的最大产氢速率为3.9m~3/(m~3·d),氢气含量56%,优于丁酸型发酵。冲击负荷实验表明,COD有机负荷从正常运行时的40kg/(m~3·d)降低到12kg/(m~3·d),运行7d后,再提升到28kg/(m~3·d)的过程中,系统的pH值虽然下降至3.2,但是恢复正常的底物供给时,系统pH值很快恢复至4.5左右,氢气含量从17%上升到48%,产气量增加30%。这说明完全混合生物膜法制氢工艺具有良好的缓冲性能及运行稳定性。
     采用高效产氢菌种对CSTR产氢系统实施生物强化,确定了连续流发酵法产氢工艺的最佳生物强化控制参数和高效菌种的投加技术。研究表明,系统在一定控制条件下达到稳定运行状态,在有机负荷为12kgCOD/(m~3·d)、投加菌种量为5%的条件下,系统生物强化作用后的平均产气能力和平均产氢能力比生物强化处理前分别提高了12.9%和18%。而且,生物强化作用进一步提高了反应系统的运行稳定性。
Biohydrogen production is a new technology which accords with the strategyof continuous development because of its prominent advantage of cleanness andhigh efficiency. Among the ways of biohydrogen production, biohydrogenproduction from fermentation is more prominent than biohydrogen production fromphotosynthesis because of its stability and ability of hydrogen production. Theethanol type of biohydrogen production from fermentation regarded as the optimalone for the biohydrogen production from fermentation process. Therefore, it wasinvestigated the rapid start up of ethanol type of fermentatitive hydrogen productionand effects of bioaugment on hydrogen production, in order to provide fermentativehydrogen production for industrialization.
     The difference of hydrogen production in ethanol type and butyrate typefermentation with continuous stirred tank reactor (CSTR) using molasseswastewater as organic substrate was investigated. It was also explored how torealize the quick start up ethanol type fermentation. The CSTR reator was opratedwith VSS of17.7g/L, temperature of35°C, HRT of6h. The results showd thatethanol producing bacterial was inhibited least when pH was3.2in the reactor andthe activity of ethanol producing bacterial restored faster compared with otherbacterial. Therefore, it was concluded that the anaerobic fermentative hydrogenproduction system could form ethanol type fermentation in11d with influent CODdecreased from4000mg/L to2000mg/L and the assistance of pH.
     Utilizing the adsorption performance of granular activated carbon, aerobiccultivated sewage sludge was self-immobilized as biological carriers. A completelymixed bio-film process for hydrogen production was developed by the combinationof biological carriers and continuous stirred tank reactor. In the long timecontinuous operation, hydrogen producing ability and ecological factors underdifferent organic wastewater acidogenic fermentation types were obtained. Butyricacid fermentation and ethanol fermentation were feasible in the pH ranges4.4~4.7,4.0~4.2, respectively; while ORP ranges were-200~-350mV,-330~-350mV,respectively. The reactor with ethanol fermentation achieved a maximum hydrogenyield rate of3.9m~3/(m~3·d) while hydrogen content was56%, superior to other fermentation types. To simulate load impact in actual operation, COD organicloading rate was reduced to12kg/(m~3·d) from40kg/(m~3·d) and promoted to28kg/(m~3·d) after7days. Although the pH value once drops to3.2during fiercefluctuations, the pH value ascended to4.5and gross gas production raised30%withthe hydrogen content promoted to48%from17%when the normal substrate supplywas restored. It is indicated that the completely mixed bio-film hydrogen productionreactor has good buffer performance and operational stability.
     Optimal biological enhanced control parameters and efficient strain dosingtechnology for continuous flow fermentation hydrogen production process aredetermined by implementation of bio-enhanced hydrogen for CSTR system by usingefficient hydrogen strains. The results demonstrated that, when the system wasstabled at OLR of12kg COD/m~3·d, and the inoculation quantity of R3was5%, theaverage biogas production capacity and the average hydrogen production capacitywere improved12.9%and18%, respectively. Moreover, the composition of thefermentation products and operational stability were improved.
引文
[1]“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究[M].化学工业出版社,2004.
    [2] Bockris J O’M. The Origin of Ideas on a Hydrogen Economy and Its Solution tothe Decay of the Environment[J]. Int J Hydrogen Energy.2002,27:731-740.
    [3] Dunn S. Hydrogen Futures: Toward a Sustainable Energy System[J]. Int JHydrogen Energy.2010,27:235-264.
    [4] Azbar N, Keskin T, Catalkaya E C. Improvement in anaerobic degradation ofolive mill effluent (OME) by chemical pretreatment using batch systems[J].Biochem. Eng. J.2008,38:379-383.
    [5] Hallenbeck P, Benemann J R. Biological Hydrogen Production: Fundamentalsand Limiting Processes[J]. Int J Hydrogen Energy.2011,27:1185-1194.
    [6] Lee D Y, Li Y Y, Noike T. Continuous H2production by anaerobic mixedmicroflora in membrane bioreactor[J]. Bioresour Technol.2009,100(2):690-695.
    [7] Hawkes R, Dionsdale D L, Hawkes I, et al. Sustainable Fermentative HydrogenProduction: Challenges for Process Optimisation[J]. Int J Hydrogen Energy.2009,27:1339-1347.
    [8]任南琪,王爱杰.厌氧生物技术原理与应用[M].化学工业出版社,2004:212-275.
    [9]任南琪.有机废水处理生物产氢原理与工程控制对策研究[D].哈尔滨建筑大学博士学位论文,1993.
    [10] Pinto F A L, Troshina O, Peter L. A Brief Look at Three Decades of Research onCyanobacterial Hydrogen Evolution[J]. Int J Hydrogen Energy.2011,27:1209-1215.
    [11] Oh Y K, Seol E H, Kim J R, et al. Fermentative Biohydrogen Production by aNew Chemoheterotrotrophic Bacterium Citrobacter sp. Y19[J]. Int J HydrogenEnergy.2003,28:1353-1359.
    [12]李建政,汪惠.废物资源化与生物能源[M].化学工业出版社,2004:29-47.
    [13] Gaffron H, Rubin J. Fermentative and Photochemical Production of Hydrogen inAlgae[J]. The Journal of General Physiology.1942,26(2):219-240.
    [14] Kumar N, Das D. Enhancement of Hydrogen Production by Enterobacter cloacaeII T-08[J]. Process Biochemistry.2010,35:589-593.
    [15]林明.高效产氢发酵新菌种的产氢机理及生态学研究[D].哈尔滨工业大学博士学位论文,2002.
    [16]林明,任南琪,马汐萍等.产氢发酵细菌培养基的选择和改进[J].哈尔滨工业大学学报.2003,35(4):398-402.
    [17]任南琪,王宝贞.有机废水发酵法生物制氢技术原理与方法[M].黑龙江科技出版社,1994.
    [18] Tsygankov A A, Hirata Y, Miyake M, et al. Photobioreactor with PhotosyntheticBacteria Immobilized on Porous Glass for Hydrogen Photoproduction[J]. J.Ferment Bioeng.1994,77:575-578.
    [19] Yang H, Shao P, Lu T, et al. Continuous bio-hydrogen production from citricacid wastewater via facultative anaerobic bacteria[J]. Int J Hydrogen Energy.2009,31(10):1306-1313.
    [20] Worse C R, Kandler O, Wheelis M L. Towards a Natural System of Organisma:Proposal of the Domains Archaea, Bacteria, And Eucayao[J]. Proc. Natl.Acad. Sci.1990,87::4576-4579.
    [21]李建政,任南琪,林明等.有机废水发酵法生物制氢中试研究[J].太阳能学报.2002,23(2):252-256.
    [22]宫曼丽,任南琪,李永峰等.生物制氢反应器不同发酵类型产氢能力的比较[J].哈尔滨工业大学学报.2006,38(11):1826-1830.
    [23]任南琪,林明,马汐萍等.厌氧高效产氢细菌的筛选及其耐酸性研究[J].太阳能学报.2003,24(1):80-84.
    [24]丁杰,任南琪,刘敏等. Fe和Fe2+对混合细菌产氢发酵的影响[J].环境科学.2004,25(4):48-53.
    [25] Lin C Y, Lay C H. Effects of Carbonate and Phosphate Concentrations onHydrogen Production using Anaerobic Sewage Sludge Microflora[J]. Int JHydrogen Energy.2004,29:275-281.
    [26]王勇,任南琪,孙寓娇. Fe对产氢发酵细菌发酵途径及产氢能力的影响[J].太阳能学报.2003,24(2):222-226.
    [27] Tashino S, Suzuk Y, Wakao N. Fermentative Hydrogen Evolution byEnterobacter aerogenes Strain E.82005[J]. Int. J. Hydrogen Energy.1987,12(9):623-627.
    [28] Karube, Matsunaga T, Tsuru S, et al. Continuous Hydrogen Production byImmobilized Whole Cells of Clostridium butyricum[J]. Biochim Biophys Acta.1976,444(2):338-343.
    [29] Tashino S. Feasibility Study of Biological Hydrogen Production from SugarCane by Fermentation[J]. Hydrogen Energy Progress XI Proceedings of11thWHTC, Stuttgart.1996,3:2601-2606.
    [30] Yokoi H, Ohkawara T, Hirose J, et al. Hydrogen Production by ImmobilizedCells of Aciduic Enterobacter aerogenes Strain HO-39[J]. J. Ferment. Bioeng.1997,83(5):481-484.
    [31] Ren N Q, Wang B Z, Huang J L. Ethanol-type Fermentation from Carbohydratein High Rate Acidogenic Reactor[J]. Biotechnol. Bioeng.2007,54:428-433.
    [32] Yokoi H, Maeda Y, Hirose J. H2Production by Immobilization Cells ofClostridium butyricum on Porous Glass Beads[J]. Biotechnology Techniques.1997,11(6):431-433.
    [33] Wang X J, Ren N Q, Xiang W S. Magnesium Improve Hydrogen Production by aNovel Hydrogen-producing Bacterial Strain B49[J]. J. Harbin. Ins. Techno.2005,12(2):164-168.
    [34] Rachman M A, Nakashimada Y, Eahizono T, et al. Hydrogen Production withHigh Yield and High Evolution Rate by Self-flocculated Cells of Enterobacteraerogenes in a Packed-bed Reactor[J]. Appl. Microbiol. Biotechnol.2008,49:450-454.
    [35] Minnan L, Jinli H, Xiaobin W, et al. Isolation and Characterization of a HighH2-producing Strain Klebsiella oxytoca HP1from a Hot Spring[J]. Research inMicrobiology.2009,156:76-81.
    [36] Chen W M, Tseng Z J, Lee K S, et al. Fermentative Hydrogen Production withClostridium butyricum CGS5Isolated from Anaerobic Sewage Sludge[J]. Int JHydrogen Energy.2007,30:1063-1070.
    [37] Jung G. Y, Kim J R, Park J Y, et al. Hydrogen Production by a NewChemoheterotrophic Bacterium Citrobacter sp.19[J]. Int J Hydrogen Energy.2002,27:601-610.
    [38] Tashino S, Wakao N, Kosako Y. Biological Hydrogen Production byEnterobacter aerogenes[J]. J Chem. Eng of Japan.1983,16(6):529-530.
    [39] Collet C, Adler N, Schwitzgu1ebe J P, et al. Hydrogen Production byClostridium Thermolacticum during Continuous Fermentation of Lactose[J]. IntJ Hydrogen Energy.2004,29:1479-1485.
    [40] Fabiano B, Perego P. Thermodynamic Study and Optimization of HydrogenProduction by Enterobacter aerogenes[J]. Int. J. Hydrogen Energ.2002,27:149-156.
    [41] Angenent L T, Karim K, Al-Dahhan M H, et al. Production of Bioenergy andBiochemicals from Industrial and Agricultural Wastewater[J]. TRENDS inBiotechnology.2004,22(9):477-485.
    [42] Logan B E. Biological Hydrogen Production Measured in Batch AnaerobicRespirometers[J]. Environ. Sci. Technol.2002,36:2530-2535.
    [43] Kawaguchi H, Hashomoto K, Hirata K, et al. H2Production from Agal Bimassby Mixed Culture of Rhodobium marinum A-501and Lacterbacillusamylovorus[J]. J. Biosci. Bioeng.2011,91(3):277-282.
    [44] Hwang M H, Jang N J, Hyun S H. Anaerobic bio-hydrogen production fromethanol fermentation: the role of pH. Journal of Biotechnology[J].2004,111:297-309.
    [45] Fardeau M L, Ollivier B, Garcia J L, et al. Transfer of Thermobacteroidesleptospartum and Clostridium thermolacticum as Clostridium stercorariumsubsp. Leptospartum subsp[J]. Int J Syst Evol Microbiol.2011,51:1127-1131.
    [46] Kisaalita W S, Lo K V. Kinetics of Whey-Lactose Acidogenesis[J]. BiotechnolBioeng.1989,33:623-630.
    [47] Ruyet P Le, Dubourguier H C, Albagnac G.. Characterization of ClostridiumThermolacticum sp. nov., A Hydrolytic Thermophilic Anaerobe Producing HighAmounts of Lactate[J]. Syst Appl Microbiol.1985,6(2):196-202.
    [48] Zhang Y F, Liu G Z, Shen J Q.Hydrogen Production in Batch Culture of MixedBacteria with Sucrose under Different Iron Concentrations[J]. Int J HydrogenEnergy.2009,30:855-860.
    [49] Frick R, Junker B. Indirect Methods for Characterization of Carbon DioxideLevels in Fermentation Broth[J]. J Biosci Bioeng.1999,87(3):344-351.
    [50] Lee Z K, Li S L, Lin J S, et al. Effect of pH in fermentation of vegetable kitchenwastes on hydrogen production under a thermophilic condition[J]. Int JHydrogen Energy.2008,33(19):5234-5241.
    [51] Lin C Y, Lay C H. Carbon/nitrogen Effects on Fermentative HydrogenProduction by Mixed Microflora[J]. Int J Hydrogen Energy.2004,29:41-45.
    [52] Woodward J, Orr M, Cordray K, et al. Enzymatic Production of Biohydrogen[J].Nature.2010,405:1014-1015.
    [53] Kim S H, Han S K, Shin H S. Effect of substrate concentration on hydrogenproduction and16S rDNA-based analysis of the microbial community in acontinuous fermentor[J]. Process Biochem.2009,41(1):199-207.
    [54] Show K Y, Zhang Z P, Tay J H, et al. Production of hydrogen in a granularsludge-based anaerobic continuous stirred tank reactor[J]. Int J HydrogenEnergy.2009,32(18):4744-4753.
    [55] Davila-Vazquez G, Cota-Navarro C B, Rosales-Colunga L M. Continuousbiohydrogen production using cheese whey: Improving the hydrogen productionrate[J]. International Journal of Hydrogen Energy.2009,34(10):4296-4304.
    [56] Chen C C, Lin C Y, Chang J S. Kinetics of Hydrogen Production withContinuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate[J].Appl Microbiol Biotechnol.2001,57(1-2):56-64.
    [57] Nakamura H, Mochimura M. Photohydrogen Production and NitrogenaseActivity in Some Hetercystous Cyanobacteria[J]. Biohydrogen II. ElsevierScience.2001:63-66.
    [58] Palazzi E, Fabiano B, Perego P. Process Development of Continuous HydrogenProduction by Enterobacter Aerogenes in a Packed Column Reactor[J].Bioprocess Eng.2010,22:205-213.
    [59] Chen W H, Chen S Y, Khanal S K, et al. Kinetic study of biological hydrogenproduction by anaerobic fermentation[J]. Int J Hydrogen Energy.2009,31:2170-2178.
    [60]秦智.生物制氢反应器发酵类型控制对策及生物强化作用[D].哈尔滨工业大学博士学位论文,2003.
    [61] Yokoi H, Maki R, Hirose J, et al. Microbioal Production of Hydrogen fromStarch-Manufactureing Wastes[J]. Biomass&Bioenergy.2011,22(5):389-395.
    [62] Nakashimada Y, Rachman M A, Kakizono T, et al. Hydrogen Production ofEnterobacter Aerogenes Altered by Extracellular and Intracellular RedoxStates[J]. Int J Hydrogen Energy.2002,27:1399-405.
    [63] Ren N, Li J, Li B, et al. Biohydrogen production from molasses by anaerobicfermentation with a pilot-scale bioreactor system[J]. International Journal ofHydrogen Energy.2006,31:2147-2157.
    [64] de Corte B, Dries D, Verstraete W, et al. The Effect of the Hydrogen PartialPressure on the Metabolite Pattern of Lactobacillus Casei, Escherichia coli andClostridium Butyricum[J]. Biotechnol Lett.1989,11(8):583-588.
    [65] Han S K, Shin H S. Biohydrogen Production by Anaerobic Fermentation of FoodWaste[J]. Int. J. Hydrogen Energ.2010,29:569-577.
    [66] Zheng H, Zeng R J, Angelidaki I. Biohydrogen production from glucose inupflow biofilm reactors with plastic carriers under extreme thermophilicconditions (70°C)[J]. Biotechnol Bioeng.2008,100(5):1034-1038.
    [67] Ren N Q, Chua H, Chan S Y, et al. Assessing optimal fermentation type forbio-hydrogen production in continuous-flow acidogenic reactors[J]. BioresourceTechnology.2007,98:1774-1780.
    [68]李白昆.有机废水发酵法产氢原理研究-产氢细菌产氢机理和能力[D].哈尔滨建筑大学博士学位论文,1995.
    [69] Kayano H, Matsunaga T, Karube I, et al. Hydrogen evolution by co-immobilizedChlorella vulgaris and Clostridium butyricum cells[J]. Biochim. Biophys. Acta.1981,638(1):80-85.
    [70] Yokoi H, Tokushige T, Hirose J, et al. H2Production from Starch by a MixedCulture of Clostridium Butyricum and Enterobacter Aerogenes[J]. BiotechnolLett.1998,20:143-147.
    [71] Taguchi F, Mizukami N, Saiti-Taki T, et al. Hydrogen Production fromContinuous Fermentation of Xylose during Growth of Colstridium sp[J]. No.2.Can. J. Microbiol.1995,41:536-540.
    [72] Roychowdhury S, Cox D, Levandowsky M. Production of hydrogen bymicrobial fermentation[J]. International Journal of Hydrogen Energy.1988,13(7):407-410.
    [73] Yu H Q, Hu Z H, Hong T Q. Hydrogen Production from Rice Winery Wastewaterby Using A Continuously Stirred Reactor[J]. J. Chem. Eng. Jpn.2003,36:619–626.
    [74] Melis T. Green Alga Production: Process, Challenges, and Prospects[J]. Int JHydrogen Energy.2009,27:1217-1228.
    [75] Kennedy K J, Jinghua L, Mohn W W. Biosorption of chlorophenols to anaerobicgranular sludge. Water Research.1992,26(8):1085-1092.
    [76]苏月来,谢雨生,张建中等.有毒难降解有机物废水处理的生物强化技术[J].环境污染与防治.1999,01:36-40.
    [77]方建章,成文,罗国维等.水解-好氧-混凝沉淀工艺处理涤纶厂聚酯废水[J].环境污染与防治.1997,06:49-52.
    [78] Chun C W, Lee C M, Lu C J, et al. Biodegradation of2,4,6-trichlorophenol inthe presence of primary substrate by immobilized pure culture bacteria [J].Chemosphere.2000,41(12):1873-1879.
    [79]李建政,蒋凡,郑国臣. ABR发酵产氢系统的控制运行及产氢效能[J].环境科学学报.2010,30(1):79-87.
    [80] Lindblad P, Christensson K, Lindberg P, et al. Photoproduction of H2byWildtype Anabaena PCC1720and a Hydrogen Uptake Deficient Mutant: fromLaboratory to Outdoor Culture[J]. Int J Hydrogen Energy.2002,27:1271-1281.
    [81] Tokhi M O, Chambers C, Hossain M A. Performance Evolution With Dsp andtransputer Based Systems Inrealtime Signal Processing And ControlApplications[C]. Control96, UKACC International Conference on (Conf. Publ.No.427).1999,01:371-375.
    [82] Saravanane R, Murthy D V S, Krishnaiah K. Bioaugmentation and treatment ofcephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidizedbed system[J]. Bioresource Technology.2001,76:279-281.
    [83] Hung C H. The Hung Postpartum Stress Scale[J]. Journal of Nursing Scholarship.2007,39(1):325-329.
    [84] Belia E, Smith P G. The bioaugmentation of sequencing batch reactor sludges forbiological phosphorus removal. Wat Sci Tech.1997,35(1):19-23.
    [85] Sarno, Iijima M, Lumbanraja J, et al. Soil chemical properties of an Indonesianred acid soil as affected by land use and crop management[J]. Soil&TillageResearch.2004,76(2):113-118.
    [86]全向春,刘佐才,范广裕.生物强化技术及其在废水治理中的应用[J].环境科学研究.1999,12(3):86-89.
    [87] Soda S, Uesugi K, IKE M, et al. Application of a flocforming genericallyengineered microorganism to a sequencing batch reactor for phenolicwastewater treatment[J]. Journal of Bionscience and Bioengineering.1999,88(1):85-91.
    [88] Mizuno O, Dinsdale R, Hawkes F R, et al. Enhancement of HydrogenProduction from Glucose by Nitrogen Gas Sparging[J]. Bioresour Technol.2010,73:59-65.
    [89] Koe L C C, Ang F L. Bioaugmentation of anaerobic digestion with a biocatalyticaddition:The bacterial nature of the biocatalytic addition[J]. Water Research.1992,5:389-392.
    [90] Vartak D R, Mcfarland M J, Ricke S C, et al. Attached-film media performancein psychrophilic anaerobic treatment of dairy cattle wastewater[J]. BioresourceTechnology.1997,62(3):112-115.
    [91] Quasim S R, Stinehelfer M L. Effect of a baqcterial culture product on biologicalkinetics[J]. J Water Pollut Control Fed.1982,54:255-258.
    [92]顾传辉,陈桂珠.石油污染土壤生物修复[J].重庆环境科学.2001,23(2):58-62.
    [93]宋炯生,韩立平,张金栋.煤焦油在浮法玻璃熔窑的应用[J]. GLASS.2006,33(3):115-119.
    [94] Lestan D, Grcman H, Zupan M, et al. Relationship of soil properties tofractionation of Pb and Zn in soil and their uptake into Plantago lanceolata[J].Soil&Tillage Research.2003,12(4):507-522.
    [95]赵荫薇,王世明,张建法.微生物处理地下水石油污染的应用研究[D].中国科学院上海冶金研究所,2000.
    [96] Patureau D, Bouchez T, Dabert P, et al. Biological nitrogen removal in a singleaerobic reactor by association of a nitrifying ecosystem to an aerobic denitrifier,Microvirgula aerodenitrificans[J]. Journal of Molecular Catalysis B: Enzymatic.1998,5(1-4):435-439.
    [97] Schwarzenbeck N, Erley R, Wilderer P A. Aerobic granular sludge in anSBR-system treating wastewater rich in particulate matter[J]. Water Science andTechnology.2004,49:11-12.
    [98] Uyttendaele M, Grangette C, Rogerie F, et al. Influence of cold stress on thepreliminary enrichment time needed fordetection of enterohemorrhagicEscherichia coli in ground beef by PCR[J]. Applied and EnvironmentalMicrobiology.1998,64(5):1640-1643.
    [99]李建政.有机废水发酵法生物制氢技术研究[D].哈尔滨建筑大学博士学位论文,1999.
    [100]托雷斯N V,沃伊特E O.代谢工程的途径分析与优化[M].修志龙,腾虎译.化学工业出版社,2009.
    [101]贾士儒.生物反应工程原理[M].科学出版社,2002.
    [102]Garcia J L, Patel BK, Ollivier B. Taxonomic, phylogenetic, and ecologicaldiversity of methanogenic Archaea[J]. Anearobe.2000,6(4):205-26.
    [103]Yong-feng LI, Hong CHEN, Tao ZHAO. Effects of Fe2+on fermentation andbiohydrogen production of Biohydrogenbacterium R3sp.nov[J]. AdvancedMaterials Research.2011,152-153:1062-1065.
    [104]陈晓蕾,任南琪.有机废水产酸发酵顶极群落研究-生态因子pH、Eh的影响[D].哈尔滨工业大学硕士学位论文,1998.
    [105]赵丹,任南琪,王爱杰,陈晓蕾.产酸相稳定发酵类型微生物生态学研究[J].2003,26(6):55-59.
    [106]Nandi R, Sengupta S. Microbial Production of Hydrogen: An Overview[J]. CritRev Microbiol.1998,24(1):61-84.
    [107]Wang C C, Chang C W, Chu C P, et al. Producing Hydrogen from WastewaterSludge by Clostridium Bifermentans[J]. J Biotechnol.2011,102(1):83-92.
    [108]Lee Y J, Miyahara T, Noike T. Effect of pH on Microbial HydrogenFermentation[J]. J Chem Technol Biotechnol.2009,77(6):694-698.
    [109]Sparling R, Risbey D, Poggi-Varaldo H M. Hydrogen Production from InhibitedAnaerobic Composters[J]. Int J Hydrogen Energy.1997,22(6):563-566.
    [110]Kataoka N, Miya A, Kiriyama K. Studies on Hydrogen Production byContinuous Culture System of Hydrogen Producing Anaerobic Bacteria[J].Water Sci Technol.1997,36(6-7):41-47.
    [111]Sridhar J, Eiteman M A, Wiegel J W. Elucidation of Enzymes in FermentationPathways Used by Clostridium thermosuccinogenes growing on Inulin[J]. AppEnviron Microbiol.2000,66(1):246-251.
    [112]Jones R P, Greenfield P F. Effect of Carbon Dioxide on Yeast Growth andFermentation[J]. Enzyme Microbiol Technol.1982,4:210-223.
    [113]Yamada A, Takano H, Burgess J G., et al. Enhanced Hydrogen HydrogenProduction by a Marine Photosynthetic Baterium, Rhodobacter marimus,Immobilized onto Light-diffusing optical fibers[J]. J. Mar. Biotechnol.2006,4:23-27.
    [114]Zita A, Hermansson M. Effects of Bacterial Cell Surface Structures andHydrophobicity on Attachment to Activated Sludge Flocs[J]. Appl. Environ.Microbiol.1997,63(3):1168-1170.
    [115]Horiuchi J I, Shimizu T, Tada K, et al. Selective Production of Organic Acids inAnaerobic Acid Reactor by pH Control[J]. Bioresour Technol.2009,82:209-213.
    [116]Kanagawa E, Mikami K. Survival of a non-flocculating bacterium. Thiobacillusthioparus TK-1, inoculated to activated sludge[J]. Water Research.1995,29(12):2751-2754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700