用户名: 密码: 验证码:
塔里木盆地麦盖提斜坡巴什托与玛南构造带成藏差异性特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦盖提斜坡是塔里木盆地油气勘探的重要领域。近年来巴什托构造带油气勘探已经获得重大突破,玛南构造带玉北1井油气藏也有初步发现,但玛南构造带整体勘探成功率比较低,矛盾主要表现在玛南构造带油气成藏规律上,为此开展玛南构造带与巴什托构造带油气成藏特征对比性研究和有利勘探区带评价的研究工作,力求实现勘探的突破。本文以石油地质学和油藏地球化学理论为指导,综合运用地质、钻井、地球物理、地球化学等资料,以流体包裹体系统分析技术为主要手段,以古流体研究为切入点,开展玛南与巴什托-先把扎构造带地层发育、原油及烃源岩地球化学、断裂发育及演化、油气成藏期次及时期及成藏主控因素的研究工作,主要取得以下认识:
     (1)地震剖面构造解析以及构造演化分析结果表明,巴什托与玛南构造带构造差异性特征主要表现为:①巴什托断裂构造样式主要是盖层滑脱,玛南构造带主要是中浅层盖层滑脱与深层基底伸展正断裂的纵向叠加构造样式。②玛南构造带在加里东晚期—海西早期发育和田古隆起,奥陶系及志留—泥盆系遭受剥蚀;而巴什托构造带大部处于沉降阶段接受沉积,形成玛南构造带高巴什托构造带底的格局。③玛南构造带在加里东—海西早期构造变形强,巴什托构造带在海西晚期—喜山期构造变形强。④巴什托构造带构造反转发生在海西晚期,而玛南构造带发生在喜山期。
     (2)通过两个构造带原油与烃源岩植烷系列、甾烷系列、三环萜烷系列、碳同位素δ13C值分布曲线进行油-油、油-岩对比,以及油包裹体荧光光谱分析认为,综合判识玛南构造带玉北1井油藏的原油烃源岩为寒武系泻湖相和斜坡相两套烃源岩,有机质类型和丰度好。巴什托构造带原油烃源岩为寒武系主力烃源岩和石炭-二叠系次要烃源岩,寒武系有机质类型和丰度好,石炭-二叠系有机质类型和丰度较差。
     (3)结合生烃史、埋藏史,利用流体包裹体系统分析方法得出巴什托与玛南构造带成藏期次差异性特征主要表现为:①巴什托发生过两期油气运聚:第一期为早期的低成熟油充注,成藏期为海西晚期286-253Ma期间,油气充注压力19.94-21.54MPa;第二期油为高成熟油气充注,成藏期为喜山晚期18-OMa期间,油气充注压力20.43-55.70MPa。第一期油来自寒武系斜坡相岩,第二期油来白寒武系斜坡相岩和石炭-二叠系烃源岩。②玛南构造带发生过三期油气运聚:第一期为早期的低成熟油充注,成藏期为海西中期358-315Ma,油气充注压力11.23-12.88MPa;第二期油为高成熟油气充注,成藏期为海西晚期278-217Ma,油气充注压力13.63-14.78MPa;第三期油为高成熟油气充注,成藏期为喜山期21-OMa,油气充注压力20.09-61.45MPa。前两期油油源均来自下寒武统泻湖相烃源岩,第三期油油源来自寒武系斜坡相烃源岩。
     (4)通过分析两个构造带成藏要素及成藏特征认为:巴什托油气成藏有三套储盖组合,储集层分别为石炭系巴楚组下部东河砂岩段、石炭系巴楚组上部生屑灰岩段、石炭系小海子组灰岩,盖层为巴楚组泥岩段、卡拉沙依组中下部的膏质白云岩和膏岩段、下二叠统库普库兹满组泥岩段,现今有寒武系和石炭-二叠系多套成熟-高成熟烃源岩,油气圈闭数量多、类型好,圈闭早石炭世初具雏形,晚二叠世基本定形,烃源岩到储集层有断裂良好勾通,油气主要运移方式为垂向加侧向。玛南构造带储集层为奥陶系风化壳岩溶型储层,盖层为石炭系巴楚组泥岩段、奥陶系局部较致密的碳酸盐岩盖层,现今也有寒武系成熟-高成熟烃源岩,圈闭类型为背斜-裂缝-岩溶复合圈闭,圈闭早泥盆世已初具雏形,早二叠世完全定形,烃源岩到储集层有断裂和岩溶输导层良好勾通,油气以侧向运移为主。最后总结了两个构造带成藏主控因素为有效烃源岩、储盖层发育条件、古隆起-古斜坡的演化、岩溶储集体的发育、断层发育及沟通情况。
     (5)在两个构造带勘探目标优先上,运用具体问题具体分析的思路,将玛南构造带划分为麦盖提3区块中北部、麦盖提2区块北部和麦盖提1区块西北部、麦盖提1区块YB3井北部三个不同的潜在勘探区,将巴什托构造带划分为巴什托区块中北部、巴什托区块西部两个有利勘探区。针对两个构造带建立油气成藏模式,提出相应的勘探目标和勘探建议。在巴什托构造带,指出上古生界发育了有利的构造岩性圈闭并且具备良好的保存条件,而玛南构造带下古生界发育有利构造岩溶复合圈闭,是油气富集的场所。
The Markit Slop is an important area for petroleum exploration in Tarim Basin. Recently, the petroleum exploration of Bashituo structural belt has achieved great breakthroughs and the reservoir of well YB1in Manan structure belt has gained a certain degree of discovery. But the success rate of the overall exploration of Manan structure belt was relatively low. The critical factor was the hydrocarbon accumulation regularity in Manan structure belt. So the comparative study of hydrocarbon accumulation characteristics and the research work for the evaluation of favorable exploration zone in Manan and Bashituo structure belt had been launched, striving to achieve breakthroughs in exploration. By using the data of geology, drilling, geophysical and geochemical and so on, this article, guided by the theory of Petroleum Geology and Reservoir Geochemistry, applied the ancient fluid as the breakthrough point and developed a research work on formation development, crude oil and source rocks geochemistry, fracture development and evolution, hydrocarbon accumulation stage and period and the favorable exploration target evaluation. The mainly achievements are as follows:
     (1) By studying on interpretation of the seismic profile and structural evolution, the differences of structure characteristic between the Bashituo and Manan structure belts were:①the fracture structural style of Bashituo is mostly caprock slippage, while the fracture structural style Manan is a combination of middle-shallow cap rock slippage and vertical superposition of the stretching normal fault of the deep basement.②Manan structure belt developed Hetian ancient uplift in the late Caledonian-early Hercynian with the eroding of the Ordovician and Silurian-Devonian; However, the Bashituo structure belt, which was mostly in a subsident stage, accepted deposition and formed a situation of Manan structure belt being higher than the bottom of Bashituo structure belt.③the Caledonian-early Hercynian structural deformation concentrated in Manan structure belt and the late Hercynian-Himalayan structural deformation concentrated on the Bashituo structural zone.④the structural inversion of Bashituo structural happened in late Hercynian period while the one's of Manan's happened in Himalayan period.
     (2) According to the fluorescence spectra of oil inclusions, the characteristics of Phytane series, Sterane series, Tricyclic Terpanes series, the value of carbon isotope δ13C of the oil and source rocks in these two structural belts, it is comprehensively consider that the crude hydrocarbon source rock of the reservoir of well YB1in Manan structural belt comes from two sets of hydrocarbon source rocks--Cambrian lagoon facies and slope facies and their organic matter type and abundance are well. The crude hydrocarbon source rock in Bashituo structural belt mainly comes from Cambrian source rock, whose organic type and abundance are better, and secondarily comes from permo-carboniferous source rock, whose organic type and abundance are worse.
     (3) By applying system analysis method of fluid inclusions, combined with the analyses of hydrocarbon generating history and burial history, the main differences of the hydrocarbon charging events between the Bashituo and Manan structural belt were:①there were two oil charging events in Bashituo structural belt:The first oil charging was the early low maturity oil charging which happened in286-253Ma in late Hercynian period and the petroleum entrapment pressure was under19.94-21.54Mpa; The second oil charging was the late high maturity oil charging which happened in18-0Ma in late Himalayan period and the petroleum entrapment pressure was under20.43-55.70Mpa. The first charging oil originated from rock slope facies in Cambrian, and the second charging oil originated from rock slope facies in Cambrian and paludal facies in carboniferous-Permian.②There were three oil charging events in Manan structural belt: The first charging oil was the early low maturity oil in358-315Ma in middle Hercynian period and the petroleum entrapment pressure was in11.23-12.88Mpa; the second charging oil was the high maturity oil charging in278-218Ma in late Hercynian period and the petroleum entrapment pressure was from13.63Mpa to14.78Mpa; the second charging oil was the high maturity oil in21-0Ma in late Himalayan period and the petroleum entrapment pressure was20.09-61.45Mpa. The first and two oil sources came from the lower Cambrian lagoon facies hydrocarbon source rocks, but the third one came from the Cambrian slope facies hydrocarbon source rocks.
     (4) By analyzing the two structural belt accumulation elements and accumulation characteristics, it was considered that:There existed three types of reservoir-seal assemblages in the BaShituop structural belt. The reservoir were respectively the Donghe sandstone member of Lower Carboniferous Bachu Group, bioclastic limestone member of Upper Carboniferous Bachu Group, limestone member of Carboniferous Xiaohaizi Group. The cap rocks were mudstone member of Carboniferous Bachu Group, gypsum dolomite member and gypsum member of middle-lower Kalashayi Group, mudstone member of Permian Kupukuzhiman Group, respectively. Nowadays, there are multiple sets of mature to high mature hydrocarbon source rock in the Cambrian and Permian-Carboniferous. The hydrocarbon traps, which were large in quantity and good in types, begun to take shape in Early Carboniferous and basically formed in Late Permian. These traps had a good fracture communication between the hydrocarbon source rock and the reservoir, and the petroleum trapped by them mainly migrated vertically or laterally. The type of reservoir in Manan structural belt was Ordovician weathering crust karst reservoir. The cap rocks were mudstone section of Carboniferous Bachu Group and dense carbonate rocks of Ordovician. There were a set of mature to high mature hydrocarbon source rock in Cambrian Nowadays. The trap types were a combination of anticline-crack-karst. The traps begun forming in early Devonian and finished in early Permian. The communication between the hydrocarbon source rock and reservoir was well for the good fractures and karst transport layer between them. Finally, the main controlling factors of hydrocarbon accumulation in these two structural belt are decided by an effective hydrocarbon source rocks, a well developed condition of reservoir and cap rocks, an evolution of palaeohigh-Ancient slope, the development of karst reservoir, well formed faults and their good communication..
     (5) On the basis of preferably predicting the exploration targets in these two structure belts, the Manan structure belt were divided into three different potential exploration areas using the method of analyzing specific issues:north-central Markit Ⅲ block, north Markit II block and northwest Markit I block, the northern part of the Markit I block YB3well. The Bashituo structure belt were divided into two favorable exploration zone of north-central Bashituo blocks and west Bashituo block. The hydrocarbon accumulation model of these two structure belts was established and then the corresponding exploration aims and proposes are put forward. It is pointed out that the favorable structural lithological traps with good storage conditions developed in Upper Paleozoic. While Manan structure belt developed traps with favorable structure karst composite which were good for petroleum accumulation in Lower Paleozoic.
引文
[1]赵靖舟.塔里木盆地克拉通区海相油气成藏期与成藏史[J].科学通报,2002,47(增刊):116-121.
    [2]马红强,王恕一,蔺军.塔里木盆地巴楚-麦盖提地区油气运聚与成藏[J].石油实验地质,2006,28(3):243-247.
    [3]旷理雄,郭建华,郭永康,等.巴楚地区巴楚组生屑灰岩段储集层特征与油气成藏[J].新疆石油地质,2009,30(5):550-553.
    [4]邬光辉,李洪辉,张立平,等.塔里木盆地麦盖提斜坡奥陶系风化壳成藏条件[J].石油勘探与开发,2012,39(2):144-153.
    [5]贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质,1999,20(3):177-183.
    [6]杨明慧,刘池洋.中国中西部类前陆盆地特征及含油气性[J].石油与天然气地质,2000,21(1):47-49.
    [7]魏国齐,贾承造,施央申,等.塔里木新生代复合再生前陆盆地构造特征与油气[J].地质学报,2000,74(2):123-133.
    [8]吕修祥,周新源,皮学军,等.塔里木盆地巴楚凸起油气聚集及分布规律[J].新疆石油地质,2002,23(6):489-492.
    [9]曹自成,孙国锋,邵志兵,等.麦盖提地区有利勘探区带优选(西北局内部报告).2009-2011.
    [10]朱怀诚,张师本,罗辉,等.塔里木盆地泥盆系_石炭系界线研究新进展[J].地层学杂志,2000,24(增刊):370-372.
    [11]Wingert, W. S., GC-MS analysis of diamondoid hydrocarbon in Smackover petroleum. Feul, 1992,71(1):37-43.
    [12]Chen, J. H., Fu, J. M., Sheng, G. Y., et al., Diamondoid hydrocarbon ratios:novel maturity indices for highly mature crude oils[J]. Org. Geochem.1996,25(3/4),179-190.
    [13]陈军红,傅家漠,盛国英,等.金刚烷化合物的结构特性及其地球化学意义[J].科学通报,1996,41(6):524-527.
    [14]Grice, K., Alexander, R., Kagi, R. I., Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils. Org. Geochem.2000,31:67-73.
    [15]张厚福,方朝亮,张枝焕,等.石油地质学[M].北京:石油工业出版社,1999.
    [16]Tissot B, Welte D H. Petroleum formation and occurrence [M]. Berlin:Springer-Verlag, 1984.
    [17]赵靖舟.油气水界面追溯法-研究烃类流体运聚成藏史的一种重要方法[J].地学前缘,2001,8(4):373-377.
    [18]赵靖舟.油气水界面追溯法与塔里木盆地海相油气成藏期分析[J].石油勘探与开发, 2001,28(4):55-58.
    [19]庞雄奇,罗晓容,姜振学,等.中国西部复杂叠合盆地油气成藏研究进展与问题[J].地球科学进展,2007,22(9):879-887.
    [20]金之钧,张一伟,王捷,等.油气成藏机理与分布规律[M].北京:石油工业出版社,2003:22-48.
    [21]Wang F Y, Zhang S C, Liang D G A history of multiple period petroleum accumulation in Tazhong uplift, Tarim Basin[J]. Bulletin of the AmericanAssociation Petroleum Geology, 2000,84(9):1511-1512.
    [22]王飞宇,郝石生,雷加锦.砂岩储层中自生伊利石定年分析油气藏形成期[J].石油学报,1998,19(2):40-43.
    [23]白国平.伊利石K-Ar测年在确定油气成藏期中的应用[J].中国石油大学学报:自然科学版,2000,24(4):100-103.
    [24]间建萍,刘池洋,郭桂红.松辽盆地扶杨油层油气成藏期次和时限确定[J].兰州大学学报:自然科学版,2008,44(5):26-29.
    [25]陈建渝,刘从印,张树林,等.原油中生物标志物的组成是成藏史的反映[J].地球科学:中国地质大学学报,1997,22(6):97-102.
    [26]王铁冠,王春江,何发歧,等.塔河油田奥陶系油藏两期成藏原油充注比率测算方法[J].石油实验地质,2004,26(1):74-79.
    [27]庞雄奇,李丕龙,金之钧,等.油气成藏门限研究及其在济阳坳陷中的应用[J].石油与天然气地质,2003,240):204-209.
    [28]庞雄奇,罗晓容,姜振学,等.中国典型叠合盆地油气聚散机理及定量模拟[M].北京:科学出版社,2007.
    [29]金之钧,张一伟,王捷,等.油气成藏机理与分布规律[M].北京:石油工业出版社,2003,22-48.
    [30]孙玉善,赵孟军,杨帆.由沥青产状及地球化学特征分析碳酸盐岩油藏的成藏期次[J].新疆石油地质,1999,20(5):394-396.
    [31]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [32]刘斌,沈昆.包裹体流体势图在油气运聚研究方面的应用[J].地质科技情报,1998,17(增刊):81-86
    [33]刘德汉.包裹体研究—盆地流体追踪德有利工具[J].地学前缘,1995,2(3-4):149-154.
    [34]Burruss, R. C., Cercone, K. R., Harris, P. M.,1983. Fluid inclusion petrography and tectonic-burial history of the Al Ali No.2 well:Evidence for the timing of diagenesis and oil migration, northern Oman Foredeep. Geology,11:567-570.
    [35]Haszeldine, R. S., Samson, I. M., Cornford, C.,1984. Dating diagenesis in a petroleum basin, a new fluid inclusion method. Nature,307(26):354-357.
    [36]Walderhaug, O. A.,1990. Fluid inclusion study of quartz-cemented sandstones from offshore mid-Norway-Possible evidence for continued quartz cementation during oil emplacement. Journal of sedimentary petrology,60(2):203-210.
    [37]Grant, S. M., Oxtoby, N. H.,1992. The timing of quartz cementation in Mesozoic sandstones from Haltenbanken, offshore mid-Norway:fluid inclusion evidence. Journal of Geological Society, London,149:479-482.
    [38]Stasiuk, L. D., Snowdon, L. R.,1997. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusion:crude oil chemistry, density and application to petroleum migration. Applied Geochemistry,12:229-241.
    [39]Parnell, J., Carey, P., Monson, B.,1998. Timing and temperature of decollement on hydrocarbon source rock beds in cyclic lacustrine successions [J]. Palaeogeography,140: 121-134.
    [40]Parnell, J., Middleton, D., Chen, H. H., et al.,2001. The use of integrated fluid studies in constraining oil charge history and reservoir compartmentation:Examples from the Jeanne d'Arc basin, offshore Newfoundland. Marine and Petroleum Geology,18:535-549.
    [41]Mark, D. F., Parnell, J., Kelley, S. P., et al.,2005. Dating of Multistage Fluid Flow in Sandstones. Science,309:2048-2051.
    [42]Chen, H. H., Zhang, Q. M., Shi, J. X.,1997. Evidence of fluid inclusion for thermal fluid-bearing hydrocarbon movements in Qiongdongnan Basin, South China Sea SCIENCE IN CHINA (Series D),40(6):648-655.
    [43]邱楠生,金之钧,胡文喧,2002.东营凹陷油气充注历史的流体包裹体分析.石油大学学报(自然科学版),24(4):95-97.
    [44]Li, C. Q., Chen, H. H., Li, S. T., et al.,2004. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China. Journal of Zhejiang University Science,5(8):976-978.
    [45]欧光习,李林强,孙玉梅,2006.沉积盆地流体包裹体研究的理论与实践.矿物岩石地球化学通报,25(1):1-11.
    [46]Goldstein R H. Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos,2001, 55(1-4):159-193.
    [47]柳少波,顾家裕.流体包裹体成分研究方法及其在油气研究中的应用[J].石油勘探与开发,1997,24(3):29-33.
    [48]刘文斌,姚素平,胡文暄,等.流体包裹体的研究方法及应用[J].新疆石油地质,2003,24(3):264-267.
    [49]李纯泉,陈红汉,陈汉林.塔河油田奥陶系有机包裹体的油气指示意义[J].大然气工业,2004,24(10):24-26.
    [50]叶松,张文准,张志坚.有机包裹体荧光显微分析技术简介[J].地质科技情报,1998,17(2):76-80.
    [51]George, S. C., Ruble, T. E., Dutkiewicz, A., et al., Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours[J]. Applied Geochemistry,2001,16:451-473.
    [52]Oxtoby, N. H., Comments on:Assessing the maturity of oil trapped fluid inclusions using molecular geochemistry data and visually-determined fluorescence coIours[J]. Applied Geochemistry,2002,17:1371-1374
    [53]George, S. C., Ruble, T. E., Dutkiewicz, A., et al., Reply to comment by Oxtoby on "Assessing the maturity of oil trapped fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours"[J]. Applied Geochemistry,2002,17: 1375-1378.
    [54]孙玉梅.对石油包裹体荧光颜色与烃流体热演化程度关系的认识.2004年,《国际有机包裹体研究及应用》短训班第十四届全国流体包裹体及地质流体学术研讨会论文集.河北廊坊,85.
    [55]赵艳军,陈红汉.油包裹体荧光颜色及其成熟度关系[J].地球科学,2008,33(1):91-96.
    [56]Eadington, P. J., Lisk, M., Krieger, F. W., Indentify oil well sites. United States Patent Application,1996,5:543-616.
    [57]Oxtoby, N. H., Mitchell, A. W., Gluyas, J. G., The filling and emptying of the Ula oilfield: fluid inclusion constraints, in J. M. Cubitt and W. A. England, eds., The geochemistry of reservoirs:Geological Society Special Publication,1995,86:141-157.
    [58]Lisk, M., O'Brien, G. W., Eadington, P. J., Quantitative evaluation of the oil-leg potential in the Oliver gas field, Timor Sea, Australia[J]. AAPG Bulletin,2002,86(9):1531-1542.
    [59]George, S. C., Ahmed, M., Liu, K. Y., et al., The analysis of oil trapped during secondary migration[J]. Organic Geochemistry,2004,35(11-12):1489-1511.
    [60]Cao, J., Jin, Z. J., Hu, W. X., et al., Integrate GOI and composition data of oil inclusions to reconstruct petroleum charge history of gas-condensate reservoirs:example from the Mosuowan area, central Junggar basin (NWChina)[J]. Acta Petrologica Sinica,2007,23(1): 137-144.
    [61]郝雪峰,陈红汉,高秋丽,等.东营凹陷牛庄砂岩透镜体油气藏微观充注机理[J].地球科学,2006,31(2):182-190.
    [62]马安来,金之钧,张大江.流体包裹体在油藏地球化学中的应用[J].新疆石油学院学报,2004,16(2):1-4.
    [63]姜福杰,姜振学,庞雄奇,等.含油包裹体丰度指数确定油气运聚范围及应用[J].西南石油学院学报,2006,28(5):15-18.
    [64]宋明水.含烃流体包裹体丰度法追溯古油水界面的局限性[J].油气地质与采收率,2007,14(3):5-8.
    [65]谢小敏,曹剑,胡文暄,等.叠合盆地储层油气包裹体GOI成因与应用探讨[J].地质学报,2007,81(6):834-842.
    [66]卓勤功,石砥石.应用流体包裹体研究油气成藏时要注意的问题[A].地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议论文集[C],中国广州,2007.
    [67]Liu, K. Y., Eadington, P., Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history[J]. Organic Geochemistry,2005,36: 1023-1036.
    [68]施和生,吴建耀,朱俊章,等.应用定量荧光技术判识番禺低隆起—白云凹陷北坡残余油藏并重构烃类充注史[J].中国海上油气,2007,19(3):149-153.
    [69]饶丹,思伟军,刘可禹.应用碳酸盐岩QGF-E确定塔河油田奥陶系油藏古油水界面[A]. 地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议论文集[C],中国广州,2007.
    [70]Tilley, B. J., Nesbitt, B. E., Longstaffe, F. J., Thermal history of Alberta deep basin: Comparative study of fluid inclusion and vitrinite reflectance data[J]. The American Association of Petroleum Geologists Bulletin,1989,73(10):1206-1222.
    [71]Walderhaug, O., A fluid inclusion study of quartz cemented sandstones from offshore Mid-Norway-possible evidence for continued quartz cementation during emplacement[J]. Journal of sedimentary petrology,1990,60(2):203-210.
    [72]Grant, A. M., Oxtoby, N. H.,. The timing of quartz cementation in Mesozoic sandstones from Haltenbanken, offshore mid-Norway:fluid inclusion evidence[J]. Journal of the Geological Society, London,1992,149:479-482.
    [73]Worden, R. H., Warren, E. A., Smalley, P. C., et al., Discussion of "Evidence fro resetting of fluid inclusion temperature from quartz cements in oilfield" by Osborne and Haszeldine (1993)[J]. Marine and Petroleum Geology,1995,12(5):566-570.
    [74]Stasiuk, L. D., Snowdon, L. R., Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluids inclusions:crude oil chemistry, density and appilication to petroleum migration[J]. Applied Geochemistry,1996,12:229-241.
    [75]Li, D. S., Basic characteristics of oil and gas basins in China[J]. Journal of Southeast Asian Earth Sciences,1996,13(3-5):299-304.
    [76]Parnell, J., Garey, P. F., Monson, B., Fluid inclusion constraints on temperatures of petroleum migration from authigenic quartz in bitumen veins[J]. Chemical Geology,1996, 129:217-226.
    [77]Dutkiewicz, A., Rasmussen, B., Buick, R., Oil preserved in fluid inclusions in Archaean sandstones[J]. Nature,1998,395:885-888.
    [78]Pang, L. S. K., George, S. C., Quezada, R. A., A study of the gross compositions of oil-bearing fluid inclusions using high performance liquid chromatography[J]. Org. Geochem.,1998,29(5-7):1149-1161.
    [79]Kelly, J., Parnell, J., Chen, H. H., Application of fluid inclusions to studies of fractured sandstone reservoirs[J]. Journal of Geochemical Exploration,2000,69-70:705-709.
    [80]Miallier, D., Gibert, F., Fain, J., et al., Fluid inclusions in quartz:interference with thermoluminescence and its application to dating[J]. Quaternary Science Reviews,2001, 20:901-905.
    [81]Burke, E. A. J., Raman microspectrometry of fluid inclusions[J]. Lithos,2001,55:139-158
    [82]Teinturier, S., Prionon, J., Walgenwitz, F., Fluid inclusions and PVTX modeling:examples from the Garn Formation in well 6507/2-2, Haltenbanken, Mid-Norway [J]. Marine and Petroleum Geology,2002,19:755-765.
    [83]Tseng, H. S., Pottorf, R. J., Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn-South Brent petroleum system, northern North sea[J]. Marine and Petroleum Geology,2002,19:797-809.
    [84]Liu, K. Y., Eadington, P., A new method for identifying secondary oil migration pathways[J]. Journal of Geochemical Exploration,2003,78-79:389-394.
    [85]Galamay, A. R., Bukowski, K., Czapowski, G., Chemical composition of brine inclusions in halite from clayey salt (zuber) facies from the Upper Teritary (Miocene) evaporate basin (Poland)[J]. Journal of Geochemical Exploration,2003,78-79:509-511.
    [86]Grimmer, J. O. W., Pironon, J., Teinturier, S., et al., Recognition and differentiation of gas condensates and other oil types using microthermometry of petroleum inclusions[J]. Journal of Geochemical Exploration,2003,78-79:367-371.
    [87]Tseng, H. Y., Pottorf, R., The application of fluid inclusion PVT analysis to studies of petroleum migration and reservoirs[J]. Journal of Geochemical Exploration,2003,78-79: 433-436.
    [88]Okubo, S., Effects of thermal cracking of hydrocarbon on the homogenization temperature of fluid inclusions from Niigata oil and gas fields, Japan[J]. Applied Geochemistry,2005, 20:255-260.
    [89]陈红汉.地质流体:多学科技术和概念的相互渗透——第二届国际沉积盆地和造山带流体演化、运移和相互作用大会简介[J].地球科学进展,1998,13(2):204-206.
    [90]陈红汉.第三届国际地质流体大会简介[J].地球科学进展,2001,16(2):288-289.
    [91]单秀琴,高嘉玉,张鼐.流体包裹体分析在油气勘探研究中应注意的问题[A].地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议论文集[C],中国广州,2007.
    [92]刘超英,周瑶琪,杜玉民,等.有机包裹体在油气运移成藏研究中的应用及存在问题[J].西安石油大学学报(自然科学版),2007,22(1):29-32.
    [93]郝芳,孙永权,李思田,等.活动热流体对有机质热演化和油气生成作有的强化[J].地球科学,1996,21(1):68-72.
    [94]Crawford, M. L., Phase equilibria in aqueous fluid inclusions. In L S Hollister and M L Crawford (eds):Short Course in Fluid Inclusions:Applications to petrology. Mineral Assessment Canada Short Course Handbook,1981,6:75-100.
    [95]施继锡,李本超,傅家谟,等.有机包裹体及其与油气关系[J].中国科学(B辑),1987,3:318-325.
    [96]Pedersen, K. S., Fredenslund A and Thomassen P. Properties of oil and natural gases. In: Petroleum Geology and Engineering. New York:Gulf Pubilishing Company, USA.1989, 5(5):252.
    [97]Aplin, A. C., Larter S R, Bigge M A, et al. PVTX history of the North Sea's Judy oilfield[J]. Journal of Geochemical Exploration,2000,60-70:641-644.
    [98]Roedder, E., Bodnor, R. J., Geological pressure determinating from fluid inclusion studies[J]. Annual Review of Earth Science,1980,8:263-301.
    [99]陈红汉,董伟良,张树林,等.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质,2002,23(3):207-211.
    [100]达江,宋岩,陈开远,等.沉积盆地流体势的研究[J].中国西部油气地质,2006,2(4): 385-389.
    [101]单秀琴,胡国艺,高嘉玉.鄂尔多斯盆地中部奥陶系方解石脉中包裹体流体势研究[J].岩石学报,2003,19(2):355-358.
    [102]谈迎,刘德良,杨晓勇,等.应用流体包裹体研究古流体势及油气运移[J].中国科学技术大学学报,2002,32(4):470-480.
    [103]陈红汉.油气成藏年代学研究进展[J].石油与天然气地质,2007,28(2):143-150.
    [104]Goldstein, R. H., Reynolds, T. J., Systematic of fluid inclusions in diagenetic minerals. SEPM short course,1994,31:69-85.
    [105]Burruss R C. Practical aspects of fluorescence microscopy of petroleum fluid inclusions[A]. Barke C F, Kopp O, eds. Luminescence microscopy:qualitative and quantitative applications[R]. Society for Sedimentary Geology(SEPM) Short Course, 1991,(25):1-7.
    [106]余孝颖,施继锡.红外、紫外及荧光分析在有机包裹体研究中的应用[J].矿物学报,1996,16(2):212-217.
    [107]邹海峰.大港探区前第三系古流体和古温压特征及演化[D].吉林;吉林大学,2000.
    [108]刘福宁.异常高压区的古沉积厚度和古地层压力恢复方法探究[J].石油与天然气地质,1994,15(2):180-185.
    [109]付广,张发强.利用声波时差资料研究欠压实泥岩盖层古压力封闭能力的方法[J].石汕地球物理勘探,1998,33(6):812-818.
    [110]刘震,张万选,张厚福,等.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14(1):14-24.
    [111]李善鹏,邱楠生.利用盆地模拟方法分析吕潍坳陷古压力[J].新疆石油学院学报,2003,15(4):5-8.
    [112]王卓超,王振奇,岳思录.盆地模拟的风险模型在准噶尔盆地西北缘车排子地区古压力研究中的应用[J].石油工业计算机应用,2009,1:7-9.
    [113]徐国盛,刘中平.川西地区上三叠统地层古压力形成与演化的数值模拟[J].石油实验地质,1996,18(1):117-126.
    [114]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊-陕斜坡山西组2段流体包裹体古流体压力分布及演化[J].石油学报,2008,2(29):225-230.
    [115]Roedder E. Application of an improved crushing microscope stage to studies of gases in fluid inclusion[J]. SchweizerMineralog Petrog Mitt,1970,50:41-58.
    [116]Coveney R M, Goebel E D, Ragan V M. Pressures and temperatures from aqueous fluid inclusions in sphalerite from Midcontinent country rocks[J]. Economic Geology, 1987,82(3):740-751.
    [117]Newell K D, Goldstein R H. A new technique for surface and shallow subsurface paleobarometry using fluid inclusions:an example from the Upper Ordovician Viola Formation, Kansas, USA[J]. Chemical Geology,1999,154(1-4):97-111.
    [118]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [119]傅民禄,A K.一种用于估算多盐溶液中流体包裹体捕获压力的方法[J].桂林冶金地质学院学报,1990,10(003):236-246.
    [120]刘斌.中高盐度NaCI-H2O包裹体的密度式和等容式及其应用[J].地质评论,2001,47(6):617-622.
    [121]Dubessy J, Buschaert S, Lamb W, et al. Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins[J]. Chemical Geology,2001,173(1-3):193-205.
    [122]Thiery R. Thermodynamic modelling of aqueous CH4-bearing fluid inclusions trapped in hydrocarbon-rich environments[J]. Chemical Geology,2006,227(3-4):154-164.
    [123]Aplin A C, Macleod G, Larter S R, et al. Combined use of Confocal Laser Scanning Microscopyand PVT simulation for estimating the composition andphysical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology,1999,16(2): 97-110.
    [124]Thiery R, Pironon J, Walgenwitz F, et al. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy:inferences from applied thermodynamics of oils[J]. Marine and Petroleum Geology,2002,19(7):847-859.
    [125]米敬奎,肖贤明,刘德汉.利用储层流体包裹体的PVT特征模拟计算天然气藏形成的古压力—以鄂尔多斯盆地上古生界深盆气藏为为例[J].中国科学,D辑,2003,23(7):679-685.
    [126]刘德汉,宫色,刘东鹰,等.江苏句容-黄桥地区有机包裹体形成期次和捕获温度、压力的PVTsim模拟计算[J].岩石学报,2005,21(5):1435-1448.
    [127]庞雄奇,姜振学,李建青,等.油气成藏过程中的地质门限及其控制油气作用[J].石油大学学报(自然科学版),2000,24(4):53-57.
    [128]付立新,陈善勇,王丹丽,等.乌马营奥陶系潜山天然气藏特点及成藏过程[J].石油勘探与开发,2002,29(5):25-27.
    [129]赵孟军,宋岩,潘文庆,等.沉积盆地油气成藏期研究及成藏过程综合分析方法[J].地质科学进展,2004,19(5):121-128.
    [130]赵孟军,王招明,张水昌,等.库车前陆盆地天然气成藏过程及聚集特征[J].地质学报,2005,79(3):414-422.
    [131]魏兆胜,苗洪波,王艳清,等.松辽盆地长春岭背斜带成藏过程[J].石油勘探与开发,2006,33(3):351-355.
    [132]王茹.胜坨油田两期成藏地球化学特征及成藏过程分析[J].天然气地球科学,2006,17(1):133-136.
    [133]李玉冠,邓兴梁,吐尔逊江.巴什托普石炭系油气藏成藏规律[J].新疆石油地质,1998,19(3):207-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700