用户名: 密码: 验证码:
珠江口盆地珠—坳陷油气富集规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠江口盆地是中国南海北部最大的中新生代沉积盆地,也是我国海上重要的油气资源基地。珠一坳陷是珠江口盆地发现油气最多的地区,目前所发现的油田及含油构造主要分布于惠州、恩平、陆丰和西江(番禺4洼)等富烃凹陷及其周边地区,油气资源量占整个珠一坳陷总资源量的62%左右。因此,阐明珠一坳陷尤其是坳陷中已证实富烃凹陷的油气富集规律及主控因素,对低探明地区的油气勘探具有重要的理论指导意义和实际参考价值。
     本文从珠一坳陷基本地质条件及构造背景出发,综合利用各类地质、地球物理、地球化学资料及相关分析测试手段,在系统分析烃源岩、储集层、盖层、生储盖组合、圈闭等成藏静态要素的前提下,以现代石油地质学、有机地球化学和含油气系统理论为指导,采用静态描述与动态模拟、宏观表征与微观刻画、定性分析与定量计算相结合的综合研究思路及方法,利用有机地球化学方法、流体包裹体分析测试技术和盆地数值模拟手段,剖析了研究区的油气来源、运移动力、输导体系、成藏时间等成藏动态条件及过程,优选了惠西-流花、惠东-陆丰、番禺4洼和恩平南等构造带上的典型油气藏进行综合解剖,在此基础上,总结了珠一坳陷油气在纵向上和平面上的富集规律,建立了不同油气聚集带的油气成藏模式,并阐明了控制油气富集的主要因素。
     1、油气成藏静态要素
     利用烃源岩热解数据,结合沉积相分析成果,从有机质沉积环境、丰度、类型和成熟度入手,对比了珠一坳陷文昌组和恩平组两套有效烃源岩的发育特征:文昌组烃源岩为中-深湖相沉积,有机质来源主要为藻类,丰度高、类型好、成熟度高、产油为主,是研究区主要的烃源岩;恩平组为浅湖-湖沼-河流相沉积,有机质来源以高等植物为主,丰度较高、类型稍差、成熟度低-中等,油气兼产,是研究区重要的烃源岩。
     基于岩心、测井、测试等资料,从岩性、孔隙类型和结构、物性、产能等方面进行分析,将珠一坳陷的储层划分为五种类型:高产油层主要分布于Ⅰ、Ⅱ、Ⅲ类高孔高渗-中孔中渗型储层中;Ⅳ类储层孔渗条件欠佳,主要发育差油气层、油水同层、含油水层以及可疑层;Ⅴ类储层孔渗条件极差,产油极少或不产油。新近系和古近系储层的类型及质量差异较大,新近系海相储层物性好,以Ⅰ、Ⅱ类为主,韩江组和珠江组是研究区主要产层;古近系陆相储层物性明显变差,Ⅰ、Ⅱ类储层减少,Ⅲ、Ⅳ类储层增多,为研究区的次要产层。
     从宏观展布和微观质量(突破压力、累计厚度、最大单层厚度、盖地比等)两方面对盖层进行评价,确定研究区韩江组、珠江组上段和文昌组发育多套区域性盖层,具有分布范围广、泥岩厚度大、突破压力高的特点,能大范围封盖住油气;珠江组下段、恩平组在大部分地区发育厚层泥岩,可作为地区性盖层,具有较强的封盖能力;珠海组虽然为薄泥多砂地层,但仍发育局部盖层,具有一定的封盖能力。
     受储层发育及盖层分布控制,研究区自上而下发育珠江组中上段-韩江组下段、珠海组和恩平组、文昌组及前古近系三套储盖组合,目前已发现的大部分油气都分布在上组合中。烃源岩、储集层和盖层在时空上相互配置,形成了自生自储式、上生下储式和下生上储式三种生储盖组合类型,并以下生上储式组合最为常见和重要。
     珠一坳陷广泛发育多种类型的圈闭,披覆背斜、逆牵引背斜、翘倾构造、断鼻和断块、断背斜等构造型圈闭是目前发现油气最多的圈闭类型,岩性(如砂岩透镜体)、不整合、古潜山、生物礁等地层圈闭是该区实现勘探新突破的重要目标,而构造、地层共同控制的断层-岩性圈闭和构造-岩性尖灭复合圈闭在古近系构造中较为常见。
     2、油气成藏动态条件及过程
     根据原油比重和粘度大小,将珠一坳陷的原油划分为两种类型:第一类原油比重低、粘度小,属正常油-轻质油,分布在惠州凹陷的大部分地区和其他凹陷的部分构造中;第二类原油比重高、粘度大,相当一部分为稠油或生物降解油,主要分布在流花油田群和番禺4洼。利用生物标志化合物的生源指示意义,优选了姥植比(Pr/Ph)、C19/C23三环萜烷值、双杜松烷T/αβC30藿烷值和C304-甲基甾烷/C29甾烷值等4个参数,与烃源岩进行对比后,将原油划分为三种类型:第1类原油具有“三低一高”(Pr/Ph值低、C19/C23值低,T/aβC30藿烷值低、C304-甲基甾烷/C29甾烷值高)的特征,与文昌组中深湖相烃源岩有关,对惠西-流花地区、陆丰凹陷、番禺4洼和恩平凹陷的大部分油气藏具有普遍贡献;第Ⅲ类原油具有“三高一低”(Pr/Ph值高、C19/C23值高,T/αpC30藿烷值低、C304-甲基甾烷/C29甾烷值高)的特征,来源于恩平组烃源岩,目前仅在惠州凹陷的HZ9-2构造中发现;第Ⅱ类原油的各项生物标志化合物参数值处于Ⅰ类和Ⅱ类原油之间,为文昌组与恩平组的混源油,分布在环惠州凹陷周边的凸起上以及陆丰凹陷、番禺4洼的个别油藏中。
     实测地温数据揭示,珠一坳陷现今地温梯度介于2.63-4.33℃/100m之间,平均为3.44℃/100m,整体处于正常地温带。盆地数值模拟结果揭示,研究区古地温场与古热流演化受地幔热流和构造运动控制,具有由高到低、再逐渐升高的变化趋势。在珠江口盆地裂陷阶段,构造活动强烈,地温梯度和热流值较高;盆地后裂陷期,断层活动逐渐减弱,地温梯度和热流值也逐渐降低。通过钻井实测数据、测井声波时差和地震预测的方法,揭示了珠一坳陷现今地层压力的分布情况,结果显示:恩平组以上地层处于正常压实段,压力系数在1.0左右,为常压带;恩平组-文昌组顶部发育低幅度欠压实,压力系数在1.0-1.2之间,为超压过渡带;文昌组中下部地层广泛发育欠压实,压力系数超过1.4,为异常压力带,地层压力分布形态为典型的超压封存箱。恩平凹陷三维地震工区内见到的气烟囱现象也有力的证实了文昌组超压的存在。基于含油气盆地二维数值模拟技术,选取了四条分别经过惠州、陆丰、番禺4洼和恩平凹陷主要生烃洼陷的剖面,进行了古压力场反演,根据反演结果,古地层压力随着沉积沉降或构造运动发生增大→减小→增大的反复循环过程,但总体上显示出增大的趋势,表明了珠一坳陷压力演化的阶段复杂性与总体一致性。
     珠一坳陷的油气输导体系以断层型为主,兼有不整合型和砂岩(碳酸盐岩)输导层型,油气通过一种类型的通道或多种类型组合形成的复合输导体系进行运移,以后者为主。其中,断层-砂体-断层型输导体系是油气从烃源岩向上构造层运移的主要通道,也是惠州凹陷的油气向东沙隆起运移的重要输导体系类型,断层-不整合型则是油气在下构造层中运聚成藏的主要输导方式。
     采用储层流体包裹体分析法,通过包裹体显微观测、荧光光谱分析、均一温度测定等,确定珠一坳陷总体经历过两期油气充注,时间分别为中中新世韩江组沉积时期和晚中新世粤海组沉积时期,以第二期充注为主。不同层位上,从文昌组到珠江组,两期油气充注时间均有逐渐变晚的趋势,珠江组上段仅经历过一期油气充注,东沙运动前后为油气成藏的关键时期,新近系很多油气藏都是在这个时候形成的,表现为晚期多层同注的特点。
     3、油气富集规律及主控因素
     选取珠一坳陷不同构造区带上的典型油气藏,对油气成藏条件、成藏过程进行综合解剖,探讨了各油气藏的形成机制和控制因素。在此基础上,总结了研究区油气在纵向上和平面上富集的规律:纵向上具有多层含油、分段富集的特征,油气分布井段长,但主要聚集在韩江组下-珠江组的上组合中;平面上呈差异分布、群带富集的特点,惠州凹陷以惠西-流花和惠东-陆丰两条油气聚集带最为富集,番禺4洼的油气围绕生烃洼陷呈环带状富集,恩平凹陷的油气则主要富集在南部隆起断裂构造带上。综合考虑油气来源、输导体系和成藏期次,将惠西-流花油气聚集带的油气成藏模式归纳为四种类型:单源-垂向运移-多期成藏模式、混源-垂向运移-多期成藏模式、混源-垂向-侧向运移-多期成藏模式以及单源-侧向-垂向运移-多期成藏模式;惠东-陆丰油气聚集带的模式为单源-侧向-垂向运移-多期幕式(快速)成藏模式;番禺4洼油气聚集带为单源-垂向-侧向-一期成藏模式;恩平南部油气聚集带的成藏模式归纳为单源-侧向-垂向-一期成藏模式。
     综合分析各项成藏静态要素及动态条件与过程,阐明了控制珠一坳陷油气富集的主要因素:生烃洼陷决定油气富集程度;输导体系控制油气运移范围;构造部位制约油气聚集能力;储层条件影响油气储量大小。
The Pearl River Mouth Basin is the largest Mesozoic-Cenozoic sedimentary basin in the northern South China Sea, and is also an important oil and gas resource base in offshore China. Among it, the Zhu I Depression has been confirmed to be the region with the best commercial exploration results. Previously discovered oilfields and oil-bearing structures are mainly distributed in the hydrocarbon-rich sags of Huizhou, Enping, Lufeng and (Panyu4Sag) and its surrounding areas, these oil and gas resources account for about62%of the total resources in the Zhu I Depression. Therefore, carrying out research on hydrocarbon accumulation regularity and the master control factors of the confirmed hydrocarbon-rich sags in the Zhu I Depression will provide some theoretical revelations and practical reference value for low proved oil and gas exploration areas.
     Starting from the basic geological conditions and tectonic background of the Zhu I Depression, based on the comprehensive utilization of the data and techniques of geology, geophysics and geochemistry and under the guidence of multi-disciplinary theories, this paper studied firstly the static elements of hydrocarbon accumulation such as source rock, reservoir, seal rock, source-reservoir-seal assemblage and trap, systematically. Using the combination research approachs of static description and dynamic simulation, macro and micro features, qualitative analysis and quantitative calculation and taking the techniques of organic geochemistry, fluid inclusions analysis and basin numerical simulation, this paper analyzed the accumulation dynamic conditions and process such as oil and gas source, migration dynamics, the conduit system, accumulation time deeply. And chosen some typical reservoirs in the Huixi-Liuhua, Huidong-Lufeng, Panyu4Sag and south Enping as comprehensive oil and gas reservoir anatomy targets. After that, the rules of oil and gas accumulation regularity in the Zhu I Depression vertically and laterally was summarized, oil and gas accumulation model in the different oil and gas accumulation zones was established and the main control factors of oil and gas accumulation was expounded.
     1. The static elements of hydrocarbon accumulation
     Based on the source rock pyrolysis data, began with sedimentary environment, organic matter abundance, types and maturity analyses, this research compared the characteristics of the two sets of effective hydrocarbon source rock (Wenchang group and Enping group) in Zhu I Depression:The sedimentary facies of Wenchang source rock is medium-deep lake and the major source of organic matter is algae. With the characteristics of high abundance, good types, high maturity, maily oil production, Wenchang source rock is the main hydrocarbon source rocks in the study area;The sedimentary facies of Enping source rock is shallow lake-lake-fluvial facies, and the major source of organic matter is higher plants. With the characteristics of high abundance, relatively poor type, low to medium maturity, and oil and gas production, the Enping source rock is also serves as important hydrocarbon source rocks in the study are.
     According to the core, logging, testing and a great quantity of other data, the reservoirs in Zhu I Depression are divided into five categories after the study of lithology, physical properties, pore types and structure, capacity and other factors of the reservoir:prolific oil layers mainly distributed in the reservoirs Ⅰ, Ⅱ and Ⅲ which have high porosity and permeability or medium to high porosity and permeability; reservoir Ⅳ has poor porosity and permeability, mainly with the found of poor oil and gas layer, oil and water layer, oily water layer and suspicious layer; IV category reservoir has extremely poor poroperm characteristics with few oil produced or no oil produced at all; The difference between the categories and qualities of the Neogene and Paleogene reservoirs is significant, the Neogene marine reservoir has high porosity and permeability, mainly belong to Ⅰ or Ⅱ reservoir categories, Hanjiang group and Zhujiang group are chief pay zones in the study area; The poroperm characteristics of Paleogene reservoir deteriorate obviously with lower proportion of Ⅰ, Ⅱ categories reservoirs, more Ⅲ, Ⅳ categories reservoirs, serve as secondary pay zones in the study area.Under the evaluation of the seal rock's macroscopic distribution and microscopic quality (breakthrough pressure, the cumulative thickness, ratio of maximum thickness of single layer, mudstone ratio, etc.) several sets of regional seal rock in the Hanjiang group, upper Zhujiang group and Wenchang group in the study area are confirmed, with the features of widely spread, large thickness of mudstone, high breakthrough pressure, which can sealing the oil and gas effectively; The latter Zhujiang group and Enping group developed thick mudstone in most areas, which can be used as regional seal rock with the effectively ability of sealing; although the Zhuhai group is thin and sandy, it still has certain ability of sealing with the local seal rock developed. Controlled by the distribution of reservoir and seal rock, the study area developed three sets of reservoir-seal associations(upper middle Zhujiang group-latter Hanjiang group, Zhujiang group-Enping group, Wenchang group-former Palaeogene) vertically, at present most of the oil and gas distribution in the three reservoir-seal associations. Source rocks, reservoirs and seal rocks have matching relationship between spatial and temporal, which has formed three categories of source-reservoir-caprock associations (self sourced reservoirs, source rocks in the upper part and reservoirs in the lower part, associated with source rocks in the lower part and reservoirs in the upper part), and source rocks in the lower part and reservoirs in the upper part is the most common type found. Zhu Idepression has developed multiple types of traps widely, such as drape anticline traps, reverse drag anticline traps, tensile-tilting tectonic, fault nose and fault block, ect. Tectonic traps like faulted anticline are traps that found mostly prolific. Stratigraphic traps like lithology (such as sandstone lens), unconformity, buried hill, biological reef, ect., have great exploration potential, which is a fine exploration main battlefield of achieving new breakthrough in this area. However fault-lithologic trap and structure-lithology pinchout combination trap are more common in the Paleogene stratum.
     2. Dynamical conditions and process of hydrocarbon accumulation
     According to crude oil density and viscosity, the crude oil in ZhuIdepression could be divided into two types:The first kind of crude oil has low weight, low viscosity, belongs to the normal to light oil, distributed in most parts of Huizhou Sag and the other structures in sags else; The second category crude oil has high density, high viscosity with a considerable part of heavy oil or biodegraded oil, mainly distributed in Liuhua oilfield group and Panyu4Sag. Thanks to the indicating of biomarkers, Pr/Ph, C19/C23tricyclic terpane, double juniper alkanes T/αβC30hopane and C304-methyl/C29sterane were optimized as four effective parameters, after compared with hydrocarbon source rock, crude oil is classified into three types:category Ⅰ crude oil with "three low and one high"(low Pr/Ph and low C19/C23, low T/a(3C30hopane, high C304methyl/C29sterane) features, related to deep lake facies source rocks in Wenchang group, and play an important role to most of the oil and gas reservoirs in the Huixi-Liuhua region, Lufeng Sag, Panyu4Sag and Enping Depression; category Ⅲ crude oil has "three high one low"(high Pr/Ph, high C19/C23, low T/αβC30hopane, high C304-methyl/C29) characteristics, coming from the hydrocarbon source rocks of Enping group, currently only found in HZ9-2structure of Huizhou Sag; category II crude oil has relatively medium biomarker values between category I and II crude oil, regarded as a mix of Wenchang and Enping oil, distributed on part of oil pools in the convex ring around Huizhou Sag, Lufeng Sag and Panyu4Sag. Measured temperature data revealed that geothermal gradient in Zhu I Depression is between2.63-4.33℃/100m now, with an average of3.44℃/100m, belong to normally temperate zone overall. From the basin numerical simulation results, it can be seen that the ancient ground temperature field and heat flow in the study area is controlled by the mantle heat flow and tectonic movement change, with a fluctuate trend of high to low then gradually rising. The results also revealed that there is strong tectonic activity, high geothermal gradient and high heat flow during the chasmic stage in Pearl Mouth Basin; However, in the late chasmic stage, the fault activity weakened gradually with geothermal gradient and heat flow values reduced as well. Using the drilling test, AC well logging data, combining seismic prediction together, the distribution of formation pressure nowadays in Zhu I Depression is revealed. According to the results, The groups above Enping group has normal compaction with pressure coefficient of around1.0, belong to normal pressure zone; the top of Enping-Wenchang group developed low amplitude under compaction with pressure coefficient between1.0-1.2, belong to overpressure transition zone; The latter Wenchang formation developed under compaction widely with pressure coefficient exceeds1.4, belong to abnormal pressure zone, typical overpressure compartment. Gas chimney phenomenon identified from the three dimensional seismic data of Enping Depression also powerfully proved the existence of the overpressure in Wenchang group. Based on the two-dimensional numerical simulation technology, four hydrocarbon generation profiles of Huizhou, Lufeng, Panyu4Sag were selected to study the ancient stress field, the inversion results revealed that the formation pressure experienced a repeatedly progress of increase-decrease-increase, but generally showed an increasing trend as a whole, which illustrated complexity and overall consistency of pressure evolution in the Zhu I Depression. The oil and gas transportation systems in Zhu I Depression mainly belong to fault type, partly belong to unconformity and sandstone type (carbonate rock) conducting layer. Oil and gas migrated mainly through composite passage system which has various passage way combined rather than through single passage. Among passage systems, the fault-sand-fault passage system is the main passage for oil and gas migrate upward from source rock to the reservoir, it also is an important passage system for the gas and oil in the Huizhou Sag move to Dongsha uplift and fault-unconformity passage system play a significant role in oil and gas migration and accumulation in the latter stratums. With the help of reservoir fluid inclusion analysis, the research on inclusion microscopic observation, fluorescence spectrum analysis and determination of uniform temperature showed that the Zhu I Depression generally experienced two phases of oil and gas filling, in the medium Miocene epoch and the late Miocene epoch respectively, the later filling phase is the relatively more important one. From Wenchang group to the Zhujiang group, the two phase of oil and gas filling both have a trend of gradually late, the upper Zhujiang experienced only one phase of oil and gas filling, Dongsha movement is a critical period of hydrocarbon accumulation, many Neogene reservoirs were formed at this time, as many layers filled at the same with the later period. The master control factors of oil and gas accumulation regularity Typical reservoirs has been selected from different tectonic belt in Zhu I Depression, and its conditions and processed of hydrocarbon accumulation were comprehensive analyzed. Then, the formation mechanism and control factors of oil and gas reservoirs were discussed.
     3. Enrichment regularity and main controlling factors
     On the basis of this, the accumulation regularity of oil and gas in the study area are summarized vertically and laterally:On vertical, the oil and gas mostly gathered in the combination of latter Hanjiang group-upper Zhujiang group; On lateral, the oil and gas accumulated showed zonal differences, Huixi-Liuhua and Huidong-Lufeng are the best oil and gas accumulation zone in Huizhou Depression; Panyu4Sag has oil and gas distribute circularly around the generating hydrocarbon sag; However, oil and gas in Enping Depression are largely distribute in the bulge-fracture tectonic belt in the south. According to the petroleum source, passage system, hydrocarbon migration direction and pool-forming period, the modes of hydrocarbon accumulation in Huixi-Liuhua oil and gas accumulation zone could be sum up into four patterns:unisource-vertical migration-multiphase accumulation pattern, mixed source-vertical migration-multiphase accumulation pattern, mixed source-vertically&laterally migration-multiphase accumulation pattern and unisource-vertically&laterally migration-multiphase accumulation pattern; The hydrocarbon accumulation pattern in Huidong-Lufeng oil and gas accumulation zone is unisource-vertically&laterally migration-multiphase accumulation (fast); The hydrocarbon accumulation pattern in Panyu4Sag is unisource-vertical&lateral migration-single period accumulation pattern; The hydrocarbon accumulation pattern in south Enping Depression is unisource-vertically&laterally migration-single period accumulation pattern.
     After comprehensively analyzed the various factors of static element and dynamic conditions of hydrocarbon accumulation, the most important control factors of hydrocarbon accumulation in Zhu I Depression is illustrated:The degree of hydrocarbon accumulation is decided by the generating hydrocarbon depression, the scope of oil and gas migration is controlled by the passage system and the ability of oil and gas gathering is restricted by the tectonic position, reservoir conditions affect the size of the oil and gas reserves.
引文
[1]陈雪芳,李洪博,高鹏,等.珠一坳陷浅层新领域油气勘探潜力条件分析[J].石油天然气学报,2012,34(4):52-56.
    [2]施和生,朱俊章,姜正龙,等.珠江口盆地珠一坳陷油气资源再评价[J].中国海上油气,2009,21(1):9-14.
    [3]金庆焕.珠江口盆地形成机制浅析[J].石油实验地质,1981,3(4):257-263.
    [4]王善书.珠江口盆地地质构造的基本特征[J].石油学报,1982(S1):1-13.
    [5]冯志强,缪宛岑.南海珠江口盆地地质构造特征和含油气远景[J].石油实验地质,1982,4(1):19-25.
    [6]郭彬.珠江口盆地新生代地层及其含油气性[J].石油与天然气地质,1984,5(1):11-19.
    [7]黎昌.珠江口盆地早第三纪古地形、地貌演化初探[J].海洋地质与第四纪地质,1985,5(3):23-33.
    [8]赵柳生.珠江口盆地油气藏形成条件及油气富集规律[J].石油勘探与开发,1988(1):1-9.
    [9]陈斯忠,张明辉,张俊达.珠江口盆地东部油气生成与勘探[J].石油与天然气地质,1991,12(2):95-106.
    [10]陈斯忠,裴存民,张明辉.珠江口盆地东部某单井原油的地球化学特征研究[J].沉积学报,1991,9(S1):75-82.
    [11]李泽松,郭伯举.珠江口盆地东部油气潜力区初步探讨[J].中国海上油气(地质),1997,11(6):439-446.
    [12]张群英,邓汉南.珠江口盆地东部含油气系统[J].石油与天然气地质,1996,17(4):287-292.
    [13]陈云林.论富油洼陷及其意义[J].勘探家,1999,4(2):8-11.
    [14]施和生,李文湘,邹晓萍,等.层序地层学在珠江口盆地(东部)油田开发中的应用[J].中国海上油气(地质),2000,14(1):15-20.
    [15]陈长民.珠江口盆地东部石油地质及油气藏形成条件初探[J].中国海上油气(地质),2000,14(2):2-12.
    [16]梁杏,王旭升,张人权,等.珠江口盆地东部第三纪沉积环境与古地下水流模式[J].地 球科学,2000,25(5):542-546.
    [17]郭伯举,谢家声,向凤典.珠江口盆地珠—坳陷含油气系统研究[J].中国海上油气(地质),2000,14(1):1-7.
    [18]陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社,2003.
    [19]王福国,梅廉夫,施和生,等.珠江口盆地珠-坳陷古近系构造样式分析[J].大地构造与成矿学,2008,32(4):448-454.
    [20]李潇雨,郑荣才,魏钦廉.珠江口盆地惠州凹陷古近系物源分析[J].沉积与特提斯地质,2007,27(4):33-38.
    [21]邓宏文,郑文波.珠江口盆地惠州凹陷古近系珠海组近海潮汐沉积特征[J].现代地质,2009,23(5):767-775.
    [22]施和生,吴建耀,朱俊章,等.珠江口盆地陆丰13断裂构造带油气二次运移优势通道与充注史分析[J].中国石油勘探,2007,12(5):30-35.
    [23]张群英,邓汉南.珠江口盆地东部含油气系统[J].石油与天然气地质,1996,17(4):287-292.
    [24]傅宁,李友川,汪建蓉.惠州凹陷西区油源研究[J].中国海上油气(地质),2001,15(5):322-328.
    [25]傅宁,朱雷.珠—坳陷惠州西凹混源油研究[J].中国石油勘探,2007(2):20-26.
    [26]张水昌,龚再升,梁狄刚,等.珠江口盆地东部油气系统地球化学-Ⅰ:油组划分、油源对比及混源油确定[J].沉积学报,2004,22(S1):15-26.
    [27]李友川,陶维祥,孙玉梅,等.珠江口盆地惠州凹陷及其邻区原油分类和分布特征[J].石油学报,2009,30(6):830-834.
    [28]朱俊章,施和生,舒誉,等.珠江口盆地烃源岩有机显微组分特征与生烃潜力分析[J].石油实验地质,2007,29(3):301-306.
    [29]傅宁,丁放,何仕斌,等.珠江口盆地恩平凹陷烃源岩评价及油气成藏特征分析[J].中国海上油气(地质),2007,19(5):295-299.
    [30]傅宁,何仕斌,张功成.珠江口盆地恩平凹陷油气充注期次及时间[J].矿物岩石地球化学通报,2009,28(1):42-47.
    [31]施和生,朱俊章,邱华宁,等.利用自生伊利石激光加热40Ar~39Ar定年技术探讨惠州凹陷新近系油气充注时间[J].地学前缘,2009,16(1):290-295.
    [32]杜家元,施和生,丁琳,等.惠州凹陷油气成藏期次划分及其勘探意义[J].中国海上油气,2009,21(4):221-226.
    [33]田鹏,梅廉夫,于慧玲,等.惠州凹陷断裂特征及其对油气成藏的控制[J].新疆石油地质,2008,29(5):591-594.
    [34]于水明,陈雪芳,梅廉夫,等.珠一坳陷断层特征及对油气成藏的作用[J].石油天然气学报,2012,34(1):50-54.
    [35]赵柳生.珠江口盆地油气藏形成条件及油气富集规律[J].石油勘探与开发,1988(1):1-9.
    [36]蔡周荣,夏斌,万志峰,等.珠江口盆地与莺琼盆地油气运聚特征的差异性[J].天然气工业,2009,29(11):9-12.
    [37]崔莎莎,何家雄,陈胜红,等.珠江口盆地发育演化特征及其油气成藏地质条件[J].天然气地球科学,2009,20(3):384-391.
    [38]李友川,陶维祥,孙玉梅,等.珠江口盆地惠州凹陷及其邻区原油分类和分布特征[J].石油学报,2009,30(6):830-834.
    [39]李洪博.珠江口盆地惠州凹陷及东沙隆起结构构造特征、演化及其与油气成藏关系讨论[D].武汉:中国地质大学,2010.
    [40]吴娟.惠州凹陷油气成藏机理研究[D].武汉:中国地质大学,2010.
    [41]吴娟,叶加仁,施和生,等.惠州凹陷典型油气聚集带成藏模式[J].西南石油大学学报(自然科学版),2012,34(6):17-26.
    [42]何家雄,马文宏,陈胜红,等.南海北部珠江口盆地浅水与深水区油气运聚成藏机制及特点[J].海洋地质与第四纪地质,2011,31(4):3949.
    [43]何家雄,陈胜红,马文宏,等.南海东北部珠江口盆地成生演化与油气运聚成藏规律[J].中国地质,2012,39(1):106-118.
    [44]龚晓峰,何家雄,罗春,等.南海北部珠江口盆地油气运聚成藏机制与特征[J].海洋地质前沿,2012,28(6):20-26.
    [45]李思田.大型油气系统形成的盆地动力学背景[J].地球科学-中国地质大学学报,2004,29(5):505-512.
    [46]胡朝元.生油区控制油气田分布——中国东部陆相盆地进行区域勘探的有效理论[J].石油学报,1982(2):9-13.
    [47]胡朝元.“源控论”适用范围量化分析[J].天然气工业,2005,25(10):1-3,7.
    [48]李德生.渤海湾盆地复合油气田的开发前景[J].石油学报,1986,7(1):1-21.
    [49]胡见义,徐树宝,童晓光.渤海湾盆地复式油气聚集区(带)的形成和分布[J].石油勘探与开发,1986(1):1-8.
    [50]韩栓民.兴隆台旋卷构造的初步探讨[J].石油与天然气地质,1983,4(4):403-415.
    [51]赵文智,邹才能,汪泽成,等.富油气凹陷“满凹含油”论——内涵与意义[J].石油勘探与开发,2004,31(2):5-13.
    [52]龚再升.中国近海大油气田[M].石油工业出版社,1997.
    [53]袁选俊,谯汉生.渤海湾盆地富油气凹陷隐蔽油气藏勘探[J].石油与天然气地质,2002,23(2):130-133.
    [54]Perrodon A. Essai de classification des bassins sedimentaires[J]. Science de la Terre,1972, 16:197-227.
    [55]闵慧.南海北部富烃凹陷发育的构造控制条件分析--以惠州凹陷为例[D].武汉:中国地质大学,2011.
    [56]陈斯忠.从渤海周边陆上油气分布规律看海域的找油方向[J].中国海上油气(地质),1997,11(6):14-21.
    [57]吴国瑄,朱伟林,黎明碧,等.古湖缺氧条件是控制富生油凹陷形成的重要因素——来自珠江口盆地的证据[J].中国海上油气(地质),1999,13(1):3-8.
    [58]李相博,袁剑英,林卫东,等.国内外中、小型盆地油气富集规律及勘探经验[J].新疆石油地质,2001,22(2):163-166.
    [59]李丕龙.富油断陷盆地油气环状分布与惠民凹陷勘探方向[J].石油实验地质,2001,23(2):146-148.
    [60]金庆焕,刘振湖,陈强.万安盆地中部坳陷——一个巨大的富生烃坳陷[J].地球科学,2004,29(5):525-530.
    [61]杜金虎,易士威,卢学军,等.试论富油凹陷油气分布的“互补性”特征[J].中国石油勘探,2004,9(1):15-22.
    [62]易士威,王权.冀中坳陷富油凹陷勘探现状及勘探思路[J].石油勘探与开发,2004,31(3):82-85.
    [63]邱荣华.泌阳富油凹陷北部斜坡带浅层复杂断块群油气勘探[J].石油与天然气地质,2006,27(6):813-819,840.
    [64]郑红菊,董月霞,王旭东,等.渤海湾盆地南堡富油气凹陷烃源岩的形成及其特征[J].天然气地球科学,2007,18(1):78-83.
    [65]韩永科,胡英,王崇孝,等.酒泉盆地两个富油凹陷的区别与勘探潜力[J].新疆石油地质,2007,28(6):691-693.
    [66]陈波,夏永涛,黄发木,等.松辽盆地深层富烃断陷形成的地质条件研究[J].中国石油勘探,2008(6):19-25.
    [67]蒋有录,卓勤功,谈玉明,等.富油凹陷不同洼陷烃源岩的热演化及生烃特征差异性 [J].石油实验地质,2009,31(5):500-505.
    [68]叶加仁,吴景富,舒誉,等.中国近海富烃凹陷油气成藏特征[J].地质科技情报,2012,31(5):105-111.
    [69]Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins:a reevaluation[J]. AAPG Bulletin,1997,81(6):1023.
    [70]何惠生,叶加仁,陈景阳.准噶尔盆地腹部超压演化及成因[J].石油天然气学报,2009,31(1):87-91.
    [71]张启明,董伟良.中国含油气盆地中的超压体系[J].石油学报,2000,21(6):1-11.
    [72]Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990,74(1):1-12.
    [73]查明,曲江秀,张卫海.异常高压与油气成藏机理[J].石油勘探与开发,2002,29(1):19-23.
    [74]Mothinoux N, Landais P, Durand B. Comparison between extracts from natural and artificial maturation series of Mahakam delta coals[J]. Organic Geochemistry,1986,10(1-3): 648-650.
    [75]Braun R L, Burnham A K. Mathematical model of oil generation, degradation, and expulsion[J]. Energy & Fuels,1990,4(2):132-146.
    [76]Mctavish R A. The role of overpressure in the retardation of organic matter maturation [J]. Journal of Petroleum Geology,1998,21(2):153-186.
    [77]郝芳,邹华耀,方勇,等.超压环境有机质热演化和生烃作用机理[J].石油学报,2006,27(5):9-18.
    [78]"Wilkinson M, Haszeldine R S, Fallick A E. Hydrocarbon filling and leakage history of a deep geopressured sandstone, Fulmar Formation, United Kingdom North Sea[J]. AAPG Bulletin,2006,90(12):1945-1961.
    [79]孙冬胜,金之钧,吕修祥,等.沉积盆地超压体系划分及其与油气运聚关系[J].石油与天然气地质,2004,25(1):14-20,38.
    [80]姜涛,解习农.莺歌海盆地高温超压环境下储层物性影响因素[J].地球科学-中国地质大学学报,2005,30(2):215-220.
    [81]侯树杰,袁亚娟,万志峰,等.济阳坳陷车西洼陷异常高压与储层孔隙度的关系[J].海洋地质动态,2010,26(5):1-7.
    [82]鲜本忠,吴采西,佘源琦.山东东营车镇凹陷古近系流体异常高压及其对深层碎屑岩储集层的影响[J].古地理学报,2011,13(3):309-316.
    [83]Leach W G. Gulf Coast Tertiary-2:Fluid migration, hydrocarbon concentration in south Louisiana Tertiary sands[J]. Oil and Gas Journal,1993,91(11):71-74.
    [84]刘震,戴立昌,赵阳,等.济阳坳陷地温-地压系统特征及其对油气藏分布的控制作用[J].地质科学,2005,40(1):1-15.
    [85]李鹤永,刘震,党玉琪,等.柴西地区地温-地压系统特征及其与油气分布的关系[J].石油与天然气地质,2006,27(1):37-43.
    [86]杨智,何生,何治亮,等.准噶尔盆地腹部超压层分布与油气成藏[J].石油学报,2008,29(2):199-205,212.
    [87]Webster M, O'Connor S, Pindar B, et al. Overpressures in the Taranaki Basin:Distribution, causes, and implications for exploration[J]. AAPG Bulletin,2011,95(3):339-370.
    [88]郝芳,邹华耀,方勇,等.断-压双控流体流动与油气幕式快速成藏[J].石油学报,2004,25(6):38-43,47.
    [89]Eaton B A. Graphical method predicts geopressure worldwide[J]. World Oil,1972,6:51-56.
    [90]Eaton B A. Graphical method predicts geopressure worldwide[J]. World Oil,1976,183(1): 100-104.
    [91]陈中红,查明.断陷湖盆超压分布特征及其与油气成藏的关系[J].石油学报,2008,29(4):509-515.
    [92]刘晓峰,解习农,张成.渤海湾盆地渤中坳陷储层超压特征与成因机制[J].地球科学-中国地质大学学报,2008,33(3):337-341.
    [93]谢玉洪.莺歌海高温超压盆地压力预测模式及成藏新认识[J].天然气工业,2011,31(12):21-25.
    [94]李明诚.油气运移研究的现状与发展[J].石油勘探与开发,1994,22(2):1-6.
    [95]田在艺.油气运移与油气藏的形成[J].天然气工业,1982(1):3-8.
    [96]周凤英,孙玉善,张水昌.塔里木盆地轮南地区油气运移的路径、期次及方向研究[J].地质论评,2001,47(3):329-335.
    [97]李明诚.断陷盆地中油气运移研究方法的探讨[J].石油实验地质,1988,10(2):95-101.
    [98]陈中红,查明,吴孔友,等.准噶尔盆地陆梁地区油气运移方向研究[J].石油大学学报(自然科学版),2003,27(2):19-22.
    [99]周树青,黄海平,徐旭辉,等.咔唑、酚类和二苯并噻吩类化合物在油气运移研究中的应用[J].石油与天然气地质,2008,29(1):146-150,156.
    [100]陈炼,张敬文,陈鹤,等.柴达木盆地狮子沟油田油气运移地球化学特征[J].石油天然气学报,2008,30(5):44-47.
    [101]卢双舫,纪贤伟,王跃文,等.松辽盆地滨北区油气运移与油源对比[J].大庆石油地质与开发,2008,27(2):1-3.
    [102]England W A. The organic geochemistry of petroleum reservoirs[J]. Organic Geochemistry, 1990,16(1):415-425.
    [103]Karlsen D A, Larter S R. Analysis of petroleum fractions by TLC-FID:applications to petroleum reservoir description[J]. Organic Geochemistry,1991,17(5):603-617.
    [104]王铁冠,李素梅,张爱云,等.利用原油含氮化合物研究油气运移[J].石油大学学报(自然科学版),2000,24(4):83-86.
    [105]王铁冠,李素梅,张爱云,等.应用含氮化合物探讨新疆轮南油田油气运移[J].地质学报,2000,74(1):85-93.
    [106]李素梅,刘洛夫,王铁冠.生物标志化合物和含氮化合物作为油气运移指标有效性的对比研究[J].石油勘探与开发,2000,27(4):95-98.
    [107]刘玉华,文志刚,王祥.镇北油田原油含氮化合物分布特征与油气运移[J].断块油气田,2009,16(3):39-41.
    [108]Meakin P, Wagner G, Vedvik A, et al. Invasion percolation and secondary migration: experiments and simulations[J]. Marine and Petroleum Geology,2000,17(7):777-795.
    [109]Carruthers D J. Modeling of secondary petroleum migration using invasion percolation techniques[J]. Multidimensional basin modeling:AAPG/Datapages Discovery Series,2003, No.7:21-37.
    [110]Kroeger K F, di Primio R, Horsfield B. Hydrocarbon flow modeling in complex structures (Mackenzie Basin, Canada)[J]. AAPG Bulletin,2009,93(9):1209-1234.
    [111]Hildenbrand A, Urai J L. Investigation of the morphology of pore space in mudstones-first results[J]. Marine and Petroleum Geology,2003,20(10):1185-1200.
    [112]何炳骏,范土芝,陶一川,等.沉积盆地石油地质过程和油气运移聚集模拟系统及其应用[J].地球科学-中国地质大学学报,1995,20(1):85-94.
    [113]温珍河,郝先锋.油气运移聚集的路径与过程模拟[J].海洋地质与第四纪地质,2001,21(1):81-87.
    [114]石万忠,陈红汉,陈长民,等.珠江口盆地白云凹陷地层压力演化与油气运移模拟[J].地球科学-中国地质大学学报,2006,31(2):229-236.
    [115]曹强,叶加仁.伊通盆地莫里青断陷地层压力演化与油气运移模拟[J].石油勘探与开发,2011,38(2):174-181.
    [116]Levorsen A I. Geology of petroleum (2nd Edition) [M]. San Francisco:W. H. Freeman and Company,1967.
    [117]李纯泉,陈红汉,刘惠民.利用油包裹体微束荧光光谱判识油气充注期次[J].地球科学-中国地质大学学报,2010,35(4):657-662.
    [118]赵艳军,陈红汉.油包裹体荧光颜色及其成熟度关系[J].地球科学-中国地质大学学报,2008,33(1):91-96.
    [119]沈传波,陈少平.流体包裹体在含油气系统成藏研究中的应用[J].新疆石油学院学报,2002,14(3):13-16.
    [120]刘瑾旋,李昌存.流体包裹体在油气地质中的应用—以喀什凹陷为例[J].河北地质学院学报,1996,19(6):713-718.
    [121]郑有业,李晓菊,马丽娟,等.有机包裹体在生油盆地研究中的应用[J].地学前缘,1998,5(2):325-331.
    [122]Tobin R C, Claxton B L. Multidisciplinary Thermal Maturity Studies Using Vitrinite Reflectance and Fluid Inclusion Microthermometry:A New Calibration of Old Techniques[J]. AAPG Bulletin,2000,84(10):1647-1665.
    [123]Hao F, Li S, Gong Z, et al. Thermal Regime, Interreservoir Compositional Heterogeneities, and Reservoir-Filling History of the Dongfang Gas Field, Yinggehai Basin, South China Sea: Evidence for Episodic Fluid Injections in Overpressured Basins?[J]. AAPG Bulletin,2000, 84(5):607-626.
    [124]Rowan E L, Goldhaber M B, Hatch J R. Regional Fluid Flow as a Factor in the Thermal History of the Illinois Basin:Constraints from Fluid Inclusions and the Maturity of Pennsylvanian Coals[J]. AAPG Bulletin,2002,86(2):257-277.
    [125]Rossi C, Goldstein R H, Ceriani A, et al. Fluid Inclusions Record Thermal and Fluid Evolution in Reservoir Sandstones, Khatatba Formation, Western Desert, Egypt:A Case for Fluid Injection[J]. AAPG Bulletin,2002,86(10):1773-1799.
    [126]Chan M A, Parry W T, Bowman J R. Diagenetic Hematite and Manganese Oxides and Fault-Related Fluid Flow in Jurassic Sandstones, Southeastern Utah[J]. AAPG Bulletin, 2000,84(9):1281-1310.
    [127]Ohm S E, Karlsen D A. Biogenic gas(?) in fluid inclusions from sandstones in contact with oil-mature coals[J]. AAPG Bulletin,2007,91(5):715-739.
    [128]Barclay S A, Worden R H, Parnell J, et al. Assessment of Fluid Contacts and Compartmentalization in Sandstone Reservoirs Using Fluid Inclusions:An Example from the Magnus Oil Field, North Seal [J]. AAPG Bulletin,2000,84(4):489-504.
    [129]李兆奇,陈红汉,刘惠民,等.流体包裹体多参数综合划分东营凹陷沙三段油气充注期次及充注时期确定[J].地质科技情报,2008,27(4):69-74.
    [130]于明德,王璞珺,施昌瑞,等.焉耆盆地包裹体特征和伊利石测年对油气成藏期次的指示[J].吉林大学学报(地球科学版),2009,39(1):45-52.
    [131]黄文彪,孟元林,卢双舫,等.利用流体包裹体和盆地模拟分析油气成藏史——以鸳鸯沟洼陷西斜坡为例[J].吉林大学学报(地球科学版),2009,39(4):650-655.
    [132]张鼐,邢永亮,曾云,等.塔东地区寒武系白云岩的流体包裹体特征及生烃期次研究[J].石油学报,2009,30(5):692-697.
    [133]张鼐,王招明,杨海军,等.塔中Ⅰ号坡折带奥陶系流体包裹体期次及地质意义[J].新疆石油地质,2010,31(1):22-25.
    [134]朱俊章,施和生,庞雄,等.利用流体包裹体方法分析白云凹陷LW3-1-1井油气充注期次和时间[J].中国石油勘探,2010(1):52-56.
    [135]张元春,邹华耀,李平平,等.川东北元坝地区长兴组流体包裹体特征及油气充注史[J].新疆石油地质,2010,31(3):250-251.
    [136]陈红汉,吴悠,肖秋苟,等.昌都盆地古油藏的流体包裹体证据[J].地质学报,2010,84(10):1457-1469.
    [137]李友川.荧光方法应用于油气运移研究初探[J].中国海上油气(地质),1997,11(5):16-20.
    [138]李大伟,高修祥.地震勘探技术亦可用于油气运移研究[J].石油地球物理勘探,2001,36(4):499-507.
    [139]张景廉,朱炳泉,赵应成,等.固体金属同位素在油气运移研究中的应用[J].石油大学学报(自然科学版),2000,24(4):98-99,103.
    [140]梁坤,李小地,郭秋麟,等.利用喷出岩标定法研究油气运移时期[J].石油学报,2008,29(3):383-388.
    [141]胡思义.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991.
    [142]施和生,雷永昌,吴梦霜,等.珠一坳陷深层砂岩储层孔隙演化研究[J].地学前缘,2008,15(1):169-175.
    [143]Toth J. Cross-Formational Gravity Flow of Groundwater:A Mechanism of The Transport and Accumulation of Petroleum (The Generalized Hydraulic Theory of Petroleum Migration) [A].AAPG, Studies in Geology,1980,121-167.
    [144]Magara K. Compaction and Fluid Migration-Practical Petroleum Geology [M]. Amsterdam: Elsevier Scientific Publishing Company,1978.
    [145]Grauls D. Overpressures:Causal Mechanisms, Conventional and hydromechanical approaches[J]. Oil and Gas Science and Technology-RevIFP,1999,54(6):667-678.
    [146]田世澄,陈永进,张兴国,等.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329-336.
    [147]郝琦,查明,刘震,等.辽河东部凹陷潜山油气藏特征及油气分布规律[J].成都理工大学学报(自然科学版),2006,33(3):246-251.
    [148]田世峰,查明,吴孔友,等.饶阳凹陷潜山油气分布特征及富集规律[J].海洋地质与第四纪地质,2009,29(4):143-150.
    [149]付晓飞,胡春明,李景伟.贝尔凹陷布达特群潜山演化及含油气性[J].石油学报,2008,29(3):356-362.
    [150]陈志海,牟珍宝,孙钰.越南白虎油田缝洞型基岩油藏特征与开发对策[J].中外能源,2009,14(9):45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700