用户名: 密码: 验证码:
四川石棉县大水沟碲矿床成矿规律与找矿方向
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碲是一种在地壳中含量很低的分散元素,其地壳平均丰度值一般为(1-10×10-9),传统上都被认为不能形成独立矿床。目前碲工业来源主要是从铜、镍硫化物矿床中的铜矿石中提取。四川石棉县大水沟碲矿床是目前发现的唯一一例以碲作为主成矿元素的独立碲矿床,作为一种新的非传统矿床类型,从大水沟独立碲(铋)矿床发现之初,便引起了地学界的广泛关注和研究。但是以往研究对于大水沟碲矿的赋矿围岩性质、碲成矿物质和成矿流体来源历来争议较大,尤其是控矿的基本地质因素的研究比较薄弱,未能理清矿床的时空演化和分布规律,因而很少涉及矿床的深部勘查和外围成矿预测的方向。
     本文在充分消化前人资料的基础上,以现代矿产学理论为基础,综合运用岩石学、矿床学、地球化学、构造地质学等,以成矿系统的时空演化为主线,将构造和流体作为成矿系统中最活跃的因素,对大水沟碲矿床的赋矿围岩性质、成矿物质和成矿流体来源、控矿因素、矿床的形成机制进行了比较全面的研究,分析矿体的空间分布规律,建立了矿床的成因成矿模式和成矿模式,指出矿山深部找矿和外围勘查方向,为矿山的实际开发和外围找矿提供借鉴,同时为分散元素尤其是碲的成矿规律提供新的思路。
     通过对大水沟赋矿围岩绿片岩的锆石SHRIMP年代学研究结合前人成果,认为大水沟绿片岩为晚三叠世扬子地台西缘近南北向挤压环境下的构造推覆体,原岩主要以钙泥质沉积岩和火山沉积凝灰岩为主夹少量基性火山岩,原岩物源来源于从元古代-二叠纪各时代的地层。
     矿物流体包裹体C、H、0同位素和He-Ar同位素均显示成矿流体具有多种来源.大水沟矿脉中流体的δDSMOW值范围为-41.6~-82, δ18OH2O范围0.33~11.93,介于变质水和岩浆水之间;矿脉中白云石的绝大部分δ18OSMOW的值范围9.52~12.90,均值11.24,δ13CPDB的值极为均一,变化很小,范围-5.3~-6.5,均值-5.71,这种比较均一的特征可能是不同来源的流体在剪切带中混合均一化的结果。氦同位素表明其为壳源和幔源混合,主要为壳源,其次为幔源。氩同位素说明成矿流体主要为地下水或变质水并混合了部分幔源流体。主成矿期Na+/K+明显大于1, Na+/(Ca2++Mg2+明显小于1,同时Cr-为主要的阴离子,F及其他阴离子的含量很低,反映原生沉积和地下热卤水成因。大水沟流体包裹体研究表明早期成矿阶段具有岩浆热液特征的高温含子晶包裹体大量存在,而主成矿期中温-低温高盐度流体、低盐度富含CO2包裹体以及低盐度低温的流体共存显示变质热液和改造型流体为主的特征。
     因此大水沟成矿流体具有剪切带流体的复杂混合来源的特征,变质水、岩浆水、地下水都积极参与了成矿活动,早期矿化可能有深部岩浆作用的参与,主成矿期却以浅部热液(包括热卤水和上升到浅部的变质水)为主,岩浆作用大为减弱。晚期的流体以低温和低盐度为主,可能以地下水、变质建造水混合流体为主并有大量的大气降水。从早期到晚期成矿阶段由于构造层次由深到浅,成矿流体也由由深部流体逐渐向浅部流体过渡。
     构造剖面中围岩、蚀变岩和矿石的成矿元素、微量元素和稀土元素分析表明大水沟碲(铋)矿床的成矿物质和围岩具有渊源关系,碲铋矿脉中Te、Bi具有继承围岩和前期矿化脉、蚀变带成矿物质的特征,应为重新活化富集的结果。Pb同位素和黄铁矿的标型特征说明早期的产物磁黄铁矿反映深部幔源岩浆作用比较明显,具有幔壳混合来源特征,而碲铋主成矿期反映主要以壳源物质为主。比较均一的S同位素可能是热液对围岩中硫化物去硫作用浸取所致。赋矿围岩绿片岩和下伏的奥陶系大理岩Te含量达n×10-5~n×10,高出地壳克拉克值数百倍至数千倍,其中有相当部分的碲为易于活化迁移的微细独立碲铋矿物或碲的络合物,赋呈在矿物尤其是碳酸盐矿物的晶隙、粒隙间或者被其他矿物吸附,易于活化迁移,因而大水沟碲矿床的围岩具有“矿源层”的特征。
     外围岩浆岩的稀土演化表明岩浆岩并非控制大水沟碲铋成矿的直接因素。大水沟外围的岩浆岩体虽然有较高的碲铋背景值,但是在有岩浆岩出露的外围变质岩含碲铋反而没有无岩浆岩出露的大水沟地区高,因此虽然岩浆作用提供一定的成矿物质和成矿热源,但是并非直接控矿因素,也不应该是呈“矿浆“形式,而可能是以气态方式的运移,或者说是深部射气作用携带一定的成矿物质运移到浅层。
     区域上多级韧性剪切带控制了区内主要矿床和矿点的分布,区域构造控矿具有赋矿地层的多样性、构造控矿的多级性、矿床和矿化蚀变的分带型特征。其中的脆韧性剪切构造特别是脆性剪切构造是区内碲金矿床直接控矿构造和容矿构造。大水沟地区晚三叠世早期近南北向构造挤压形成巨型推覆构造和基底滑脱带,晚三叠世末期近东西向构造挤压形成地层的构造叠置和变形变质,使大水沟岩片定位并形成大水沟两个重要的构造界面即溜沙坡群一组底部和顶部的两个逆冲断层面;中晚侏罗世伸展背景下前期的构造界面演化为滑脱构造界面并配套发育主要的容矿构造-脆性剪切裂隙和断层,中白垩世的构造再度活化使早期矿脉破碎并在应力松弛时成矿流体再度充填叠加形成富碲铋矿脉。新生代走滑构造在大水沟矿区主要形成破坏矿体的近东西向剪切断层。伴随区域构造演化,大水沟地区晚三叠世(205Ma左右)挤压构造背景下发生了递增变质作用,早中侏罗世(204-190Ma左右)局部伸展构造背景下动力变质作用和岩浆热隆变质作用(]90Ma-164.4Ma),晚侏罗世-中白垩世的脆性剪切动力变质作用和热液蚀变作用。
     西油坊韧性剪切带是矿区的控矿构造,绿片岩层和下伏大理岩之间的构造滑动面是矿床的主要导矿构造,脆性剪切裂隙和断裂是矿体的容矿构造,溜沙坡群一组绿片岩透入性和连续性裂隙较发育,处于一个相对比较开放的体系,因而成为主要的容矿层。区域控矿构造、矿床导矿构造、矿体储矿构造构成了一个由深部到浅、由宏观到微观的立体成矿空间系统。深部幔源射气、岩浆热液、变质流体、地下水、变质建造水和晚期的大气降水构成了一个立体的剪切带流体系统。
     因此具有高碲铋背景值的“矿源层”是大水沟矿床成矿的物质基础,构造为大水沟碲矿床成矿的主要控制因素,构造和流体的耦合作用是大水沟碲矿床主要的成矿机制。构造动力作用控制了岩层的变形变质程度,构造演化造成大水沟岩片从早到晚形成中温中压动力变质作用—中-低温动力变质作用和浅部低温低压动力变质的转换。构造动力驱使不同层次的流体在剪切带中混合沿导矿构造上升并萃取围岩成矿物质形成成矿流体。大水沟定位前的裂谷构造演化形成了扬子地台西缘源岩具有高碲的背景值,在大水沟岩片定位后构造动力变形变质作用形成丰富的变质流体,并使岩层中的成矿元素进一步活化,其运移过程中使成矿元素在有效孔隙度较高的地层中的初步富集形成矿源层。中侏罗世-中白垩世近南北向伸展走滑剪切背景下,不同层位的变质水、地下水和部分岩浆热液、深部射气成分混合通过断层阀-地震泵吸方式上升使并萃取围岩的成矿元素运移至浅部脆性剪切带沉淀富集成矿。构造裂隙脉动式的挤压和引张,周期性的流体混合和成矿流体的沸腾、浓缩等是成矿和进一步富集的主要机制。
     成矿演化具有多阶段性多期次、成矿流体具有多来源以及成矿物质主要源于围岩,成矿主要受剪切构造控制等特点,表明大水沟碲矿床为典型的与剪切带有关的沉积变质热液改造型矿床。
     在建立大水沟碲矿床成矿模式的基础上,指出区域找矿标志为(1)Bi地球化学异常是找独立碲铋矿的主要标志;(2)富含碲铋的溜沙坡群绿片岩层和奥陶系大理岩是主要的区域找矿的地层标志。(3)线性构造和环形构造的交汇点特别是背斜穹窿的轴部是有利于矿化的重要部位,溜沙坡群和下伏的大理岩构造接触面是区内主要的控矿构造标志。(4)白云石化是碲铋矿化典型蚀变标志。(5)矿区内前人硫铁矿采硐是寻找伴生碲的重要找矿标志。
     大水沟碲矿床北部1448中段是深部矿床勘查的重点;大水沟碲矿床的北部和南部的金竹林地段是区内碲成矿的有利地段;大水沟穹窿南部的庙坪一带是区内寻找碲矿床河伴生碲矿床的有利靶区,区域上西油坊韧性剪切带和靠近野鸡洞韧性剪切带冶勒构造岩片为寻找碲矿的远景区。
As an scarce element in the crust, Tellurium, with its crust concentration (1-10×10-9),has been regarded unable to form independent deposit. Existed as an accompanying element, its industrial resources usually are refined from Cu or Ni sulfide kies. Dashuigou Te deposit,an untraditional deposit, in Shimian,Sichuan province, the only independent Te deposit with Te as the main metallogenetic element,has been received much concern and research in the world since its discovery. But There have been many controversies about the properties of the occurred country rock,the metallogenic materials and fluids.The basic study about About the ore-forming mechanism remains weak, ground geological preparations especially the evolutional regularties in time and space of ore forming hardly have been dealt with。
     On the basis of fully comprehending formers'materials, gitlogy, combined by petrology, geochemistry and tectonics have been employed to study the occurred wall rocks, the resources of metallogenetic elements and fluid, ore controlling factors and the mechanism of the deposit, in which the evolution of mineralizing system in time and space is taken as the main line, and tectonic and fluid as the principal active factors. The spreading rule of the ore-bodies in space is determined and the genetic and metallogenic model is constructed in this paper, which can be used for references for mine exploitation and surrounding prospecting, as well as for the metallogenic regularity of dispersed elements especially tellurium.
     Dashuigou schist are speculated as tectonic microlithon on the background of nearly meridian compression in the western margin of the Yangtze platform in later Tristan.The initial rocks are mainly composed of calcic argillaceous sediment and volcanic-sedimentary ash tuff intercalated basic igneous rock from Proterozoic to Permian layers.
     The ore-forming fluid generated from poly-resources are indicated by isotopes of C、H、O and He-Ar in fluid inclusions of minerals. The values of δ DSMOW between-41.6to-82, and δ18OH2O between0.33to11.93imply both the range of magmatic-hydrothermal and metamorphic water. δ18OSMOW between9.52to12.90(average11.24),δ13CPDB between-5.3to -6.5(verage-5.71) probably indicate the homogenization of fluids from different resources in shear zone. Since the fluid characteristics of Na+/K+>1, Na+/(Ca2++Mg2+), and Cl-as the main negative ion with lower F-, reflecting origin of the sedimentary and ground water, ground water should have taken a main share in ore forming process. He isotopes indicates the feature of more crust source and less mantle source.Ar isotopes manifests that the ore fluids were mainly ground water or metamorphic thermal fluid incorporated with some mantle fluid.. In the early metallogenic stage, high temperature fluid inclusion containing sub-crystal indicated the magmatic-hydrothermal,while in the main metallogenic stage, the co-existing inclusions of both low-to-moderate-temperature with high salinity or lower salinity containing much CO2illustrated that the fluids were mainly metamorphic water and reformed fluids.
     In summary,the fluids of Dashuigou Te deposit had the complex and commingling characteristics of shear zone fluid, and the ore forming fluids were incorporated fluids mainly composed of metamorphic water and more and more underground water combined by magmatic water becoming less in the later ore-forming process and deep gaseous emanation possibly from mantle,showing a tendency from deep fluid to shallow fluid along with the tectonic level from deep to shallow level.
     Ore forming elements,trace elements and rare earth in wall rocks, altered rocks and orebodies from structural lateral sections revealed that the main ore forming materials such as Te and Bi closely related with wall rocks an altered rocks and early orebodies,and should be the result of re-activation from them. The magmatism in early mineralized stage such as pyrrhotite stage manifested its existence while crust resources dominated in the main stage of matallogenesis.Comparatively homogeneity isotope of S probably resulted from desulfurization of sulfides in the wall rocks. The schist and the underlying marbles had high content of Te amounting to n×10-5~n×10-4, several hundred or thousand times higher than Clarke value in crust, in which considerable proportion of the Te in the wall rocks was found to be existing in forms of easily activated and moving, located in the leptoclases of mineral crystals in the form of microminiature independent minerals such as tellurobismuthite,or probably in the state of Te complexes adsorbed on the surface of minerals especially the carbonate minerals. Therefore, the wall rocks of Dashuigou Te deposit should be the "source bed".
     The properties of rare earth evolution in surrounding pyrogenetic rocks testified its weak relationship with the Te deposit. A scenario in which relatively high content of Te and Bi in pyrogenetic rock, but lower in the metamorphic rock in the section of exposed pyrogenetic rock than in the rocks without exposed pyrogenetic rock, suggests that the magmatism was not the direct controlling factor although it may provide heat source and some materials which probably migrate in gaseous state by deep emanation from mantle.
     Multilevel ductile shear zone had controlled the distribution of regional deposits and ore spots with the features of poly-layers, multilevel structure and the banding alternation. Brittle-ductile shear structures especially the brittle structures were the direct controlling and host ones of regional Te-Au deposits.
     In late Triassic, south to north and east to west orientation compressive tectonic had taken place in succession in the region which brought about giant nappe tectonic and basal sliding zone as well as layers folding, metamorphism and deformation. Dashuigou schiefer was overthrusted and localized,meanwhile the two important structural interfaces,the thrust faults were developed on and under the schist layer, first formation of the Liushapo group. In middle-late Jurassic,the two structures were conversed to detachment surface complemented by the main ore hosting structures-brittle shear fractures and faults. In middle Cretaceous, the structures re-activated and broke up the early ore veins which were filled and superimposed by ore forming fluids. In Cenozoic, strike slip yielded nearly east-west shear faults and disrupted the early ore veins. Metamorphism had taken place accompanying with the regional tectonic evolution, e.g. regional constructive metamorphism in late Triassic,dynamometamorphism and magmatic thermal metamorphism in early to middle Jurassic, brittle shear dynamometamorphism and hydrothermal alternation in late Jurassic to middle Cretaceous.
     Different levels of structures constituted a three dimensional ore forming space system in which Xiyoufang ductile shear belt was the regional controlling structure, the sliding structure between the schist and the underlying Ordovician marble was the derivative structure, brittle shear fractures and faults were the host structures. The schist of first layer in Liushapo group was the main ore hosting layer because of its developed fractures of penetrability and continuity as well as its relatively opened surrounding. The mantle emanation,magmatic water, metamorphic fluid, ground water and some precipitated water constituted a three dimensional fluid system of shear zone.
     The "source bed" with high Te and Bi was the material base of Dashuigou Te deposit,tectogenesis was the main ore controlling factor, and the coupling of tectogenesis and fluids was the main mineralization mechanism. Tectonic-dynamic force controlled the levels of deformation and metamorphism, generated the dynamometamorphism from medium to lower temperature and pressure in succession, propelled fluids from different levels to blend and extract metallogenic material in wall rocks in process of migration.The earlier rift evolution brought about high Te background in the western margin of Yangtze platform. After Dashuigou schiefer was located,the dynamometamorphism yielded plentiful metamorphic fluid and activated the metallogenic material in wall rocks which migrated into the layers of high effective porosity and produced metallogenic material preliminary enrichment in source bed.In middle Jurassic to middle Cretaceous, on the back ground of south-north slip, actuated by the model of fault valve and earthquake pumping,different levels of fluids such as metamorphic water, ground water and some magmatic water and mantle emanation mingled and extracted ore forming materials in wall rocks,then ascended to the shallow brittle shear zone. precipitated and formed the ore bodies. The impulsive extrusion and expansion of structures and periodic fluids blending, boiling and concentration were the main mechanism of ore forming and upgrading.The multi-periods and poly-stages of metallogenic evolution,multi-resources of ore-forming fluid, metallogenic materials mainly from wall rocks as well as the obvious shear controlling, proved that Dashuigou Te deposit was a typical meta-sedimentary-hydrothermal reformed deposit related to shear zone.
     On the basis of metallogenetic model, the regional indicators for prospecting have been proposed.(1) The geochemical anomaly of Bi is the main symbol for independent Te deposit.(2)The schist of Liushapo group and the Ordivician marble with high Te content is the stratigraphic guide.(3)The intersections of lineament structures and ring structures especially where the axial region of anticline dome are the important section for mineralization.(4) The dolomitization is the direct signal with itself often being Te mineralized.(5) The former mining pits of sulfurous iron ore in Dashuigou dome are the important marks for accompanying tellurium.
     The1448m mining level height of Dashuigou Te deposit mining section should be the focal place for deep exploration. Two sites to the north and south of the Dashuigou Te deposit are the advantageous sections for tellurium mineralization for their similar layers, tectonics, altered rocks.The Xiyoufan ductile zear belt and Yele tectonic microlithon adjacent to Yejidong ductile sear zone are the prospecting area for Te deposit.
引文
[1]赵鹏大.非传统矿产资源研究:可持续发展的重要课题[J].中国地质,2001,28(5):1-10.
    [2]赵鹏大等.非传统矿产资源概论[-M].北京:地质出版社,2003.
    [3]徐光炽,高振敏,胡瑞忠等.分散元素地球化学及成矿机制[M].北京:科学出版社,2003.
    [4]Dobbe. R T M.Tellurides and sellenides and associated minerals in the Tenaberg copper deposits, SE Bergslagen, Central Sweden [J]. Mineralogy and Petrology,1991,44:89-106.
    [5]钱汉东,陈武,谢家东.碲矿物综述[J].高校地质学报,2000,2(6):176-187.
    [6]杨秀珍,李德仁.新矿物—赤路矿的发现与研究[J].矿物学报,1985,9(1):8~14.
    [7]银剑钊,陈毓川,周建雄等.全球碲矿资源若干问题综述-兼述中国川石棉县大水沟独立碲矿床的发现[J].河北地质学院学报,1995,18(4):348-354
    [8]Hein J R, Koschinsky A, Halliday A N. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium[J]. Geochimica et Cosmochimica Acta,2003, 67(6):1117-1127.
    [9]陈翠华,曹志敏.全球金-碲化物型矿床的分布规律和主要成矿条件[J].成都理工学院报,1999,26(3):241-248.
    [10]胡华斌.鲁西平邑地区浅成低温热液金矿床成矿流体及成矿作用[D].北京:中国地质大学,2005.
    [11]Batman R. Telluride mineralogy of the golden Mill deposit, Kalgoolie,wersten Australia[J] The Canadian Mineralogist,2000,44:1503-1524.
    [12]Mulia T and Mitchell R H. The Geordie Lake intrusion, Coldwell complex, Ontario:A palladium and tellurium-rich disseminated sulfide occurre nce derived from an evolved tholeiitic magma[J]. Economic Geology,1991,86(5):1050-1069.
    [13]Salamon W, Banans M, Kubica L. An Occurance of PGM and Ag tellurides and Te-bearing in the KRZEMIANKA Fe-Ti-V deposit[J]. Mineralogia Polannica,2004,35(1):35-46.
    [14]Voudouris P,Papavasiliou C,Melfos V. Silver mineralogy of St. Philippos deposit (NE Greece) and its relationship to a Te-bearing porphyry-Cu-Mo mineralization [J]. Geochemistry, Mineralogy and Petrology,2005,43:155-160.
    [15]Plotinskaya O Y, Kovalenker V A, Seltmann R, et al. Te and Se mineralogy of the high sulfidation Kochbulak and Kairagach epithermal gold telluride deposits (Kura-ma Ridge, Middle Tien-Shan, Uzbekistan) [J]. Mineralogy and Petrology,2006,87(3-4):187-207.
    [16]Espi J O, Hayashi K I,Komuro K. Geology, wall-rock alteration and vein paragenesis of the Bilimoia gold deposit, Kainantu metallogenic region, Papua New Guinea[J]. Resource Geology,2007,57(3):249-268.
    [17]Vikentyev I, Banda R, Tsepin A,et al. Mineralogy and formation conditions of Portovelo -Zaruma gold-sulphide vein deposit,Ecuador[J]. Geochemistry,Mineralogy and Petrology, 2005,43:148-154.
    [18]于学峰.山东平邑归来庄矿田金矿成矿作用成矿规律与找矿方向研究[D].青岛:山东科技大学出版社,2010.
    [19]张佩华.东坪式金矿床碲的元素地球化学[D].广州:中国科学院广州地球化学研究所出版社.2000.
    [20]陈光远.胶东金矿成因矿物学与找矿[M].重庆:重庆出版社,1989.
    [21]刘建朝,李旭芬.胶东牟平-乳山金矿带金青顶金矿碲化物矿物特征即沉淀机制[J].地质通报,2010,29(9):1319-1328.
    [22]Voudouris P, Tarkian M, and Arikas K. Mineralogy of telluride-bearing epithermal ores in the Kassiteres-Sappes area,western Thrace,Greece[J]. Mineralogy and Petrology,2006,87:31-52.
    [23]Shikazon N and Shimizu M. Associated metals in vein type deposits in Japan:interpretation using the HSAB principal[J]. Canadian Mineralogist,1992,30:137-143.
    [24]Voudouris P C, Melfos V, Spry P G, et al. Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece[J]. Mineralogy and Petrology,2011,103(1-4):79-100.
    [25]张招崇,李兆鼐.富碲化物型金矿形成的物理化学条件-以水泉沟金矿田为例[J].矿床地质,1997,16(1):41-52.
    [26]任富根,李双保,赵嘉农等.熊耳群火山岩系金矿床中的碲(硒)地球化学信息[J].地质调查与研究,2003,26(1):45-51.
    [27]Kniep R and Rabenau A. Subhalides of tellurium[C]//Physical and inorganic chemistry topics in current chemistry.Berlin Heidelberg:Springer,1983(111):145-192.
    [28]郑大中,郑若锋.大水沟独立碲矿床形成机理研究[J].地质找矿丛,2000,。15(3):230-237.
    [29]Boyle R W金的地球化学及金矿床[M].北京:地质出版社,1984.
    [30]黄富荣.碲在官田黄铁矿矿床中聚集及地球化学[J].地球学报,1998,19(1):50-58.
    [31]McPhail D C. Thermodynamic properties of aqueous tellurium species between 25° and 350°[J]. Geochimica et Cosmochimica Acta,1995,59(5):851-866.
    [32]Rubin K. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes:observations and predictions[J]. Geochimica et Cosmochimica Acta,1997,61 (17): 3525-3542.
    [33]李碧乐,张晗.浅成低温热液型金矿床研究的某些进展[J].矿物学报,2010,30(1):90-99.
    [34]骆耀南,曹志敏,温春奇等.大水沟独立碲矿床-世界首例碲化物脉型矿床地质地球化学[M].成都:西南交通大学出版社,1996.
    [35]Kovalenker V A, Plotinskaya O U. Te and Se mineralogy of Ozernovskoe and Prasolovskoe epithermal gold deposits, Kuril-Kamchatka volcanic belt[J]. Geochemistry, Mineralogy and Petrology,2005,43:118-123.
    [36]Paar W H, Putz H, Topa D, et al. Occurrence and paragenesis of tellurium in mineral deposits of Argentina[C]//Mineral Deposit Research:Meeting the Global Challenge. Berlin Heidelberg:Springer,2005:1419-1422.
    [37]谷团,刘玉平.分散元素的超常富集与共生[J].矿物岩石地球化学通报,2000,19(1):60-62.
    [38]Tombros S, Seymour K St and Williams-Jones A E. Controls on tellurium in base, precious, and telluride minerals in the Panormos Bay Ag-Au-Te deposits, Tinos island, Cyclades, Greece[J]. Economic Geology,2010,105(6):1097-1111.
    [39]James A S, and Matthew E B. Volatility of Se and Te during subduction-related distillation and the geochemistry of epithermal ores of the wester U.S.A[J]. Economic Geology, 2012,17(1):165-172.
    [40]Walshe J L, Halley S W, Hall G A, et al. Contrasting fluid systems, chemical gradients and controls on large-tonnage,high-grade Au deposits, Eastern Goldfields Province, Yilgarn Craton, Western Australia [C]//Eliopoulos D QMineral exploration and sustainable development,7th biennial SGA meeting.Athens:SGA,2003,827-830.
    [41]刘亮明,吴延之.变质岩中分散元素活化成矿过程中的力学一化学相互作用[J].地质科技情报,1994,13(4):59-64.
    [42]涂光炽,高振敏,胡瑞忠等.分散元素地球化学及成矿机制[M].北京:科学出版社,2003.
    [43]Poutiainen M and Gronholm P. Hydrothermal fluid evolution of the paleoproterozoic Kutemajarvi gold telluride deposit, Southwest Finland[J]. Economic Geology,1996,91 (8): 1335-1353.
    [44]Pals D W, Spry P GInvisible Gold and Tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji:Implications for gold distribution and deposition[J]. Economic Geology,2003, 98(3):479-493.
    [45]徐士进,沈渭洲,王汝成等.大水沟碲矿含矿斜长角闪岩的锆石U-Pb定年[J].科学通报,1998,43(8),:882-885.
    [46]毛景文,陈毓川,魏佳秀.四川省石棉县大水沟碲矿床成矿物质来源的一些证据[J].贵金属地质,1995,4(4).
    [47]毛景文.四川省石棉县大水淘碲矿床地质矿物学和地球化学[J].地球学报,1995,3,276-291.
    [48]毛景文,魏家秀.大水沟碲矿床流体包裹体的He. Ar同位素组成及其示踪成矿流体的来源[J].地球学报,2000,21(1):58-61.
    [49]刘埃平,钟子川.四川石棉碲矿床地球化学特征研究[J].地球化学,1996,25(4):365-371.
    [50]沈谓洲,徐仕进,王汝城.大水沟成矿流体来源研究-氢氧同位素特征[J].南京大学学报,1997,33:77-83.
    [51]温春奇,曹志敏.四川大水沟碲矿床成矿物质来源研究[J].成都理工学院学报,2002,29(5):526-532.
    [52]王汝成,沈渭洲.四川石棉大水沟碲矿床的同位素地质研究[J].南京大学学报,1995,31(4):617-624.
    [53]李保华,曹志敏等.大水沟碲矿床成矿物理化学条件研究[J].地质科技情报1999,34(4):463472.
    [54]马东.四川石棉碲矿床成矿的地球化学机理[D].成都:成都理工大学,2007.
    [55]骆耀南,付德明.四川石棉县大水沟碲矿床地质与成因[J].四川地质学报,1994,14(2):100-110.
    [56]银剑钊.纳米矿床学[J].黑龙江地质情报,1995,1(2):4-5.
    [57]王汝成,陆建军等.四川石棉大水沟碲矿床成因探讨[J].矿物岩石地球化学通报,2000,19(4):348-349.
    [58]银剑钊,陈毓川.世界首例独立蹄矿的成矿年龄[J].科学通报,1995,8:767.
    [59]毛景文,陈毓川.大水沟碲矿床40Ar/39Ar年龄研究[J].地球学报,1997,18(4):397-399
    [60]周永章.华南河台金矿田的地质地球化学[D].广州:华南理工大学,1993.
    [61]李红阳,侯增谦,王国富.试论华北地台中生代超变质作用与地幔热柱作用[J].地球学报,1996,17(4):376-39.
    [62]许志琴,侯立伟.松潘甘孜造山带的造山过程[M].北京:地质出版社,1992.
    [63]钟锴,徐鸣洁,王良书,等.川滇地区重力场持征与地壳变形研究[J].高校地质学报,2005,11(1):1089-1095.
    [64]Lev E,Long M D and Hilst R Dvd. Seismic anisotropy in EastemTibet from shear wave splitting Reveals changes in lithospheric deformation[J]. Earth and Planetary Seienee Letters,2006,251:293-304.
    [65]蒋文亮,张景发.川滇地区重力场与深部结构特征[J].地球物理学进展,2011,26(6):1915-1924.
    [66]喻安光,郭建强.扬子地台西缘构造格局[J].中国区域地质,1998,17(3):255-261.
    [67]喻安光.四川石棉-冕宁地区之伸展构造[J].中国区域地质,2000,19(1):20-25.
    [68]陈玉禄,杨更.四川湾坝-冶勒地区构造地球化学特征[J].地质地球化学,1999,27(4):61-65.
    [69]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
    [70]四川省地质矿产局区域地质调查队.西油房幅区域地质调查报告[R].成都:四川省地质矿产局区域地质调查队,1996.
    [71]耿元生,杨崇辉,王新社等.扬子地台西缘变质基底演化[J].中国科技成果,2011,12(7):63.
    [72]林广春.川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征:岩石成因与构造意义[J].地球科学-中国地质大学学报,2010,35(4):611-620.
    [73]刘朝基,曾绪伟,金久堂等.康滇地区基性超基性岩[M].重庆:重庆出版社,1988.
    [74]胡建民,孟庆任,石玉若等.松潘甘孜地体内花岗岩锆石SRHIMP U-Pb定年及其构造意义[J].岩石学报,2005,21(3):867-880.
    [75]杨铸生主编.四川攀西裂谷带金银、铜铂矿产论文集[C].成都:四川省地矿局攀西地质队,2006.
    [76]Rosler H J, Beuge P. Geochemistry of trace elements during regional metamorphism[J]. Augustithis, SS:The significance of trace elements in solving petrogenetic problems and controversis.-Theophrastus, Athen,1983:407-430.
    [77]Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters,1978,38(1):1-25.
    [78]Floyd P A and Winchester J A,1978. Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements[J]. Chemical Geology,1978,1(21): 291-306.
    [79]王仁明,贺高平,陈珍珍,等.变质岩原岩图解判别法[M].北京,地质出版社,1987.
    [80]Bucher K, Frank, E & Frey M. A mode for the pro-gressive regional metamorphism of margarite-bearing rocks in the central Alps[J]. American Journal of Science 1983,283-A: 370-395
    [81]Gal, L P & Ghen E D. Margarite-bearing pelites from the Western Rocky Mountains, northwest of Golden, British Columbia [J]. Canadian Mineralogist,1991,29:11-19.
    [82]Anne Feenstra.An EMP and TEM-AEM study of sargarite, muscovite and paragonite in polymetamorphic metabauxites of Naxos (Cyclades, Greece) and the implications of fine-scale mica interlayering and multiple mica generations [J]. Journal of Pertrology,1996,37(2): 201-233.
    [83]Brruce Velde. The stability and natural occurrence of margarite[J]. Mineralogical Magzine, 1971,38:317-323.
    [84]Mcnaughton N J,Rasmussen B,Fletcher I R. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic rocks [J]. Science,1999,285:78-80.
    [85]杨荣生,陈衍景,张复新.甘肃阳山金矿独居石U-Pb化学年龄及其地质和成矿意义[J].岩石学报,2006,22(10):2603-2703.
    [86]Heinrich W, Andrehs G, Franz G. Monazite-xenotime miscibility gap thermometry. I. An empirical calibration[J]. J Metamorph Geol.,1997:15:3-16.
    [87]陈毓川,毛景文,周建雄等.四川大水沟碲金矿床地质和地球化学[M].北京:原子能出版社.1996.
    [88]宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作-年龄测定及有关现象讨论[J].地质评论,2002.48(增刊):26-30.
    [89]杜利林,耿元生,杨崇辉等.扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U—-Pb年龄[J].地质学报,2005,79(6):805—812.
    [90]周建雄,陈振宇.电子探针下锆石的阴极发光的研究[M].成都:电科技大学出版社,2007.
    [91]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state re-crystallization of protolith igneous zircon [J]. Journal of Metamorphic Geology,2000,18(4):423-439.
    [92]Pidgeon R T. Recrystallization of oscillatory-zoned zircon:Some geochronological and petrological implications[J]. Contributions to Mineralogy and Petrology,1992,110(4):463-472.
    [93]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite to granulite facies zircon:Geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology,1999,134(4):380-404.
    [94]刘福来,徐志琴,宋彪.苏鲁地体超高压和退变质时代的厘定:来自片麻岩锆石微区SHRIMP U-Pb定年的证据[J].地质学报,2003,77(2):229-238.
    [95]夏斌,刘红英,张玉泉.攀西古裂谷钠质碱性岩锆石SHRIMP U-Pb年龄及地质意义:以红格、白马河鸡街岩体为例[J].大地构造与成矿学,2004,2:149-154.
    [96]吴元保,唐俊,张少兵,等.北大别两期混合岩化作用:SHRIMP锆石U-Pb年龄证据[J].科学通报,2007,52(8):939-94.
    [97]陈岳龙,罗照华,刘翠.对扬子克拉通西缘四川康定一冕宁变质基底的新认识-来自Nd同位 素的证据[J].地球科学,中国地质大学学报,2001,26(3):279-185.
    [98]Greentree M R, Li Z X, Li X H, et al. Late neo-Proterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western south China and relationship to the assembly of Rodinia[J]. Precambrian Research,2006,151:79-100.
    [99]关俊雷,郑来林,刘建辉,等.四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义[J].地质学报,2011,85(4):232-232.
    [100]Zheng J P, Griffin W L, O, Reilly S Y, et al. Wide spread Archean basement beneath the Yangtze craton[J]. Geology,2006,34 (6):417-420.
    [101]李献华,周汉文,李正祥,等.川西新元古代双峰式火山岩成因的微量元素和Sm和Nd同位素制约及其大地构造意义[J].地质科学,2002,37(3):264-276.
    [102]Li W X, Li X H, Li Z X. Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China:petrogenesis and tectonic significance[J]. Geological Magazine,2008,145 (4):475-489
    [103]林广春.川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征:岩石成因与构造意义[J].地球科学-中国地质大学学报,2010,35(4):612-620.
    [104]Zhou M F,Yan D P,Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth Planet Science Letter,2002,196:51-67.
    [105]刘家铎,张成江,刘显凡等.扬子地台西南缘成矿规律与找矿方向[M].北京:地质出版社,2004.
    [106]吴根耀.川西康定-泸定地区前寒武纪大地构造演化—一个地壳多次演化动定递进的实例[J].大地构造与成矿学,1990,44(3):239-246.
    [107]Luo C H, Chung S L,Lee T Y,et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth and planetary Science Letters,2002,198:449-458.
    [108]林清茶,夏斌,张玉泉.川南德昌地区茨达碱性岩锆石SHRIMP U-Pb定年[J].地质通报,2006,25(3):588-597.
    [109]张招崇.关于峨眉山大岩浆岩省一些重要问题探讨[J].中国地质,2009,36(3):634-644.
    [110]Liati A,Gebauer D,and Wysoczanski R. U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece):Evidence for early Cretaceous crystallization and late Cretaceous metamorphism[J]. Chemical Geology, 2002,184(3-4):281-299.
    [111]Tomaschek F, Kennedy A K, Villa I M, et al. Zircons from Syros, Cyclades, Greece recry-stallization and mobilization of zircon during high-pressure metamorphism[J]. Journal of Petrology,2003,44(11):1977-2002
    [112]侯立玮.扬子克拉通西缘弯状变形变质体的类型与成因[J].四川地质学报,1999,16(1):6-10.
    [113]苏文超,漆亮,胡瑞忠,等.流体包裹体中稀土元素的ICP-Ms分析研究[J].科学通报,1998,43(10):1094-1098.
    [114]温春奇,多吉.矿床学研究方法[M].北京:科技出版社,2009.
    [115]Bajwah Z U,Seccumbe,Offler R. Trace elemnent distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New south Wales, Australia[J]. Mineral depposita,1987,22: 292-300.
    [116]Mac Donough W F, and Sun S S. The composition of the earth[J]. Chem,Geol.,1995 120: 223-253.
    [117]涂光枳.中国层控矿床地球化学(第一卷)[M].北京:科学出版社,1988.
    [118]王思源,李立平,刘晓峰.应用矿床学[M].武汉:中国地质大学出版社,1993.
    [119]Yin J Z.Zhou J X. Rock-forming minerals and ore-forming minerals of Dashuigou Tellurium ore deposit unique in the world-a preliminary study[J]. Scientia Geologica Sinica,1994, 3(2):197-210.
    [120]Zartman R E,Haines S M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-a case for bi-directional transport[J]. Geochimica et Cosmo-chimica Acta,1988,52(6):1327-1339.
    [121]银剑钊.世界首例独立碲矿床的成矿机理及成矿模式[M].重庆:重庆出版社,1996.
    [122]曹志敏,温春奇,李保华.首例独立碲矿床成因探讨[J].中国科学,1995,6(25):647-654
    [123]Strauss H. Carbon and sulfur isotopes in Precambrian sediments from the Canadian Shield[J]. Geochimica et Cosmochimica Acta,1986,50(12):2653-2662.
    [124]Northrop D A, Clayton R N. Oxygen-isotope fractionations in systems containing dolomite[J]. The Journal of Geology,1966:174-196.
    [125]Ohoma H.Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy,1986, 16(1):491-560.
    [126]Hoefs J. Stable isotope geochemistry (3rd edition)[M]. NewYork:Springe Verlag,1987.
    [127]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2):121-128.
    [128]李荣,焦养群,吴立群等.构造热液白云石化,一种国际碳酸盐岩领域的新模式[J].地质科技情报,2008,27(3):35-40.
    [129]Hu R Z, Bi X W and Jiang G H. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit,Southeastern China [J]. Miner Deposita, 2012,47(6):623-632.
    [130]Turner G, Burnard P, Ford J L, et al. Tracing Fluid Sources and Interactions and Discussion][J]. Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences,1993,344(1670):127-140.
    [131]Mamyrin B A, Tolstikhin I N. Helium isotopes in nature[J]. Helium isotopes in nature.BA Mamyrin, IN Tolstikhin. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.14+274 pp. (1983). ISBN 0-444-42180-7.,1983,1.
    [132]朱赖民,张国伟,郭波等.华北地块南缘钼矿床黄铁矿流体包裹体氦、氩同位素体系及其对成矿动力学背景的示踪[J].科学通报,200954(12):1725-1735.
    [133]胡瑞忠,毕献.武马厂箐铜矿床黄铁矿流体包裹体He. Ar同位素体系[J].中国科学(D辑),1997,27(6):503-508.
    [134]张连昌.沈远超.李厚民等.胶东地区金矿床流体包裹体的同位素组成及成矿流体来源示踪[J].岩石学报,2002,18(4):559-565.
    [135]Simmons S F, Sawkins F J, Schlutter D J. Mantle-derived helium in two Peruvian hydrothermal ore deposits[J]. Nature,1987,329(6138):429-432.
    [136]Stuart F M,Burnard P G, Taylor R P,Turner G. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation,South Korea[J]. Geochim Cosmochim Acta,1995,59(22):4663-4673.
    [137]Stuart F M,Turner QDuckworth R C,et al. Helium isotopes as tracers of trapped hydro-thermal fluids in ocean-floor sulfides [J]. Geology,1994,22:823-826.
    [138]Zhai H, Shu X M, Wu Y S,et al. He-Ar isotope geochemistry of the Yaoling-Meiziwo tungsten deposit,North Guangdong Province:Constraints on Yanshanian crust mantle interaction and metallogenesis in SE China [J]. Chinese Science Bulletin,2012,57(10):1150-1159.
    [139]季克俭,王立幸.热液源研究的重要进展和“三源”交代热液成矿学说[J].地学前缘,1994,1(4):126-130.
    [140]卢焕章,范洪瑞,倪培等.流体包裹体[M].北京:科学出版社,2004.
    [141]陈衍景,倪培,范洪瑞等.不同类型热液金矿体的流体包裹体特征[J].岩石学报.,2007,23(9):1085-1092.
    [142]赵鹏大.矿产勘查理论与方法[M].武汉:中国地质大学出版社,2010.
    [143]周令冶.稀散金属元素手册[M].湖南长沙:中南工业大学出版社,1992.
    [144]张海.四川石棉县大水沟碲矿床地质地球化学特征研究[D].成都:成都理工大学,2011.
    [145]中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,1998.
    [146]葛良胜,陈祥.四川金台子金矿床地球化学特征[J].地质找矿论丛,1996,119(2):87-94.
    [147]冉崇英,张智筠,刘卫华等.康滇裂谷旋回与铜矿层楼结果及其地球化学演化[J].中国科学(B辑),1994,24(3):325-330.
    [148]罗振宽,关康,王曼祉等.中国某些金矿床中碲化物的征[J].黄金地质,1999,5(3):70-74.
    [149]张招崇,李兆鼐.富碲化物型金矿形成的物理化学条件[J].矿床地质,1997,16(1):41-51.
    [150]沈保丰,翟安民,杨春亮.古元古代-中国重要的成矿期[J].地质调查与研究,2010,33(4):241-256.
    [151]伊福光,孙志明,万方等.扬子地台西缘构造演化及其周缘效应[M].北京:地质出版社,2007.
    [152]陈虹.扬子地台周缘造山带构造变形与演化[D].北京:中国地质科学院,2010.
    [153]赵永久,袁超,周美丰等.松潘甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约[J].地球科学-中国地质大学学报,2007,36(2),139-152.
    [154]王登红,应汉龙,梁华英等.西南三江地区新生代大陆动力学过程与大规模成矿[M].北京:地质出版社,2006.
    [155]喻安光,郭建强.扬子地台西缘韧性剪切带对金矿的控制特征[J].四川地质学报,1997,17(4):262-267.
    [156]郭建强,游再平,王大可.松潘—甘孜造山带东缘大水沟地区变质变形作用[J].中国区域地质,1999,18(3):312-319.
    [157]肖荣阁,张宗恒,陈卉泉等.地质流体自然类型和成矿流体类型[J].地学前缘,2001,8(4):245-251.
    [158]Walther J V, Orville P M. Volatile production and transport in regional metamorphism[J]. Contributions to Mineralogy and Petrology,1982,79(3):252-257.
    [159]赵国春.质流体研究的某些重要进展[J].地质科技情报,1994,13(3):18-22.
    [160]Oliver N H S. Review and classification of structural controls on fluid flow during regional metamorphism [J]. Journal of Metamorphic Geology,1996,14(4):477-492.
    [161]邓军,杨立强,翟裕生等.构造-流体-成矿系统及其动力学的理论框架及方法体系[J].地球学科-中国地质大学学报,2000,25(1):71-78.
    [162]中科院地球化学研究所.矿床地球化学[M].北京:地质出版社,1997.
    [163]杨巍然,张文准.构造流体—一个新的研究领域[J].地学前缘,1996,3(3-4):124-130.
    [164]滕彦国,张成江,倪师军等.田湾金矿田韧性剪切带构造地球化学研究[J].大地构造与成矿学,2001,25(1):95-101.
    [165]王仲武.金在高压干体系下的迁移实验研究及其与位错、象力关系分析[J].矿物学报,2000,16(2):184-189.
    [166]顾连兴,汤晓茜,王子江等.362。C和差异应力条件下硫化物在NaCI溶液中再活化实验研究[J].岩石学报,2005,21(5):1429-1434.
    [167]徐光平,翟建平,胡凯.成矿作用过程中流体的作用及其主要研究方法[J].地质找矿论丛,1999,14(4):1-7.
    [168]王全伟,姚书振,骆耀南.川西北维系浸染型金矿[M].成都:电子科技大学出版社,2003.
    [169]Moore J N,Norman D I,Kennedy B M. Fluid inclusion gas composition from an active magmatic hydrothermal system:a case study of the Geysers geothermal field,USA[J]. Chemical Geology,2001,173:3-30.
    [170]Moore J N,Powell T S,Herzller M T,et al. Mineralizatin and hydrothermal history of the Tiwi geothermal system, Philippines[J]. Economic Geology,2000,95:1001-1023.
    [171]吕古贤,林文蔚,郭涛.金矿成矿过程构造应力场转变与热液浓缩稀释作用[J].地学前缘,2001,8(4):253-264.
    [172]Barnes H L, Gould W W. Hydrothermal replacement of carbonates by sulfides[J]. Water rock interaction:Rotterdam, Balkema,1992:1565-1567.
    [173]Robert F, Boulier A M, Firdaous K. Gold Quartz Veins in Metamorphic Terranes and Their Beating on the Role of Fluids in Faulting[J]. Geophysical Research(B),1995,100:12861-12879.
    [174]Sibson R H,Robert F.Poulsen K H. High angle reverse faults,fluid pressure cycling and mesothermal gold quartz deposits[J]. Geology,1988,16:551-55.
    [175]Sibson R H. Fault structure and mechanics in relation to greenstone gold deposits [C]//Greenstone gold and crustal evolution. NUMA Conference Volume, Vai d'Or.1990:54-60.
    [176]邓军,杨立强,孙忠实等.剪切带构造成矿动力机制与模式[J].现代地质,1999,2:125-128.
    [177]Wallace M W. Origin of dolomitization on the Barbwinre terrace,Canning Basin,Western Australia[J]. Sedimentology,1990,37(1):105-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700