用户名: 密码: 验证码:
层状节理岩体高边坡地震动力破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震诱发的层状节理岩体高边坡破坏是一种常见的的自然地质灾害,破坏范围极大,破坏力极强。对于其地震动力破坏机理的研究,涉及到多学科的交叉,一直是科学界的研究重点和难点之一。目前的研究手段和研究方法多数借鉴于对土质边坡地震动力破坏机理研究的成果,不能很好的反映出层状节理岩体的结构特征和动力变形破坏特点。本文从层状节理岩体的物理力学特征入手,以结构面网络控制理论为核心思想,综合利用工程地质分析法、岩体力学理论、岩石断裂力学理论、物理模型试验手段和数值模拟试验手段,分别针对顺层节理岩体高边坡、逆层节理岩体高边坡和近水平层状节理岩体高边坡的地震动力破坏机理进行了系统的研究探索,主要的研究结论如下:
     以结构面网络控制理论为指导思想,系统分析了三种层状节理岩体高边坡的岩体结构面网络发育特征和物理力学性质,将结构面分为层面和正交次级节理面两大类,认为层面和正交次级节理均存在着贯通部分和非贯通部分;着重强调了正交次级节理对岩体边坡地震动力稳定性的影响;指出岩体结构面的非贯通部分所具有的强度对岩体边坡地震动力稳定性的贡献十分显著。
     运用岩体力学理论和岩石断裂力学理论,通过理论推导和对前人试验结果的分析,明确了岩石材料内部的微裂纹只能产生Ⅰ型张拉破坏,而所谓的岩石裂纹Ⅱ型剪切破坏,实际上是由无数微观的Ⅰ型张拉破坏面连接而成的细观破坏面,其尺度已经超出经典材料断裂力学微观尺度研究范畴,不属于真正意义上的裂纹Ⅱ型剪切破坏,从而说明岩石断裂力学实际上是一门介于微观和宏观尺度之间的材料科学。推导了层状岩体层面内部细观裂纹扩展贯通的断裂力学计算公式和破坏判据,研究了在不同应力条件下和不同的层面强度条件下层面内部裂纹扩展贯通的规律。研究结果证明,层面的强度与受力状态相关,并且层面强度与完整岩块强度的比值会影响层面的扩展模式。改进了层状岩体内部正交次级节理形成机制构造力学模型,并分析了不同构造力学条件下正交次级节理扩展的断裂力学机制。利用岩石断裂力学理论从力学角度系统研究和总结了为何层状岩体中的正交次级节理无法穿透层面切割多层岩石。研究结果表明,产生这种现象的原因主要有:正交次级节理无法穿透已经产生贯通的层面;由于非贯通层面断裂韧度远低于完整岩块断裂韧度,因此正交次级节理在扩展至与非贯通层面交汇时,无论处于何种应力状态,均会优先沿层面延伸方向产生扩展,使层面逐渐贯通,而无法切穿非贯通层面进而切割多层岩石。
     总结了顺层、逆层和近水平层状节理岩体高边坡地震动力破坏基本特征,改进了各类边坡的地震动力破坏模型。以结构面网络控制理论为指导,分别对顺层、逆层和近水平层状节理岩体高边坡在地震动力作用下内部层面和正交次级节理面的破坏模式进行了详细的分类研究,通过研究证明,对于顺层节理岩体高边坡,在水平地震动力作用下其内部非贯通层面部位也可能处于受拉应力状态,产生张拉破坏,并非只能产生剪切破坏。通过分析指出,贯通结构面由于胶结或填充作用所具有的微小抗拉强度不能在动力破坏分析过程中被忽视,因为当抗拉强度丧失后,贯通结构面的抗剪强度也会显著减小。为此,提出了考虑贯通结构面动力破坏过程中抗拉强度与抗剪强度关系的改进Mohr-Coulomb破坏准则。
     使用相似材料制作了含有非连续的层面和非贯通的次级节理顺层和逆层岩质边坡物理模型,并对其进行了离心机动力试验研究。对岩石相似材料的常规试验和裂纹扩展试验结果证明本文所设计的岩石相似材料制作方法和闭合接触层面和次级节理制作方法能够较好的反映真实层状节理岩体的物理力学特性。岩石相似材料采用石膏和细砂及水的混合物通过标准化的制备方法制成,其物理力学特性与沉积砂岩近似:设计了新的工艺和新的方法,首次实现了完全闭合接触的贯通层面的制作;实现了层面非贯通部位的精确位置控制和较为精确的强度控制;设计并改进了离心机试验系统,其中改进了试验加载平台,使其适用于岩体边坡模型动力试验;设计了新的裂隙扩展监测装置,用于监测边坡层面的准确破坏时刻。离心机模型试验结果证明:①边坡地形放大效应与地震动力输入频率和振幅有关,并分析推断产生这种现象的原因为边坡阻尼的影响,阻尼不是常数,与震动频率有关,并且阻尼越大,边坡的地形放大效应越明显;②层状岩体中广泛发育的正交次级节理对层状岩质边坡的动力响应和动力破坏均存在显著的影响,含有正交次级节理的边坡模型动力稳定性小于不含有正交次级节理的边坡模型。
     完善了使用非连续性介质模拟方法和连续性介质模拟方法进行层状节理岩体高边坡建模进行耦合计算的原理及具体实现方法。其中非连续介质建模部分采用PFC2D软件,连续性介质建模部分采用FLAC软件。系统研究了由颗粒集合体粘结而成的PFC2D岩块模型中颗粒细观参数与模型宏观参数之间的关系;改进了非贯通Smooth Joint接触模型破坏准则,设计了两种在PFC2D层状岩体模型内部表达层状岩体内部正交次级节理的方法,即通过折减层间岩块强度的隐式方法,和使用改进的Smooth Joint接触模型显式添加正交次级节理的方法:建立了PFC2D层状岩体模型,通过对模型进行单轴抗压试验,并与岩石断裂力学理论计算结果相对比,证明了该模型的适用型。
     分别建立了顺层、逆层、近水平层状节理岩体高边坡PFC2D/FLAC耦合计算模型,进行了边坡地震动力破坏过程数值模拟,分析了各类边坡地震动力破坏的基本模式,并针对层状节理岩体中层面和正交次级节理的参数对边坡地震动力破坏过程的影响进行了试验研究,研究结果如下:
     在地震动力破坏过程中,顺层节理岩体边坡主要沿层面与正交次级节理组合而成的破坏面产生滑动破坏。内部非贯通层面不只会产生剪切破坏,而且会产生张拉破坏;正交次级节理主要产生张拉破坏,几乎不存在剪切破坏。非贯通层面部分的强度和层面贯通率对顺层边坡地震动力稳定性的影响十分明显,贯通层面摩擦角的影响较小;非贯通正交次级节理强度和节理间距对边坡地震动力稳定性、破坏模式、破坏范围均有着显著的影响:贯通正交次级节理的摩擦角对边坡地震动力过程几乎不产生影响。试验结果证明,层状岩体中广泛发育的正交次级节理对顺层岩体边坡地震动力破坏模式影响显著,在进行顺层节理岩体边坡地震动力稳定性分析时,必须考虑正交次级节理的发育对其破坏模式和稳定性的影响。实验结果还证明,顺层岩体边坡地震动力顺层滑动破坏机理的传统理论存在着漏洞,顺层边坡内部的层面,即使在如本文所施加的水平地震动力作用下,仍然可以产生张拉破坏,因此在对边坡地震动力稳定性的研究中,必须考虑层面抗拉强度的影响。试验中顺层节理岩体高边坡的动力破坏是一个渐进的过程,随着地震动力输入的增强,边坡破坏区域由表层区域逐渐向边坡内部扩展,边坡在破坏过程中内部会形成多条贯通破坏面,破坏区域的岩体在地震动力作用过程中也会产生内部的解体。因此,传统的只针对某一指定潜在破坏面进行的顺层边坡地震动力稳定性分析,只能计算出边坡沿着该指定破坏面破坏的情况下的稳定性,但这不能完整的表达边坡的实际动力稳定性。为此,设计了一种新的顺层节理岩体边坡动力稳定性判定方法,采用两个基本参数进行破坏判别:①边坡内部形成首条贯通破坏面所需的地震动力输入强度;②首条贯通破坏面所围破坏区域大小。该判定方法既可以判断边坡的动力稳定性,又可以判断边坡失稳后破坏范围的大小。
     在地震动力破坏过程中,逆层节理岩体高边坡主要产生倾倒破坏,内部层面主要产生剪切破坏和张拉破坏,以剪切破坏为主,张拉破坏所占比例很小,并且均集中于逆层边坡坡体顶部位置。坡顶岩层主要产生沿正交次级节理的张拉破坏,形成转动位移,产生宏观的倾倒;而坡底的正交次级节理既会产生张拉破坏,也会产生剪切破坏,坡底岩层产生的转动位移很小,而滑动位移趋势明显。非贯通层面部分的强度和层面贯通率对逆层边坡地震动力稳定性的影响十分明显,而贯通层面部分的抗剪强度的影响较小。非贯通正交次级节理强度、贯通正交次级节理抗剪强度、正交次级节理间距三个参数均会对边坡地震动力稳定性产生一定的影响,但影响的程度十分有限。在地震动力作用下逆层边坡坡顶岩层内的正交次级节理首先产生张拉破坏,使顶部岩体产生倾倒趋势,然后才是边坡底部岩层内部的正交次级节理产生剪切破坏和张拉破坏,使底部岩体形成贯通破坏面,产生滑动位移。而对逆层边坡的传统静力学分析认为在静力条件下,边坡底部岩体首先产生破坏,导致上覆岩体失去支撑形成倾倒破坏。这一破坏顺序的差别充分反映出了正交次级节理的存在对边坡地震动力破坏过程的影响,并体现出了逆层边坡静力破坏与动力破坏过程的区别。
     在地震动力破坏过程中,近水平层状节理岩体边坡内部岩体产生了大量的渐进式破坏,其中包含了张拉破坏和剪切破坏,以张拉破坏为主。岩体首先产生大量的近竖直方向延伸的宏观张拉裂缝,随着这些裂缝数量的增加和密度的增大,相互连接形成宏观的剪切破坏面,构成了圆弧状的破坏面。随着正交次级节理强度的提升,边坡的地震动力稳定性相应提升。边坡表层破碎岩体的厚度在很大程度上控制着边坡产生整体破坏的破坏范围,随着厚度的增大,破坏范围相应增大。贯通层面抗剪强度对边坡地震动力稳定性、动力破坏过程的影响非常小。随着层面倾角的变化,边坡逐渐从顺层缓倾过渡到逆层缓倾,在相同地震强度作用下边坡地震永久位移随着倾角的减小逐渐减小,并呈现近似指数关系。因此,在进行近水平层状节理岩体边坡地震动力稳定性分析过程中,无法找出一个固定的永久位移阀值,来统一判断不同倾角边坡的临界失稳状态。
     选取在5.12汶川地震中产生破坏的四川省北川县孙家园滑坡为计算实例,建立其FLAC/PFC2D耦合模型进行地震动力破坏过程数值模拟。模拟结果显示,孙家园滑坡在汶川地震作用下,先后经历岩体内部破损、边坡局部崩滑、边坡大面积失稳、破坏体解体形成岩石碎屑流、沿山体高速运移刮铲山体表层破损岩体、减速堆积堵塞河道几个阶段。计算结果与实际情况符合程度较高。
Seismic-induced layered rock slope failure is a common type of geo-hazard worldwide, it can cause severe damage for human ware fare. Research on its failure mechanism involves several different scientific topics and has been one of the most complex problems in the geotechnical research field. Up till now the methods used in the seismic-induced layered rock slope failure mechanism are borrowed from the research on soil slope dynamic failure, these methods, however, cannot properly represent either the geological characteristic, or the failure process of rock masses with rock layers and joints in them. To concur this shortage above, this thesis focus on explaining the dynamic failure mechanism of layered rock slope with the respect of the natural rock mass structuralcharacteristic, by utilizing the theory of geotechnical analysis, rock mechanics, rock fracture mechanics, as well as physical and numerical model tests, to study the seismic-induced failure mechanism of three basic type of layered rock slope:bedding slope, inverse slope and level slope.
     Based on the theory of rock-joint structural control, analyzed the basic joint structure network of the three type of layered rock slope, and divided the rock joints in the layered rock slope into two predominant kind:rock plane and secondary rock joint. The research showed that these two predominant rock joint types are basically vertically lied to each other, and both two types consist of unattached part and attached part inside them. The study on the effect of the secondary rock joint shows that this kind of joint plays an very important role on the control of the rock slope safety. And the study on the effect of the rock plane shows that the attached part inside the rock planes serve to remarkably increase the safety of the rock slope.
     Based on the theory of rock mechanics and rock fracture mechanics, the failure process of rock joint is deduced, and proved by some rock fracture tests carried by former researchers. The theoretical results show that rock fracture can only produce Mode I tensile failure, and the so-called Mode II'shear'failure proposed and claimed by some researchers is essentially the combination and connection of numerous small Mode I tensile fracture. The dimension of the so-called'mode II rock fracture'is beyond the dimension of the concept of classic fracture mechanics, therefore is not real'shear fracture'. This difference reveals that the rock fracture mechanics should be viewed as a certain type of material scientific theory whose study dimension isbetweenmicroscopic and macroscopic. The fracture processing formula and failing judgment are developed for the microscopic rock plane fracture under different type of stress conditions and with different strength compared with the intact rock, and its processing form is carefully studied and explained by rock fracture mechanics. The results show that the strength of the non-through rock plane is essentially controlled by the stress conditions of the rock plane; and the rock plane fracture failure type can be affected by the ratio of the strength of the rock plane and the strength of the intact rock. Improved the structural stress compute model for the formation of secondary rock joint, and studied the fracture process of the secondary rock joint under different structural stress condition. By utilizing the theory of rock fracture mechanics, found two explanations of why secondary rock joint usually cannot cut through multiple rock layers, these are:1) secondary rock joint cannot cut through the already unattached open rock plane; and2) when the secondary rock joint progress and encounter the attached rock plane, the secondary rock joint will continue to progress along the rock plane in spite of the stress condition it is behold, this is due to the fact that in the reality, the strength of the attached rock plane is far smaller than the strength of the intact rock.
     This thesis identified the characteristics of the dynamic failure of the bedding slope, inverse slope, and level slope, and improved the basic compute model of these three type of rock slope. Based on the theory of rock-joint structural control, classified and analyzed the rock plane and secondary rock joint dynamic failure mechanism during the process of the seismic-induced three basic type of layered rock slope failure.
     Two basic type of layered rock slope physical model-the sliding and inverse slope with rock plane and secondary rock joint in them-were built of synthetic material, and tested in the centrifuge testing system to witness the failure process of the rock slope during earthquake. Basic rock sample tests and fracture progressing tests to the synthetic rock mass material proved that the material recipe, the casting procedure, and the newly invented method to build closed rock plane and secondary rock joint are suitable for presenting the important characteristics of real layered rock mass. The synthetic material is made of gypsum, sand and pure water with certain mix ratio through straight casting procedure, its physical and mechanical properties are similar with sandstone; New methods are invented to make the rock plane with no gap; the attached parts inside the rock plane are made with good position control and strength control. several advances are made for the centrifuge testing system to enable the dynamic test for rock like material and rock slope model:a brand new model loading plate was designed and built; and a new monitoring system was designed and set up to acquire the accurate breakage time of the rock joints inside the physical model during the test. The results of the centrifuge dynamic tests reveal that the topographic amplification effect of the layered rock slope is related to the frequency and amplitude of the input seismic motion, the reason for these relations can be united to the damping function of the slope on the topographicamplification effect:the damping function of the slope is related to the input motion, and as the damping function grows bigger, the amplification effect becomes more obvious. Moreover, the test results show that the secondary rock joint inside the rock slope physical model plays a very important role on both the dynamic response and the dynamic failure process of the two different rock slope type, it serves to decrease the dynamic stability of the two type of the rock slope.
     The hybrid finite-discrete model simulation method is provided and improved to simulate the seismic-induced layered rock slope failure process, in which PFC2D is used as discrete element simulation software and FLAC is used as finite element simulation software. The relationship between the property of the PFC2D intact rock model(which is the union of numerous particles) and the property of the PFC2D particles is carefully studied, and the Smooth Joint Contact Model of the PFC2D is improved in order to add attached and unattached rock plane and secondary rock joint into the PFC2D intact rock model, this improved model is tested by carrying out several group of certain numerical test and comparing the test results with the theoretical results deduced in this thesis, and the result shows close agreement between them.
     The hybrid finite-discrete element models for bedding slope, inverse slope and level slope are built and tested under horizontal seismic load, the failure process and the effect of rock plane properties and secondary rock joint properties to the dynamic failure process and safety of these three type of layered rock slope are carefully studied, the tests results are as below:
     During the dynamic failure process, the bedding slope mainly had sliding movement along the failure plane which is the combination of the opened rock planes and secondary rock joints. Some of the attached rock planes failed in shear, but there are also ineligible number of attached rock planes failed in tension; the secondary rock joints mainly failed in tension, rarely in shear. The strength of the attached rock plane and the continuity rate of rock plane effect the dynamic stability of the sliding rock slope significantly, while the shear strength of the unattached rock plane barely has any effect; the strength of the attached secondary rock joint and the spacing of the secondary rock joint effect the slope's dynamic behavior significantly, while the shear strength of the unattached secondary rock joint serves very small effect. Tests results shows that a large number of rock planes inside the bedding rock slope failed in tension even under the horizontal seismic load used by this thesis, which failed to be revealed in the original failure mechanism theory of bedding slope failing in pure sliding along the rock planes. Therefore, the tensile strength should be treated as one of the controlling factors to the dynamic stability of bedding rock slope under seismic load. The failure process of the bedding slope during the simulation is a gradual process, as the seismic input motion ramped, the failing zone of the slope extended from the surface of the rock slope gradually to the inner of the rock slope, and multiple cut-through failure plane formed during the failure process, due to the internal breakage of the rock masses. Therefore, the classic slope stability analysis method cannot cover the actual dynamic stability of rock slope, because it usually consider the rock slope fails along one single potential failure plane, and calculate the slope stability with this pre-specified failure mode. In order to solve this problem, an amended rock slope sliding failure criterion is invented and tested by several simulation results. This amended failure criterion include two valuation parameters:1) the critical amplitude of the seismic input motion for the rock slope to form the first cut-through failure plane; and2) the volume of the failing rock mass cut by this failure plane. By using this criterion, both the dynamic stability and the predicted destructive range of the rock slope can be judge properly.
     During the dynamic failure process, the inverse slope mainly had toppling failure along the step-path failure plane at the bottom of the rock slope. The rock plane mainly had shear failure during the failure process, with less amount of tensile failure also, and most of the tensile failure of the rock plane occurs in the crest part of the rock slope on top. The rock mass on the top of the rock slope generally broke along the secondary rock joints, to form numerous tensile cracks, and the whole rock mass on top toppled during the failure process, generated large rotation; the secondary rock joints at the bottom part of the rock slope generated both shear and tensile cracks, and had obvious slipping movement but with very small rotation. The strength of the attached rock plane and the continuity rate of rock plane effect the dynamic stability of the toppling rock slope significantly, while the shear strength of the unattached rock plane barely has any effect; the strength of the attached secondary rock joints, the shear strength of the unattached secondary rock joints and the spacing of the secondary rock joints all had relatively small effect the slope's dynamic behavior. During the dynamic test, the rock mass nearly the crest of the slope first generated secondary joint tensile failure, which cut the rock layers through and made connections with unattached rock planes, made the rock mass have the tendency to topple; as the dynamic input motion ramped, the secondary joints inside the bottom of the rock slope started to fail in shear or tension, and a cut-through failure plane beneath the inverse rock layers was formed gradually, enable the rock layers at the bottom to slide along this failure plane, and triggered the total toppling failure of the whole slope. This failure process is basically inversed to the failure process of inverse rock slope under static load, which by static analysis shows that the inverse rock slope usually failure firstly at the bottom, inducing support loss for the upper layers, and then the upper layers bend and topple gradually. This difference above reveals two major facts for the dynamic failure mechanism of inverse rock slope:1) the presence of the secondary rock joints can severely affect the failure mechanism of inverse rock slope; and2) the static failure process and the dynamic failure process of inverse rock slope are very different from each other, cannot be treated as the same.
     During the dynamic failure process, level slope generated many internal breakages inside the rock mass, which include both shear and tensile failure of rock joints, and the tensile failure is superior in number. The rock mass first formed a large number of open cracks whose orientation are nearly vertical, and as those open cracks grows longer and the number grows bigger, they can connect with each other to form a macroscopic'shear'failure plane inside the rock slope, which eventually cut through the rock slope in a shape of circle. The dynamic stability of the level slope is controlled mainly by the strength of the secondary rock joints, and the size of the failing rock mass is strongly affected by the thickness of the weak rock mass on the surface of the level slope, when the thickness is bigger, the size of the failing rock mass during when dynamic failure occurs grows larger. To the contrary, the shear strength of the rock planes barely has any effect on the stability of the level slope. However, the dip angle of the level rock slope serves to effect the permanent displacement of the slope during the dynamic failure process, as the dip angle changes the level slope from slice-bedding to flat-inverse, the permanent displacement of the level slope under the same seismic load at the same time decreases in negative exponent form. Therefore, level rock slopes with a relatively small change of the dip angle of the layered rock masses could have a very different critical permanent displacement when the slopes are on the threshold of failing, and it is impossible to find one unique critical value for all level slopes to be used to judge their dynamic stability.
     Finally, one example simulation work is worked out to illustrate the properness of the combined finite-discrete element method on simulating layered rock slope dynamic failure process. The Sunjiayuan level rock slope failure during the Wenchuan Earthquake is picked as this demonstration work, and the horizontal Wenchuan Earthquake record is used as the input motion for this test. The failure process of the Sunjiayuan level rock slope numerical model shows that during the earthquake, the upper part of the rock slope failed of sliding along the circle-like failure plane, and rush down along the mountain, shoveling weak rock masses on the surface of the mountain, blocked the river downside, then stopped and deposited along the valley. The test result shows good consistency with the actual event.
引文
[1]李祥龙,唐辉明,熊承仁,等.基底刮铲效应对岩石碎屑流停积过程的影响.岩土力学,2012,33(005):1527~1534
    [2]Sun J, Tian X, Guan X, et al. Stability Analysis for Loosened Rock Slope of Jinyang Grand Buddha in Taiyuan, China. Earth Science Frontiers,2008,15(4):227-238
    [3]Shukla S K, Hossain M M. Stability analysis of multi-directional anchored rock slope subjected to surcharge and seismic loads. Soil Dynamics and Earthquake Engineering,2011, 31(5-6):841-844
    [4]Kveldsvik V, Kaynia A M, Nadim F, et al. Dynamic distinct-element analysis of the 800m high Aknes rock slope. International Journal of Rock Mechanics and Mining Sciences,2009, 46(4):686-698
    [5]Bhasin R, Kaynia A M. Static and dynamic simulation of a 700-m high rock slope in western Norway. Engineering Geology,2004,71(3-4):213-226
    [6]Sepulveda S A, Murphy W, Jibson R W, et al. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions:The case of Pacoima Canyon, California. Engineering Geology,2005,80(3-4):336-348
    [7]Brideau M, Yan M, Stead D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology,2009,103(1):30-49
    [8]陈洪凯.三峡库区危岩链式规律的地貌学解译.重庆交通大学学报(自然科学版),2008,(1):91-95
    [9]言志信,张森,张学东,等.地震边坡失稳机理及稳定性分析.工程地质学报,2010,(6):844~850
    [10]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析.岩石力学与工程学报,2004,(16):2792-2797
    [11]胡新丽,唐辉明,朱丽霞.汶川震中岩浆岩高边坡破坏模式与崩塌机理.地球科学(中国地质大学学报),2011,(6):1149~1154
    [12]唐辉明,李德威,胡新丽.龙山门断裂带活动特征与工程区域地壳稳定性评价理论.工程地质学报,2009,(02):145~152
    [13]Hatzor Y H, Arzi A A, Zaslavsky Y, et al. Dynamic stability analysis of jointed rock slopes using the DDA method:King Herod's Palace, Masada, Israel. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):813-832
    [14]李金波.大峡水电站的工程地质条件及其岩质边坡破坏机理分析.水力发电,1997,(2):39~42
    [15]刘宏,宋建波,向喜琼.缓倾角层状岩质边坡小危岩体失稳破坏模式与稳定性评价.岩 石力学与工程学报,2006,(8):1606~1611
    [16]陈建平,唐辉明,李学东.岩质边坡锚喷加固应用中的几个问题.地球科学,2001,(4):357~360
    [17]虎旭林,魏星,任克亮.岩质边坡可靠性的神经网络估计.宁夏大学学报(自然科学版),2001,(3):290~292
    [18]陈天红.地震作用下岩质高边坡的非线性动力反应分析:[博士学位论文].西安理工大学,2008
    [19]邬爱清,丁秀丽,卢波,等.DDA方法块体稳定性验证及其在岩质边坡稳定性分析中的应用.岩石力学与工程学报,2008,(4):664~672
    [20]谭桔红,晏鄂川.岩质高边坡破裂面的分析及综合应用.勘察科学技术,2004,(4):6-8
    [21]李治广,董兆祥.结构面抗剪强度参数对岩质边坡稳定的影响.工程地质学报,2007,(2):217~221
    [22]Singh B, Goel R K. Chapter 16-Shear Strength of Rock Masses in Slopes,2011:205-210
    [23]Terzaghi K. Stability of steep slopes on hard weathered rock. Geotechnique,1962,12:251-270
    [24]Einstein H H, Veneziano D, Baecher G B, et al. The effect of discontinuity persistence on rock slope stability. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts,1983,20(5):227-236
    [25]Halakatevakis N, Sofianos A I. Strength of a blocky rock mass based on an extended plane of weakness theory. International Journal of Rock Mechanics and Mining Sciences,2010, 47(4):568-582
    [26]Wu J, Wang W, Chang C, et al. Effects of strength properties of discontinuities on the unstable lower slope in the Chiu-fen-erh-shan landslide, Taiwan. Engineering Geology,2005, 78(3):173-186
    [27]Lin C T, Amadei B, Jung J, et al. Extensions of discontinuous deformation analysis for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts,1996,33(7):671-694
    [28]Carter B J, Lajtai E Z. Rock slope stability and distributed joint systems. Canandian Geotechnical Journal,1992,29(6):53-60
    [29]Scavia C. Fracture mechanics approach to stability analysis of rock slopes. Engineering Fracture Mechanics,1990,35(4):899-910
    [30]Siad L, Megueddem M. Stability analysis of jointed rock slope. Mechanics Research Communications,1998,25(6):661-670
    [31]吴豪伟,蔡美峰.块体理论赤平解析法的节理裂隙岩体破坏预测分析.中国矿业,2011,(3):57~60
    [32]钱七虎,戚承志.岩石、岩体的动力强度与动力破坏准则.同济大学学报(自然科学版),2008,(12):1599~1605
    [33]段建,言志信,郭锐剑,等.地震边坡岩土体破坏特征探讨.煤炭学报,2011,(10):1642~1646
    [34]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨.岩石力学与工程学报,2009,(8):1714~1723
    [35]胡卸文,朱海勇,吕小平,等.唐家山堰塞湖库区(北川-禹里段)地震地质灾害触发效应研究.四川大学学报(工程科学版),2009,(03):63~71
    [36]殷跃平.汶川八级地震地质灾害研究.工程地质学报,2008,(04):433~444
    [37]殷跃平.汶川八级地震滑坡特征分析.工程地质学报,2009,(01):29~38
    [38]陈晓利,李杨,洪启宇,等.地震作用下边坡动力响应的数值模拟研究.岩石学报,2011,(6):1899~1908
    [39]张振南,葛修润.地震载荷作用下的节理岩体破裂模型.岩石力学与工程学报,2005,(10):1645~1648
    [40]Cheon D, Jung Y, Park E, et al. Evaluation of damage level for rock slopes using acoustic emission technique with waveguides. Engineering Geology,2011,121(1-2):75-88
    [41]Grenon M, Hadjigeorgiou J. A. design methodology for rock slopes susceptible to wedge failure using fracture system modelling. Engineering Geology,2008,96(1):78-93
    [42]Elmo D, Yan M, Stead D, et al. The importance of intact rock bridges in the stability of high rock slopes:A quantitative investigation using an integrated numerical modelling-discrete fracture network approach:International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering. Perth,2007,253-256
    [43]Jing L, Stephansson O. Discrete Fracture Network (DFN) Method,2007, Volume 85:365-398
    [44]刘亚群.动荷载作用下层状结构岩体边坡变形破坏机理与安全研究:[博士学位论文].中国科学院研究生院(武汉岩土力学研究所),2009
    [45]刘晓.汶川地震区斜坡动力反应研究:[博士学位论文].中国地质大学,2010
    [46]柴红保.基于岩体断裂损伤模型的边坡稳定性研究:[博士学位论文].中南大学,2010
    [47]肖克强.地震荷载作用下顺层岩体边坡变形特征及稳定性研究:[博士学位论文].中国科学院研究生院(武汉岩土力学研究所),2006
    [48]雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性.岩土力学,2006,(10):1693-1698
    [49]李宁,姚显春,张承客.岩质边坡动力稳定性分析的几个要点.岩石力学与工程学报,(5)
    [50]李亮辉.顺层岩质边坡软弱结构面原位剪切试验及其稳定性分析研究:[硕士学位论文].华中科技大学,2005
    [51]宗全兵,徐卫亚.基于广义Hoek-Brown强度准则的岩质边坡开挖稳定性分析.岩土力学,2008,(11):3071~3076
    [52]宋小林.层状岩体爆破的层裂效应及其对顺层边坡稳定性的影响研究:[博士学位论文].西南交通大学,2008
    [53]苏永华.考虑震动附加力的岩质边坡稳定萨尔玛分析方法及其应用:第二届全国岩土与工程学术大会.中国湖北武汉:2006694-697
    [54]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析.岩石力学与工 程学报,2007,(12):2385~2394
    [55]何蕴龙,陆述远.岩石边坡地震作用近似计算方法.岩土工程学报,1998,(02):66~68
    [56]刘红帅,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展.防灾科技学院学报,2007,(03):20-27
    [57]祁生文.考虑结构面退化的岩质边坡地震永久位移研究.岩土工程学报,2007,(3):452~457
    [58]王旭,晏鄂川.基于网络模拟的岩体边坡稳定性概率分析.地球与环境,2005,(3):95~100
    [59]黄胤超,虢柱,刘建华,等.基于二次响应面的震区边坡稳定性可靠度分析.公路工程,2011,(6):15~21
    [60]Lindsay P, Campbell R N, Fergusson D A, et al. Slope stability probability classification, Waikato Coal Measures, New Zealand. International Journal of Coal Geology,2001,45(2): 127-145
    [61]刘红帅,薄景山,杨俊波.确定岩质边坡地震安全系数的简化方法.岩石力学与工程学报,2012,(6):1107~1114
    [62]陈明,卢文波,周创兵,等.基于等效加速度的岩质边坡爆破动力稳定性.爆炸与冲击,2011,(5):475-480
    [63]Li A J, Lyamin A V, Merifield R S. Seismic rock slope stability charts based on limit analysis methods. Computers and Geotechnics,2009,36(1-2):135-148
    [64]张景奎,张燎军,朱颖儒,等.一种基于安全因子判据的坝肩裂隙岩体动力抗滑稳定分析方法.岩土力学,2012,(7):2160~2166
    [65]黄杰.强度折减法在地震区的边坡稳定性分析与研究.山西建筑,2011,(20):83~85
    [66]赵彪,陈洪凯.边坡地震稳定性完全动力分析法.重庆交通大学学报(自然科学版),2011:580~583
    [67]王欢,车爱兰,葛修润,等.岩质高边坡动力稳定性评价方法与应用.上海交通大学学报,2011,(5):706~710
    [68]叶海林,郑颖人,黄润秋,等.强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究.岩土力学,2010:317~323
    [69]史石荣,陈林杰,余超.基于强度折减法的高烈度地震区边坡稳定性分析.重庆交通大学学报(自然科学版),201 1,(2):273~276
    [70]郭明伟,葛修润,王水林,等.基于矢量和方法的边坡动力稳定性分析.岩石力学与工程学报,2011,(3):572~579
    [71]李泽泽,沈军辉,顾涛,等.龙溪隧道出口段在地震荷载下变形破裂特征及其数值模拟分析.现代隧道技术,2009,(5):40~45
    [72]李新坡,何思明.节理岩质边坡破坏过程的PFC2D数值模拟分析.四川大学学报(工程科学版),2010,(S1):70~75
    [73]曹琰波,戴福初,许冲,等.唐家山滑坡变形运动机制的离散元模拟.岩石力学与工程学报,2011:2878~2887
    [74]张学东,言志信,张森.ANSYS在岩质边坡动力响应分析中的应用.西北地震学报, 2010,(2):117~121
    [75]刘磊,谢佐强.基于FLAC2D的岩质单面边坡爆破响应规律研究.国外建材科技,2007,(2):100~102
    [76]冯春,李世海,王杰.基于CDEM的顺层边坡地震稳定性分析方法研究.岩土工程学报,2012,(4):717~724
    [77]Zhao X B, Zhao J, Cai J G, et al. UDEC modelling on wave propagation across fractured rock masses. Computers and Geotechnics,2008,35(1):97-104
    [78]Scholtes L, Donze F. Modelling progressive failure in fractured rock masses using a 3D discrete element method. International Journal of Rock Mechanics and Mining Sciences, 2012,52(0):18-30
    [79]Baczynski N R P. STEPSIM4 "Step-path" method for slope risks:Proceedings of the international conference on Geotechnical and Geological Engineering. Melbourne,2000,6p
    [80]Korotkov P F. Dynamic stability of rock slopes. Vienna:Rotterdam, Publ,1990
    [81]Adhikary D P, Dyskin A V, Jewell R J, et al. A study of the mechanism of flexural toppling failure of rock slopes. Rock Mechanics and Rock Engineering,1997,30(2):75
    [82]Adhikary D P, Dyskin A V. Modelling of Progressive and Instantaneous Failures of Foliated Rock Slopes. Rock Mechanics and Rock Engineering,2007,40(4):349
    [83]Shimizu Y, Aydan O, Ichikawa Y, et al. Model study on dynamic failure modes of discontinuous rock slopes. Beijing:Science Press,1986
    [84]Ashford S A, Sitar N, Lysmer J, et al. Topographic effects on the seismic response ofsteep slopes. Bulletin of the Seismological,1997,87(3):701-709
    [85]Ashford S A, Sitar N, Lysmer J, et al. Analysisof topographic amplification of inclined shearwaves in a steep coastalbluff. Bulletin of the Seismological,1997,87(3):692-700
    [86]钱胜国,陆秋蓉.三峡溢流坝段动力特性及动力反应分析.长江科学院院报,1991,(02):22~28
    [87]钱胜国,陆秋蓉.重力坝—库水—地基动力相互作用对坝体的影响.长江科学院院报,1995,(04):19~25
    [88]钱胜国,陆秋蓉.长江三峡船闸高边坡地震稳定性分析:武汉:长江科学院,1991
    [89]何蕴龙,陆述远,段亚辉.岩石边坡地震作用计算方法研究.长江科学院院报,1998,(04):36~39
    [90]戚承志,陈灿寿,钱七虎,等Dynamic Instability of Tunnel in Blocky Rock Mass. Transactions of Tianjin University,2008, (06):457-463
    [91]戚承志,钱七虎,王明洋.固体材料的结构层次及其动力变形与破坏.解放军理工大学学报(自然科学版),2007,(05):454~462
    [92]戚承志,王明洋,钱七虎,等.冲击载作用下岩石变形破坏的细观结构特性.岩石力学与工程学报,2007,(S1):3367~3372
    [93]戚承志,钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制.岩石力学与工程学报,2003,(02):177~181
    [94]戚承志,王明洋,钱七虎.弹粘塑性孔隙介质在冲击荷载作用下的一种本构关系— 第二部分:弹粘塑性孔隙介质的畸变行为.岩石力学与工程学报,2003,(11):1763-1766
    [95]戚承志,王明洋,钱七虎.弹粘塑性孔隙介质在冲击荷载作用下的一种本构关系——第一部分:状态方程.岩石力学与工程学报,2003,(09):1405-1410
    [96]王明洋,葛涛,戚承志,等.爆炸荷载作用下岩石的变形与破坏研究(Ⅰ).防灾减灾工程学报,2003,(02):43~54
    [97]王明洋,王立云,戚承志,等.爆炸荷载作用下岩石的变形与破坏研究(Ⅱ).防灾减灾工程学报,2003,(03):9-20
    [98]戚承志,苗启松,钱七虎.考虑强度-应变率依赖性的岩石弹塑性动力模型.世界地震工程,2002,(03):52-56
    [99]戚承志,钱七虎.材料变形及损伤演化的微观物理动力机理.固体力学学报,2002,(03):312~317
    [100]戚承志,钱七虎.关于岩石的剥离破坏过程及混合破坏准则.世界地震工程,2002,(04):55~61
    [101]戚承志,赵跃堂,郭志昆,等.材料时间性破坏准则及其内在联系.世界地震工程,2002,(02):56~60
    [102]王明洋,戚承志,钱七虎,等.岩石变形和破坏力学的基本问题.解放军理工大学学报(自然科学版),2002,(03):33~37
    [103]戚承志,钱七虎.随机地震作用下损伤退化结构的可靠性评价.世界地震工程,2001,(03):27~32
    [104]王明洋,戚承志,钱七虎.岩体中爆炸与冲击下的破坏研究.辽宁工程技术大学学报(自然科学版),2001,(04):385-389
    [105]李宁,张平,程国栋.冻结裂隙砂岩低周循环动力特性试验研究.自然科学进展,2001,(11):57~62
    [106]李宁,陈文玲,张平Strength properties of the jointed rock mass medium under dynamic cyclic loading. Progress in Natural Science,2001, (03):39-43
    [107]李宁,陈文玲,张平.动荷作用下裂隙岩体介质的变形性质.岩石力学与工程学报,2001,(01):74~78
    [108]李宁,程国栋,谢定义.西部大开发中的岩土力学问题.岩土工程学报,2001,(03):268~272
    [109]李宁,陈文玲,张平.动荷作用下非贯通裂隙介质的强度性质.自然科学进展,2000,(11):71~76
    [110]刘斌,王宝善,席道瑛.水饱和裂纹对地壳岩样中地震波速及各向异性的影响.地球物理学报,1999,(05):702-711
    [111]刘斌,席道瑛,葛宁洁,等.不同围压下岩石中泊松比的各向异性.地球物理学报,2002,(06):880~890
    [112]席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性黏弹性响应.地球物理学报,2002,(01):109~118
    [113]葛修润.对“岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法”讨论的答复.岩土工程学报,2009,(10):1643~1644
    [114]葛修润.周期荷载下岩石大型三轴试件的变形和强度特性研究.岩土力学,1987,22(02):11~19
    [115]葛修润,蒋宇,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究.岩石力学与工程学报,2003,(10):1581~1585
    [116]马春德,李夕兵,陈枫,等.单轴动静组合加载对岩石力学特性影响的试验研究.矿业研究与开发,2004,(04):1-3
    [117]马春德,李夕兵,史雁平.用低周疲劳加载实现中等应变速率下岩石动态破坏的新方法.矿业研究与开发,2004,(01):11-13
    [118]Lemaitre J. How To Use Damage mechanics. Nuclear Engineering And Design,1984,80: 233-245
    [119]Chaboche J L. Continum damage mechanics-a tool to describe phenonmena before crack ignition. Nuclear Engineering And Design,1981,76:233-247
    [120]Murakami S, Ohno N. A continum theory of creep and creep damage. Berlin: Springer-Verlay,1980
    [121]朱维申,李术才,陈卫忠.节理岩体破坏机制和锚固效应及工程应用北京:科学出版社,2002.
    [122]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法武汉:中国地质大学出版社,2001.
    [123]唐春安.东北矿区资源开采诱发的工程地质灾害与环境损伤特征.地球科学进展,2004,(3):490-494
    [124]唐春安,徐小荷.岩石全应力-应变过程的统计损伤理论分析.东北工学院学报:191~195
    [125]Jennings J E. A Mathematical theory for the calculation of the stability of slopes in open cast mines.:Planning of Open Pit Mines. Johannesburg,1970,87-102
    [126]Mcmahon F A. Report to Bougainville Copper Limited on slope design studies, Pan Hill. Sydney,1979
    [127]Read J R L, Lye G N. Pit slope design methods:Bougainville copper open cut:5th International Congress on Rock Mechanics. Melbourne,1984,93-98
    [128]Griffith A A. The phenomena of rupture and flaw in solid. Phil. Trans. Roy. Soc,1921, A221:163-167
    [129]Mcclintock F A. Friction on Griffith cracks in rock under pressure:Proc.4th US Natl. Congr. Appl. Mech. Berkeley,1962
    [130]Cook N G W. The failure of rock. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1965,2(4):389-403
    [131]Jaeger J C. Brittle failure of rock, failure breakage of rock:Proc.8th Symp. on Rock Mech. University of Minnesota,1966
    [132]Irwin G R. Analysis of Stress and Strain near the end of a Crack. Journal Of Applied Mechanics,1957,24:361
    [133]Irwin G R, Chona R. A zero KII Criterion for a smoothy curving crack:Proc.1987 SEM Fall Conf on Exp. Mech.,1987,7-15
    [134]Ingraffea A R, Heuze F E. Finite element models for rock fracture mechanics. Int J Num Anal Meth Geomech,1980,4:24-43
    [135]Jian-An H, Sijing W. An experimental investigation concerning the comprehensive fracture toughness of some brittle rocks. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts,1985,22(2):99-104
    [136]Ayatollahi M R, Aliha M R M. Fracture toughness study for a brittle rock subjected to mixed mode Ⅰ/Ⅱ loading. International Journal of Rock Mechanics and Mining Sciences, 2007,44(4):617-624
    [137]Rao Q, Sun Z, Stephansson O, et al. Shear fracture (Mode Ⅱ) of brittle rock. International Journal of Rock Mechanics and Mining Sciences,2003,40(3):355-375
    [138]Bazant Z, Oh B. Crack band theory for fracture of concrete. Materials and Structures,1983, 16(3):155
    [139]Rao Q, Sun Z, Wang G, et al. Effect of specimen thickness on Mode II fracture toughness of rock. Journal of Central South University of Technology,2001,8(2):114
    [140]Debecker B, Vervoort A. Experimental observation of fracture patterns in layered slate. International Journal of Fracture,2009,159(1):51
    [141]Lin Q, Fakhimi A, Haggerty M, et al. Initiation of tensile and mixed-mode fracture in sandstone. International Journal of Rock Mechanics and Mining Sciences,2009,46(3): 489-497
    [142]Huang T H, Chang C S, Chao C Y. Experimental and mathematical modeling for fracture of rock joint with regular asperities. Engineering Fracture Mechanics,2002,69(17):1977-1996
    [143]付永胜,魏安,李隽蓬.非贯通裂隙岩体裂纹扩展规律及破坏机制:第四届全国工程地质大会.中国北京:1992688-695
    [144]余子华,晏鄂川,杨昌斌,等.节理化岩体复合式滑移破坏的模型试验研究.岩土力学,2005,(S1):77~81
    [145]张国新.用多裂隙理论研究多裂隙岩体的破坏特性:中国北方岩石力学与工程应用学术会议.中国河南郑州:1991327~337
    [146]张平.裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究.岩石力学与工程学报,2005,(15):2802
    [147]张志强,李宁,陈方方,等.非贯通裂隙岩体破坏模式研究现状与思考.岩土力学,2009,30(2):142~148
    [148]张海波.动、静荷载作用下不同倾角裂隙岩体力学性能试验模拟研究:[博士学位论文].河海大学,2007
    [149]层状岩体爆破的层裂效应及其对顺层边坡稳定性的影响研究.
    [150]于冲.拉西瓦水电站Ⅱ~#变形体爆破动力稳定性研究.水利与建筑工程学报,2006,(2):41~45
    [151]Budetta P B, de Riso R D R, De Luca C D L. Correlations between jointing and seismic velocities in highly fractured rock masses. Bulletin of Engineering Geology and the Environment,2001,60(3):185
    [152]Wang Z L, Konietzky H. Modelling of blast-induced fractures in jointed rock masses. Engineering Fracture Mechanics,2009,76(12):1945-1955
    [153]Tang C, Xu X. A new method for measuring dynamic fracture toughness of rock. Engineering Fracture Mechanics,1990,35(4):783-791
    [154]Zhang Z X, Kou S Q, Yu J, et al. Effects of loading rate on rock fracture. International Journal of Rock Mechanics and Mining Sciences,1999,36(5):597-611
    [155]Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture:fracture characteristics and energy partitioning. International Journal of Rock Mechanics and Mining Sciences,2000,37(5):745-762
    [156]Sagy A, Reches Z, Roman I. Dynamic fracturing:field and experimental observations. Journal of Structural Geology,2001,23(8):1223-1239
    [157]Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of fractured rock. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts,1969, 6(3):323-341
    [158]Tien Y M, Tsao P F. Preparation and mechanical properties of artificial transversely isotropic rock. International Journal of Rock Mechanics and Mining Sciences,2000,37(6): 1001-1012
    [159]Stimpson B. Modelling materials for engineering rock mechanics Elsevier,1970
    [160]Johnston I W. Discussion:Development and applications of a synthetic material to simulate soft sedimentary rocks. Geotechnique,1991,41(1):165-167
    [161]Imre B, Wildhaber B, Springman S M. A physical analogue material to simulate sturzstroms. International Journal of Physical Modelling in Geotechnics,2009,11(2):69-86
    [162]Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences,1998, 35(7):863-888
    [163]Lajtai E Z. Strength of discontinuous rocks in direct shear. Geotechnique,1969,19(2): 218-233
    [164]Bobet A. The initiation of secondary cracks in compression. Engineering Fracture Mechanics,2000,66(2):187-219
    [165]Reyes O, Einstein H H. Failure mechanisms of fractured rock-a fracture coalescence model, 1991
    [166]Shen B, Stephansson O, Einstein H H, et al. Coalescence of fractures under shear stresses in experiments. Journal of Geophysical Research,1995,100(B4):5975-5990
    [167]Shen B. The mechanism of fracture coalescence in compression-experimental study and numerical simulation. Engineering Fracture Mechanics,1995,51(1):73-85
    [168]张平,李宁,贺若兰,等.动载下3条断续裂隙岩样的裂缝贯通机制.岩土力学, 2006,27(9):1457~1464
    [169]Wong R, Chau K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws-part Ⅰ:experimental approach. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):909-924
    [170]Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences,1998,35(2):147"-164
    [171]Sagong M, Bobet A. Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences,2002,39(2): 229-241
    [172]Germanovich L N, Salganik R L, Dyskin A V, et al. Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure and Applied Geophysics,1994,143(1):117-149
    [173]Hu X Z, Wittmann F H. Fracture energy and fracture process zone. Materials and Structures, 1992,25(6):319-326
    [174]Labuz J F, Shah S P, Dowding C H. The fracture process zone in granite:evidence and effect Elsevier,1987
    [175]Otsuka K, Date H. Fracture process zone in concrete tension specimen. Engineering Fracture Mechanics,2000,65(2):111-131
    [176]Wecharatana M, Shah S P. Predictions of nonlinear fracture process zone in concrete. Journal of Engineering Mechanics,1983,109(5):1231-1246
    [177]Cedolin L, Dei Poli S, Iori I. Experimental determination of the fracture process zone in concrete. Cement and Concrete Research,1983,13(4):557-567
    [178]Bazant Z P. Size effect in blunt fracture:concrete, rock, metal. Journal of Engineering Mechanics,1984,110(4):518-535
    [179]Bazant Z P, Xiang Y. Size effect in compression fracture:splitting crack band propagation. Journal of engineering mechanics,1997,123(2):162-172
    [180]Gonnerman H F. Effect of size and shape of test specimen on compressive strength of concrete Structural materials research laboratory,1925
    [181]Marti P. Size effect in double-punch tests on concrete cylinders. ACI Materials Journal, 1989,86(6):597-601
    [182]Zhu X, Chao Y. Specimen Size Requirements for Two-parameter Fracture Toughness Testing. International Journal of Fracture,2005,135(1):117
    [183]Bazant Z P, Ozbolt J, Eligehausen R. Fracture size effect:review of evidence for concrete structures. Journal of structural engineering,1994,120(8):2377-2398
    [184]Ba Zant Z P, Kazemi M T. Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete. International Journal of Fracture,1990,44(2):111-131
    [185]Brennan A J B A, Madabhushi S P G M. Amplification of seismic accelerations at slope crests. Canadian Geotechnical Journal,2009,46(5):585-594
    [186]Conlee C T. Dynamic properties of colloidal silica soils using centrifuge model tests and a full-scale field test,2010
    [187]Craig W H. Geotechnical centrifuges:past, present and future. Geotechnical Centrifuge Technology,1995:1-18
    [188]Kokusho T, Ishizawa T. Energy approach to earthquake-induced slope failures and its implications. Journal of geotechnical and geoenvironmental engineering,2007,133(7): 828-840
    [189]Kutter B L. Earthquake deformation of centrifuge model banks. Journal of Geotechnical Engineering,1984,110(12):1697-1714
    [190]Lin M L, Wang K L. Seismic slope behavior in a large-scale shaking table model test. Engineering Geology,2006,86(2):118-133
    [191]Malvick E J, Kutter B L, Boulanger R W, et al. Post-shaking failure of sand slope in centrifuge test,2004
    [192]Taboada-Urtuzuastegui V M, Dobry R. Centrifuge modeling of earthquake-induced lateral spreading in sand. Journal of geotechnical and geoenvironmental engineering,1998,124(12): 1195-1206
    [193]Taylor R N. Geotechnical centrifuge technology Routledge,1994
    [194]Thusyanthan N I, Madabhushi S, Singh S. Tension in geomembranes on landfill slopes under static and earthquake loading-Centrifuge study. Geotextiles and Geomembranes, 2007,25(2):78-95
    [195]Wartman J, Riemer M F, Bray J D, et al. Newmark analysis of a shaking table slope stability experiment ASCE,1998
    [196]Wartman J, Seed R B, Bray J D. Shaking table modeling of seismically induced deformations in slopes. Journal of geotechnical and geoenvironmental engineering,2005, 131(5):610-622
    [197]Yu Y, Deng L, Sun X, et al. Centrifuge modeling of a dry sandy slope response to earthquake loading. Bulletin of Earthquake Engineering,2008,6(3):447-461
    [198]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验.岩土工程学报,2007,29(9)
    [199]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验.清华大学学报(自然科学版),2007,47(6):789~792
    [200]侯瑜京.±工离心机振动台及其试验技术.中国水利水电科学研究院学报,2006,4(1):15~22
    [201]吴剑,张振华,王幸林,等.边坡物理模型倾斜加载方式的研究.岩土力学,2012,(3):713~718
    [202]周拥军,任伟中.一种仅需距离控制的模型试验平面位移场单像视觉测量.岩石力学与工程学报,2009,(4):799~804
    [203]李欣,李树文,王树根,等.数字近景摄影测量在高速公路边坡物理模型变形测量中的应用.测绘科学,2011,(5):209~210
    [204]李焕强,孙红月,孙新民,等.降雨入渗对边坡性状影响的模型实验研究.岩土工程 学报,2009,(4):589~594
    [205]杨庆华,姚令侃,任自铭,等.地震作用下松散体斜坡崩塌动力学特性离心模型试验研究.岩石力学与工程学报,2008,27(2):368-374
    [206]柴贺军,肖文.具有软弱基座逆向边坡变形及破坏过程研究.地球科学进展,2004:288~291
    [207]沈建,陈新民,魏平,等.土质边坡地震稳定性动力模型试验研究综述.工业建筑,2010,40(1):625~628
    [208]艾畅,冯春,李世海,等.地震作用下顺层岩质边坡动力响应的试验研究.岩石力学与工程学报,2010,29(9):1825~1832
    [209]陈正发,于玉贞.土工动力离心模型试验研究进展.岩石力学与工程学报,2006,2
    [210]油新华,李晓.国外离心模型试验技术在边坡工程中的应用现状与展望.工程地质学报,2000,8(004):442~445
    [211]高长胜,徐光明,张凌,等.边坡变形破坏离心机模型试验研究.岩土工程学报,2005,27(4):478~481
    [212]黄志全,王思敬.离心模型试验技术在我国的应用概况.岩石力学与工程学报,1998,17(2):199~203
    [213]Zhang J H, Chen Z Y, Wang X G. Centrifuge modeling of rock slopes susceptible to block toppling. Rock Mechanics and Rock Engineering,2007,40(4):363-382
    [214]Adhikary D P, Dyskin A V, Jewell R J, et al. A study of the mechanism of flexural toppling failure of rock slopes. Rock Mechanics and Rock Engineering,1997,30(2):75-93
    [215]左保成,陈从新,刘小巍,等.反倾岩质边坡破坏机理模型试验研究.岩石力学与工程学报,2005,24(19):3505~3511
    [216]Manzella I, Labiouse V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Engineering Geology, 2009,109(1):146-158
    [217]郭志.实用岩体力学地震出版社,1996.
    [218]王思敬.岩石边坡动态稳定性的初步探讨.地质科学,1977,4:372~376
    [219]李振生,巨能攀,侯伟龙.陡倾层状岩质边坡动力响应大型振动台模型试验方案设计.甘肃水利水电技术,2012,(1):35~37
    [220]李振生,巨能攀,侯伟龙,等.陡倾层状岩质边坡动力响应大型振动台模型试验研究.工程地质学报,2012,(2):242~248
    [221]董金玉,杨国香,伍法权,等.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究.岩土力学,2011,(0)
    [222]Hoek E. the design of a centrifuge for the simulation of gravitational force field in mine models CSIR National Mechanical Engineering Research Institute,1965
    [223]Taylor R N. Geotechnical centrifuge technology Routledge,1994
    [224]Garnier J, Gaudin C, Springman S M, et al. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics,2007,7(3)
    [225]Joseph P G, Einstein H H, Whitman R V. A Literature Review of Geotechnical Centrifuge Modeling with Particular Emphasis on Rock Mechanics:DTIC Document,1988
    [226]Leth C T, Krogsboll A S, Hededal O. Centrifuge facilities at Technical University of Denmark. Nordisk Geoteknikermote nr 15,2008:335-342
    [227]Einstein H H, Li V, Whitman R V, et al. Stochastic and Centrifuge Modelling of Jointed Rock:DTIC Document,1990
    [228]Einstein H H, Joseph P G. Rock Modeling Using the Centrifuge:MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CIVIL ENGINEERING,1988
    [229]Palmer A. Centrifuge modelling of ice and brittle materials. Canadian Geotechnical Journal, 1991,28(6):896-898
    [230]Itasca.3DEC manuals. Minneapolis, USA:HCltasca company,2011
    [231]Itasca. UDEC manuals. Minneapolis, USA:HCltasca company,2011
    [232]Itasca. PFC2D manuals. Minneapolis, USA:HCltasca company,2011
    [233]Itasca. PFC3D manuals. Minneapolis, USA:HCltasca company,2011
    [234]Cundall P A. Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks Elsevier, 1988
    [235]Cundall P A. UDEC-A Generalised Distinct Element Program for Modelling Jointed Rock: DTIC Document,1980
    [236]Shi G H, Goodman R E. Two dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(6): 541-556
    [237]Hatzor Y H, Benary R. The stability of a laminated Voussoir beam:Back analysis of a historic roof collapse using DDA. International Journal of Rock Mechanics and Mining Sciences,1998,35(2):165-181
    [238]Hsiung S M, Shi G H. Simulation of earthquake effects on underground excavations using discontinuous deformation analysis (DDA). Rock Mechanics for Industry,1999,1:1
    [239]Ohkami T, Mitsui Y, Kusama T. Coupled boundary element/finite element analysis in geomechanics including body forces. Computers and Geotechnics,1985,1(4):263-278
    [240]Pearce C J, Thavalingam A, Liao Z, et al. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture. Engineering Fracture Mechanics,2000,65(2):283-298
    [241]焦玉勇,张秀丽,刘泉声,等.用非连续变形分析方法模拟岩石裂纹扩展.岩石力学与工程学报,2007,26(4):682~691
    [242]邬爱清,丁秀丽,卢波,等.DDA方法块体稳定性验证及其在岩质边坡稳定性分析中的应用.岩石力学与工程学报,2008,27(4):664~672
    [243]邬爱清,丁秀丽,陈胜宏,等.DDA方法在复杂地质条件下地下厂房围岩变形与破坏特征分析中的应用研究.岩石力学与工程学报,2006,25(1):1~8
    [244]崔芳鹏,胡瑞林,殷跃平,等.地震纵横波时差耦合作用的斜坡崩滑效应研究.工程 地质学报,2009,(04):455-462
    [245]Kemeny J. The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities:A fracture mechanics approach. Rock mechanics and rock engineering,2003, 36(1):27-38
    [246]Kemeny J. Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities. International journal of rock mechanics and mining sciences,2005, 42(1):35-46
    [247]Christianson M, Board M, Rigby D. UDEC simulation of triaxial testing of lithophysal tuff, 2006
    [248]Alzo Ubi A K. MODELING OF ROCKS UNDER DIRECT SHEAR LOADING BY USING DISCRETE ELEMENT METHOD. A bi-annual, refereed journal published by ALHOSN University-Abu Dhabi-UAE Volume 4 Number 2 May 2012,2012:5
    [249]Alzo'Ubi A, Martin C D, Cruden D M. A discrete element damage model for rock slopes in Rock Mechanics. Vancouver,2007
    [250]Fakhimi A, Carvalho F, Ishida T, et al. Simulation of failure around a circular opening in rock. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):507-515
    [251]Huang H. Discrete element modeling of tool-rock interaction:University of Minnesota, 1999
    [252]Potyondy D O, Cundall P A, Lee C A. Modelling rock using bonded assemblies of circular particles,1996
    [253]Hazzard J F, Young R P. Simulating acoustic emissions in bonded-particle models of rock. International Journal of Rock Mechanics and Mining Sciences,2000,37(5):867-872
    [254]Mas Ivars D, Potyondy D O, Pierce M, et al. The smooth-joint contact model. Proceedings of WCCM8-ECCOMAS,2008
    [255]Mito Y, Chang C S, Aoki K, et al. Evaluation of fracturing process of soft rocks at great depth by AE measurement and OEM simulation,2007
    [256]Poisel R, Roth W. Run out models of rock slope failures. Felsbau,2004,22(2):46-50
    [257]Yoon J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences,2007,44(6):871-889
    [258]Moon T, Nakagawa M, Berger J. Measurement of fracture toughness using the distinct element method. International Journal of Rock Mechanics and Mining Sciences,2007,44(3): 449-456
    [259]Potyondy D, Autio J. Bonded-particle simulations of the in-situ failure test at Olkiluoto, 2001
    [260]Potyondy D, Cundall P, Generation O P. The PFC model for rock:Predicting rock-mass damage at the underground research laboratory Ontario Power Generation, Nuclear Waste Management Division,2002
    [261]Mas Ivars D, Pierce M E, Darcel C, et al. The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences,2011,48(2): 219-244
    [262]Lorig L J, Brady B. A hybrid discrete element-boundary element method of stress analysis, 1982
    [263]Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences,2003,40(3):283-353
    [264]Swoboda G, Mertz W, Beer G. Rheological analysis of tunnel excavations by means of coupled finite element (FEM)-boundary element (BEM) analysis. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(2):115-129
    [265]Eberhardt E, Stead D, Coggan J S. Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide. International Journal of Rock Mechanics and Mining Sciences,2004,41(1):69-87
    [266]Klerck P A. The finite element modelling of discrete fracture in quasi-brittle materials: University of Wales Swansea,2000
    [267]Stead D, Eberhardt E, Coggan J S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Engineering Geology, 2006,83(1):217-235
    [268]Munjiza A, Owen D, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering computations,1995,12(2):145-174
    [269]Munjiza A, Andrews K. Penalty function method for combined finite-discrete element systems comprising large number of separate bodies. International journal for numerical methods in engineering,2000,49(11):1377-1396
    [270]Munjiza A, Latham J P. Grand challenge of discontinuous deformation analysis Taylor & Francis,2002
    [271]何铮,徐卫亚,石崇,等.顺层岩质高边坡地震变形破坏机制三维数值反演研究.岩土力学,2009,30(11):3
    [272]李振生,巨能攀,侯伟龙,等.陡倾层状岩质边坡动力响应大型振动台模型试验研究.工程地质学报,2012,20(2):242~248
    [273]李海波,肖克强,刘亚群.地震荷载作用下顺层岩质边坡安全系数分析.岩石力学与工程学报,2007,26(12):2385~2394
    [274]董金玉,杨国香,伍法权,等.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究.岩士力学,2011,32(10):2977~2982
    [275]Bhasin R, Kaynia A M. Static and dynamic simulation of a 700-m high rock slope in western Norway. Engineering Geology,2004,71(3):213-226
    [276]孙东亚,彭一江,王兴珍.DDA数值方法在岩质边坡倾倒破坏分析中的应用.岩石力学与工程学报,2002,21(1):39~42
    [277]Bray J W, Goodman R E. The theory of base friction models Elsevier,1981
    [278]门玉明,彭建兵,李寻昌,等.层状结构岩质边坡动力稳定性试验研究.世界地震工程,2004,20(4):131~136
    [279]Zhang G, Zhao Y, Shi G H, et al. Toppling failure simulation of rock slopes by numerical manifold method. Yantu Gongcheng Xuebao(Chinese Journal of Geotechnical Engineering), 2007,29(6):800-805
    [280]张国新,赵妍,彭校初.考虑岩桥断裂的岩质边坡倾倒破坏的流形元模拟.岩石力学与工程学报,2007,26(9):1773~1780
    [281]Haneberg W C. Simplified Dynamic Analysis of Vibration-Induced Rock Toppling. Environmental & Engineering Geoscience,2009,15(1):41-45
    [282]Barbero M, Barla G. Stability Analysis of a Rock Column in Seismic Conditions. Rock mechanics and rock engineering,2010,43(6):845-855
    [283]Feng W K, Huang R Q, Xu Q. Seismic Response Analysis of Horizontal Layer Slope with Soft and Hard Rock Combination. Applied Mechanics and Materials,2011,90:1326-1333
    [284]Ladeira F L, Price N J. Relationship between fracture spacing and bed thickness. Journal of Structural Geology,1981,3(2):179-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700