用户名: 密码: 验证码:
张力腿平台复杂动力响应及涡激特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆上油气资源的日益枯竭,世界上发达国家都将目光投向了海洋,海洋蕴藏着丰富的石油、天然气和矿产资源,海上油气资源开发不断从浅水、深水向超深水迈进。我国在深水及超深水领域海洋平台的研究与世界先进国家存在着巨大差距,我国政府意识到了深海油气开发的重要性和紧迫性,随着“海洋石油981”在中国南海的开钻成功,国内也掀起了深海海洋技术研究的高潮,这对于我国打破国外海工深水技术垄断,促进我国海洋科技的进步具有重要的战略意义。
     随着科技的不断进步,人类在开发深海油气资源中提出了各种新型海洋平台,例如,浮式生产储油系统、浮式生产钻井储油装置、张力腿平台、半潜式平台以及立柱式平台。而张力腿平台经过半个多世纪的发展,在经典张力腿平台的基础上目前已经形成三大系列,即SeaStars系列、MOSES系列和ETLP系列。张力腿平台作为一种半刚性半顺应式平台,自身结构特点决定了其运动性能,张力腿平台巨大预张力使平台平面外的运动(横摇、纵摇和垂荡)较小,相当于刚性;另一方面,波浪力作用于平台直立浮箱形主体结构,其水平方向分力要大于垂直方向分力,平面内为柔性运动。
     深海石油平台在复杂海洋环境中的动力响应及系泊系统的动力特性一直是海洋工程界关注的热点和难点,涡激运动作为海洋工程界的前沿课题,国内相关研究刚刚展开,主要关注对象是大直径的Spar平台,而张力腿平台作为多立柱海洋平台,其复杂动力响应及涡激运动特性对于平台自身的安全性以及张力腿、立管系统的疲劳强度都有着重要影响。本论文通过理论研究、数值模拟以及试验验证三者相结合的手段,逐步揭示外部海洋环境、平台运动响应、系泊系统动力特性、平台自身特性对涡激运动的内在影响关系,旨在探索张力腿平台复杂动力响应及涡激运动的形成、发展、演变、稳定的规律。
     论文从张力腿平台受力平衡原理出发,推导了张力腿平台的刚度矩阵、质量矩阵以及阻尼矩阵,刚度矩阵中计及张力腿和立管的影响,运用坐标系之间的转换求得水质点速度以及加速度在波浪坐标系的表达式,采用微元法对立柱和浮箱进行离散,利用修正的莫尼森公式计算作用在平台上的波浪力,最终得到固定坐标系中波浪荷载的表达式,在上述矩阵的基础上组成张力腿平台六自由度非线性动力学响应的微分方程。为了在时域内得到张力腿平台的动力响应及系泊特性,自编程序求解耦合方程,对规则波中张力腿平台的动力特性进行了研究。比较分析了四种工况下张力腿平台的耦合动力响应、张力腿及立管张力变化,揭示了波浪周期、波高、浪向角、预张力、工作水深等诸多因素对张力腿平台运动特性影响。
     鉴于海洋环境的随机性和复杂性,规则波中张力腿平台的动力响应和系泊特性带有很大的简化,只是对相关程序的验证和研究的初步开始。在规则波的研究基础上将外部海洋环境拓展到随机波、风浪流联合作用以及畸形波中。采用Jonswap谱结合叠加法生成随机波,研究不同波高、谱峰周期、浪向角下的动力响应,同时在上海交通大学海洋工程国家重点实验室中通过缩尺比为1:40的模型进行了试验验证,对比了数值模拟和模型试验的平均值、幅值及标准差等相关统计值,并对甲板中心处以及边缘处的加速度进行了预报。采用NPD风谱和阶梯流模型,研究了只考虑浪、考虑浪和流、同时考虑风浪流联合作用三种情况下,不同海况及浪(流)向平台的动力特性以及系泊系统张力的统计值和能量谱。最后对强非线性波浪—畸形波中张力腿平台的运动响应及系泊特性进行了研究,并与随机波的计算结果进行了对比。
     涡激运动是当前海洋工程界研究的热点和难点,也是大尺度深海结构物亟待解决的重要流体力学问题,其背后涉及复杂的流固耦合问题,因此开展大尺度低质量比多柱体的涡激运动预报对于研究张力腿平台在一定来流速度下涡的泄放模式、受力情况等重要涡激特性有着十分重要的意义。论文采用计算流体力学方法对无限长方柱和圆柱截面在限制流向和不限制流向下的涡激运动进行了数值模拟并将计算结果与经典实验结果进行了对比,研究重点放在两种典型立柱截面的涡激运动幅值随无因次速度的变化规律、立柱流向平衡位置走势、涡激运动中频率锁定现象以及尾涡泄放模式等。研究了无限长多方柱的绕流特性,得到相关水动力系数、涡强分布以及尾涡泄放结构。对低质量比多方柱在0°、22.5°、45°流向及不同流速下的涡激运动进行了模拟,采用最大值统计法及标称统计法对涡激运动振幅幅值进行统计,探讨了影响涡激运动的相关参数
     在对无限长单立柱及多方柱的绕流特性及涡激运动研究的基础上,考虑浮箱和立柱之间的耦合效应建立了三维计算网格,对张力腿平台的三维绕流特性和涡激运动开展了研究。首先对无限长单根方形立柱的绕流进行了验证,与二维方柱的平均阻力系数以及斯特哈尔数等参数进行了对比,然后考虑不同来流方向下,上、下游立柱之间的相关干扰,计算并分析了上、下流立柱的升力系数、拖曳力系数、涡量场分布以及尾涡结构。根据在上海交通大学海洋工程国家重点实验室中的实验结果,得到平台运动的固有周期以及无因次阻尼系数,用于求解运动微分方程的UDF程序中,对张力腿平台的涡激运动进行了深入分析和探讨。
     细长立管的涡激振动研究对于张力腿的涡激振动有着一定借鉴和指导作用,但张力腿与立管在截面尺度、预张力大小以及边界条件存在巨大差距。考虑平台运动对张力腿上端边界条件的影响,采用可移动支座的边界条件结合经典非线性动力学理论自编程序对张力腿的涡激振动进行了研究。研究中采用振型叠加法求得张力腿各阶振动的固有频率,同时计及不同外部荷载的影响,研究了均匀流、阶梯流以及波流联合作用下张力腿各阶模态下的权重时历曲线、动剪力和动弯矩在张力腿长度方向的变化规律,分析了模态跳转现象。采用二维切片理论结合CFD数值模拟方法,将张力腿涡激振动的三维问题简化成二维,将编制的求解涡激振动的UDF程序嵌入Fluent软件中,采用动网格技术进行流场的更新和计算,运用DNV商业软件计算了不同流速和波高下张力腿张力的时历曲线,研究了定常张力和时变张力下张力腿的涡激振动,并将经典理论和切片法计算结果进行了对比,对影响涡激振动的相关问题进行了讨论和分析。
     综上所述,论文研究从浪向、波高、谱峰周期、水深、预张力等影响张力腿平台动力响应的不同因素着手,外部荷载从规则波、随机波、风浪流联合作用最后到畸形波,逐步深入,层层递进,汇集了理论推导、数值模拟以及实验研究等三种研究方法,对张力腿平台水动力性能及系泊系统的张力特性进行了研究。在张力腿平台涡激运动研究中,从涡激运动的发生机理出发,从单个立柱的涡激运动着手,逐步拓展到无限长多柱体,最后结合相关实验数据,在国内首次开展张力腿平台的绕流特性和涡激运动研究,充分考虑流速、流向、限制及不限制流向等因素的影响,深入研究了水动力系数、频率锁定以及尾涡泄放模式等涡激特性。在平台动力响应及涡激运动的基础上,采用非线性动力学方法结合切片理论,自编程序对时变张力影响下张力腿的涡激特性开展了研究,荷载综合考虑到均匀流、阶梯流以及波流的联合作用。总之,论文在国家自然科学基金的支持下,在国内首次全面开展张力腿平台的复杂动力响应及涡激特性研究,得到了一系列具有创新性意义的结论,为我国系统掌握张力腿平台的运动特性等关键技术并在南海油气开发中设计、建造张力腿平台提供了理论依据和技术支持。
With the increasing depletion of oil and gas resources on land,the developedcountries of the world have turned their attention to the sea. Ocean is rich in oil, gasand mineral resources, gas exploration and development is transforming from shallowwater, deep water to ultra-deep water. There is a huge gap on the research of deepwater and ultra-deepwater offshore platforms between China and the developedcountries. Our country has been aware of the importance and urgency of the oil andgas exploration and development. With the drilling success of the drilling platformHYSY-981, the domestic set off the research climax of the deep ocean engineeringtechnology. Carrying on this research has significant meanings for breaking theoverseas ocean engineering technical monopoly and promoting the development ofocean science and technology.
     Along with the science and technology improvement, a series of new type ofoffshore platforms have been proposed when we exploit the oil and gas resources, forexample, the floating production and storage offloading system, floating productiondrilling oil storage device, tension leg platform (TLP), semi-submersible platform,spar platform. After more than half a century of development, TLP has three majorseries which are based on the classical tension leg platform, SeaStars, MOSES andETLP. TLP is a king of semi-rigid and half compliant platform, motion performancesare determined by its own structure characteristics. Due to the huge preliminarytension, out-of-plane movement (roll, pitch, and heave) for tension leg platform issmall, which is equivalent to rigid. When the upright column structure under theaction of wave loads, the horizontal component force is bigger than the verticalcomponent and the in-plane movement is flexible movement.
     Dynamic response of platform under the complex undersea environment and thehydrodynamic response of mooring system are always the hot focus and difficulty inthe fields of ocean engineering. As one of the forefront subjects, the study ofvortex-induced motion has just being started in our country and the primary concern is Spar platform with large diameter. However, TLP is one kind of multi-columnoffshore platform, whose complex dynamic response and vortex–induced motioncharacteristics have an important effect on its own safety and fatigue strength of risersystem. Theoretical study, numerical simulation and experimental validation arecombined to reveal the intrinsic interaction between external marine environment,motion response of platform, hydrodynamic response of mooring system and its ownvortex-induced motion characteristics of platform. This thesis aims to explorecomplex dynamic response and the rule of formation, development, evolution andstable for vortex-induced motion.
     In this thesis, mass matrix, damping matrix and coupling stiffness matrix arederived according to the principle of force balance considering the effect caused bytendons and risers. Velocities and accelerations of water particles in wave coordinateare derived by means of coordinate system transformation. Infinitesimal method isapplied to divide columns and pontoons into small parts. The wave forces acting onthe platform are calculated by use of modified Morison equation and the exactexpression of the wave force in fixed coordinate system are obtained at last. On thebasis of matrix, six degrees of freedom non-linear dynamic differential equations arederived. In order to get dynamic response and mooring characteristic of TLP in timedomain, self development program are used to solve the coupling equations. Thedynamic characteristics of TLP in regular wave are studied. Coupling dynamicresponse, change of tendon tension and riser tension on the four different seaconditions are compared and analyzed. The influence of wave period, wave height,wave approach angle, pretension, water depth on dynamic response of TLP isrevealed.
     In view of the randomness and complexity of marine environment, dynamicresponse and mooring characteristic of TLP on regular wave is simplified. The studyconsidering regular wave is just a validation program. Based on the analysis of regularwave, the external marine environment is expanded to random wave, combinedwind-wave and freak wave. A series of random waves has been generated by Jonswapwave spectrum combined superposition principle, the dynamic response is studied indifferent wave heights, spectrum peak periods and wave approach angles. The result isverified by1:40scaling factor model test in State Key Laboratory of OceanEngineering of Shanghai Jiaotong University. Mean, range and the standard ofnumerical simulation and model test are compared and the acceleration at the center and corner of the deck and is forecasted. The NPD wind spectrum and stepped currentmodel are adopted to analyze TLP dynamic response, the tension statistics and powerspectral density of mooring system in different sea states and wave (current) angels.Three different cases considering wave, combined wave-current and combinedwind-wave-current action are also discussed. Finally, the dynamic response andmooring characteristic in strongly nonlinear wave-freak wave are studied and theresults are compared with random wave data.
     Vortex-induced motion is a hot and difficult problem considered by oceanengineering and is also an important fluid dynamics issue to be urgently solved forlarge scale marine structure, which involves complex fluid-structure interaction.Therefore, researching on vortex-induced motion prediction of large scale and lowmass ratio multi-columns has a very important significance for studyingvortex-induced characteristics such as vortex shedding modal and loading conditionsof TLP with certain coming current speeds. Computational fluid dynamics is used tosimulate the vortex induced motion of columns with two typical cross-sections andinfinite length in limited and unlimited flow. The results are compared with thepublished experimental results. The study concentrates on the variation rule ofamplitude with reduced velocity, variation rule of in-line balance position, frequencylock in phenomena and vortex shedding modals. Numerical method is adopted toacquire the characteristic of flow around multi-square columns with infinite length.Hydrodynamic coefficients, vortex intensity distribution of column cross-section andvortex shedding modal are successfully acquired. Vortex-induced motions of multi-columns at low mass ratio are simulated for0、22.5、45degrees with differentvelocities. The maximum statistics and nominal statistics on vortex-induced motionamplitude are used to analyze the influence of some relevant parameters.
     3-D computing grid is established to analyze flow characteristic andvortex-induced motions considering the coupling effect between pontoons andcolumns, which is based on the research on a single column with infinite length andmulti-square columns with infinite length. At first, flow around a single squarecolumn with infinite length was verified, mean lift coefficient and strouhal number arecompared with2-D square column results. Considering the interaction betweenupstream and downstream columns with different approach angles of current, chaptersix analyzes the lift coefficient, drag coefficient, vortex intensity distribution and vortex shedding modal of upstream and downstream columns. According to the modeltest in State Key Laboratory of Ocean Engineering of Shanghai Jiaotong University,the natural period of TLP motions and dimensionless damping coefficient are obtained,which are embedded to UDF to solve the differential motion equation. Vortex-inducedmotion of TLP has been analyzed and discussed in depth.
     Research on vortex-induced vibration of slender riser has some use for referenceand guidance to the tendon of TLP, but there are big disparities between tendon andriser in section dimension, pretension and boundary conditions. The influence of TLPmotion on boundary condition is considered and portable bearing boundary conditioncombined classic nonlinear dynamics is employed to study vortex-induced vibrationof TLP by self development program. The first7th natural frequencies are obtainedusing formation superposition, then time history of modal weight and variation rule ofmodal shear forces and bending moments with the length of tendon are studied ondifferent conditions such as uniform current, stepped current and combinedwave-current. Mode conversion phenomenon has been analyzed. Based on multi-striptheory combined CFD numerical simulation, the three-dimension TLP problem ofvortex-induced vibration is converted into two-dimension problem. User DefinedFunctions which solve the problem of vortex-induced vibration is embedded intoFluent, then dynamic mesh technology is adopted to update flow field. DNVcommercial software is used to calculate the time history of tendon tension withdifferent current velocities and wave heights, vortex-induced vibration of TLP with aconstant tension and variable tension is discussed. The results are compared withthose by the classical theory and the impacts of some relevant parameters onvortex-induced vibration have been investigated.
     In conclusion, this thesis launches on several factors which could affect the TLPdynamic response characteristics, including the wave approach angle, wave height,spectrum peak period, water depth, pretension, etc. External load is considered fromregular wave, random wave, combined wind-wave-current to freak wave. This studyis carried out step by step and takes the integration of measures including theoreticalinvestigation, numerical simulation and model test to investigate hydrodynamicperformance and tendon tension of mooring system for TLP. In the research of TLPvortex-induced motions, the mechanism of vortex-induced motion is analyzed and thestudy from a single column to multi-columns with infinite length. This investigationon the flow characteristic and vortex-induced motion is first carried out in our country, taking the current velocities, current approach angle, limited flow and unlimited flowfactors into consideration. Hydrodynamic coefficient, frequency lock-in phenomenonand vortex shedding modal are studied in depth. On the basis of research of dynamicresponse and vortex-induced motion of TLP, nonlinear dynamical method combinedmulti-strip theory is adopted to study vortex-induced characteristics of TLP withvariable tension. The factors such as uniform flow, stepped current and combinedwave-current are taken into consideration. In sum, supported by the national physicalscience major fund project, the paper first researched dynamic response andvortex-Induced motion characteristics of tension leg platform in our country, a seriesof innovative significance conclusion are obtained, which will be very useful to thedesign and construction of TLP.
引文
[1] Christopher N. Mahoney and Chad Supan of Wood Group Mustang.2012deepwater. solutions&records for concept selection. Offshore,2012.
    [2]江文荣,周雯雯,贾怀存.世界海洋油气资源勘探[J].天然地球科学,2010,21(6):899-994.
    [3]江怀友,潘继平,邵奎龙等.世界海洋油气资源勘探现状[J].中国石油企业,2008,77-79.
    [4]张玲玲,郭佩芳.再议海洋油气资源的开发利用[J].价值工程,2012,88-89.
    [5]江怀友,鞠斌山,江良冀.世界海洋油气浮式采油平台发展展望(上)[J].石油与装备,2008,60-62.
    [6]江怀友,鞠斌山,江良冀.世界海洋油气浮式采油平台发展展望(下)[J].石油与装备,2011,85-88.
    [7]王颖. Spar平台涡激运动关键特性研究[D].上海交通大学博士学位论文,2010.
    [8]董艳秋.深海采油平台波浪载荷及响应[M].天津大学出版社,2005.
    [9]廖谟圣.国内外海洋采油平台现状与发展展望浅见[J].造船工业,2012(1),48-52.
    [10]周振威,孙振民.深海海洋平台发展综述[J].广东造船,2012(3),63-66.
    [11]张帆.深海立柱式平台概念设计及水动力性能研究[D].上海交通大学博士学位论文,2008.
    [12]张帆.深海立柱式平台概念设计及水动力性能研究[D].上海交通大学博士学位论文,2008.
    [13] Nagan Srinivasan. Tension-based tension leg platform: technologies for ultradeepwater applications[A]. Proceedings of the ASME201029th InternationalConference on Ocean, Offshore and Arctic Engineering[C], OMAE,2010,20042.
    [14] Homayoun Heidari, Neil Williams. Development of a battered four-columnTLP concept[A]. Proceedings of the26th International Conference on OffshoreMechanics and Arctic Engineering[C], OMAE,2007,29114.
    [15] Neil Williams, Homayoun Heidari. Three-column TLP concept for marginalfield development[A]. Proceedings of the ASME200928th InternationalConference on Ocean, Offshore and Arctic Engineering[C], OMAE,2009,80170.
    [16] Homayoun Heidari. Novel TLPconcept for ultra-deepwater field development
    [A].Proceedings of the ASME200928th International Conference on Ocean,Offshore and Arctic Engineering[C], OMAE,2009,80191.
    [17]胡志敏,董艳秋,张建民.深水张力腿平台的结构形式[J].中国海洋平台,2000,15(5):1-5.
    [18]闫功伟,欧进萍.新型分离式张力腿平台概念设计[J].科学技术与工程,2012,12(8):1724-1732.
    [19]尹容衡,何扬,潘晓东等.顶部张紧立管回接连接器及安装技术[J].石油矿场机械,2012,41(8):1-7.
    [20]杨敏冬.深水浮式结构与系泊/立管系统的全时域非线性耦合动态分析[D].大连理工大学博士学位论文,2012.
    [21]杨雄文,樊洪海. TLP平台结构形式及其总体性能分析[J].石油机械,2008,36(5):70-73.
    [22]王丽勤,侯金林,庞然,刘冬雪.深水油气田开发工程中的基础应用探讨[J].海洋石油,2011,31(4):87-92.
    [23]李飒,韩志强,王圣强.深水石油平台及其锚固基础形式评述[J].海洋工程,2008,26(2):147-154.
    [24] Colliant J L. Anchors for deepwater moorings[A]. Offshore TechnologyConference[C]//Offshore Technology Conference Preceedings. Houston:Offshore Technology Conference, OTC,2002-14306.
    [25] Kibbee S, Leverette S, Davies K, Matten R. Morpeth SeaStar Mini-TLP[A].Offshore Technology Conference[C]//Offshore Technology ConferencePreceedings. Houston: Offshore Technology Conference,1999:OTC-10855.
    [26] S Kibbee, J Chianis, K Davies. The SeaStar tension-leg platform[A]. OffshoreTechnology Conference[C]//Offshore Technology Conference Preceedings.Houston:Offshore Technology Conference,1994:OTC-007535.
    [27] William F, Unlimited depth minimal TLP gets first application on prince[J].Offshore,2001,61(10):82-160.
    [28] PG Wybro, D Shell, M Chaison. Development of deepwater fields usingMOSES small TLP[J]. Journal of Offshore Technology,1995,3(3):36.
    [29] Huang E, Bhat S, Luo Y, Zou J. Evaluation of dry tree platform concepts[A].Offshore Technology Conference[C]//Offshore Technology ConferenceProceedings. Houston: Offshore Technology Conference,2000:OTC11899.
    [30]陈孝建.南海延伸式张力腿平台设计研究[D].天津大学硕士学位论文,2011.
    [31]曾晓辉,沈晓鹏,刘洋,吴应湘.考虑多种非线性因素的张力腿平台动力响应[J].海洋工程,2006,24(2):82-88.
    [32]刘玉标,袁文全,申仲翰.迎浪角及波浪周期对张力腿平台响应的影响分析[J].中国海洋平台,2008,23(6):22-25.
    [33]“典型深水平台概念设计研究”课题组.张力腿平台水动力响应分析[J].中国造船,2005,46:477-489.
    [34]吴应湘,郑之初,李东晖,马艺馨,劳力云.深水张力腿平台设计中的流体动力学问题[J].中国海洋平台,2000,15(2):12-1.
    [35]于皓,周延东,李欣.张力腿平台的环境载荷及响应[J].中国造船,2007,48:336-342.
    [36]余建星,张中华.波、流联合作用下张力腿平台系索系统疲劳可靠性分析方法研究[J].海洋技术,2009,28(2):69-72.
    [37]鲍莹斌,李润培,顾永宁.张力腿平台研究领域和发展趋势[J].海洋工程,1998,16(4):17-26.
    [38]鲍莹斌,李润培,顾永宁.中等水深轻型张力腿井口平台运动研究[J].海洋工程,1999,17(1):1-7.
    [39]鲍莹斌,舒志,李润培.中等水深轻型张力腿平台型式研究[J].海洋工程,2001,19(2):7-12.
    [40]黄佳.1500米水深张力腿平台运动和系泊特性数值与试验研究[D].上海交通大学硕士学位论文,2012.
    [41] S. Chandrasekaran, A.K. Jain, N.R. Chandak. Influence of hydrodynamiccoefficients in the response behavior of triangular TLPs in regular waves[J].Ocean Engineering,2004,31:2319-2342.
    [42] S. Chandrasekaran, A.K. Jain, Anupam Gupta. Influence of wave approachangle on TLP’s response[J]. Ocean Engineering,2007,34:1322-1327.
    [43] Xiaohong Chen, Yu Ding, Jun Zhang, Pierre Liagre, John Niedzwecki, PerTeigen. Coupled dynamic analysis of a mini TLP:Comparison withmeasurements[J]. Ocean Engineering,2006,33:93-117.
    [44] S.K. Bhattacharyya, S. Sreekumar, V.G. Idichandy. Coupled dynamics ofSeaStar mini tension leg platform[J]. Ocean Engineering,2003,30:709-737.
    [45] M.R. Tableeshpour, A.A. Golafshani, M.S. Seif. Second-order perturbationadded mass fluctuation on vertical vibration of tension leg platforms[J]. MarineStructures,2006,19:271-283.
    [46] Xiaoqiang Bian, Steven J. Leverette. A TLP solution for8000ft water depth[A].Proceedings of the ASME29th International Conference on Ocean, Offshoreand Arctic Engineering[C], OMAE,2010-20409。
    [47] Y.M. Low. Frequency domain analysis of a tension leg platform with statisticallinearization of the tendon restoring forces[J]. Marine Structures,2009,1-24.
    [48] S. Chandrasekaran, A.K. Jain. Dynamic behaviour of square and triangularoffshore tension leg platforms under regular wave loads[J]. Ocean Engineering,2002,29:279–313.
    [49] Govardban R, Williamson C H K. Modes of vortex formation and frequencyresponse of a freely vibrating cylinder[J]. Journal of Fluid Mechanics,2000,420:85-130.
    [50] Jauvtis N, Williamson C H K. Vortex-induced vibration of a cylinder with twodegrees of freedom[J]. Journal of Fluids and Structures,2003,l7:l035-l042.
    [51] Jauvtis N, Williamson C H K. The effect of two degrees of freedom onvortex-induced vibration at low mass and damping[J]. Journal of FluidsMechanics,2004,509:23-62.
    [52] Govardhan, R, Williamson, C.H.K. Defining the modified Griffin plot invortex-induced vibration revealing the effect of Reynolds number usingcontrolled damping[J]. Journal of Fluid Mechanics,2006,561:147-180.
    [53] Sumner, D. Closely spaced circular cylinders in cross-flow and auniversal wake number[J]. Journal of Fluids Engineering,2004,126:245–249.
    [54] Sumner.D, Richards.M.D, Akosile.O.O. Two staggered circular cylinders ofequal diameter in cross-flow[J]. Journal of Fluids and Structures,2005,20:55-276.
    [55] A. Yalpaniyan, M. Goodarzi. The Free Surface Flow around a TLP[A].Proceedings of the ASME201029th International Conference on Ocean,Offshore and Arctic Engineering[C], OMAE,2010-20021。
    [56] Allan Magee, Rizwan Sheikh, Kenneth Yeoh Hock Guan. Model tests for VIMof multi-column floating platform[A]. Proceedings of the ASME201130thinternational conference on ocean, Offshore and Arctic Engineering[C],OMAE,2011-49151.
    [57] Jang-Whan Kim, Allan Magee, Kenneth Yeoh Hock Guan. CFD simulation offlow-induced motions of a multi-column floating platform[A]. Proceedings ofthe30th international conference on ocean, offshore and arctic engineering[C],OMAE,2011-49437.
    [58] Olaf J.Waals, Stephen Bultema. Flow induced motions of multi columnfloaters[A]. Proceedings of the26th international conference on offshoremechanics and arctic engineering[C], OMAE.2007,669-678.
    [59] A.Abrishamachi, B.A.Younis. LES and URANS predictions of hydrodynamicloads on a tension-leg platform[J]. Journal of Fluids and Structures,2012,28:244-262.
    [60] K. Lam, L.Zou. Experimental and numerical study for the cross-flow aroundfour cylinders in an In-line square configuration[J]. Journal of MechanicalScience andTechnology,2007,21:1338-1343.
    [61] K. Lam, W.Q. Gong, R.M.C. So. Numerical simulation of cross-flow aroundfour cylinders in anin-line square configuration[J]. Journal of Fluids andStructures2008,24:34–57.
    [62] Zou Lin, Lin Yu-feng. Large-eddy simulation of flow around cylinder arrays ata subcritical reynolds number[J]. Journal of Hydrodynamics,2008,20(4):403-13.
    [63] Ming Zhao, LiangCheng. Numerical simulation of vortex-induced vibration offour circular cylinders in a square configuration[J]. Journal of Fluids andStructures,2012,31:125–140.
    [64] Feng Xu, Jinping Ou, Yiqing Xiao. Numerical study on vortex inducedvibrations of four cylinders in an in-Line square configuration[J].Computational Structural Engineering,2009,553–567.
    [65] Oriol Rijken, Steven Leverette. Experimental study into vortex induced motionresponse of semi submersibles with square columns[A]. Proceedings of theASME27th International Conference on Offshore Mechanics and ArcticEngineering[C], OMAE,2008-57396.
    [66] Jimmy Ng K.T, John E.Halkyard, Chan.Eng.Soon. Statistical characteristics offlow in the wake region of a vertical bluff cylinder in waves, currents andcombined wave-current flows[A]. Proceedings of the ASME201029thInternational Conference on Ocean, Offshore and Arctic Engineering[C],OMAE,2010-21181.
    [67] Yongpyo.Hong, Yongho Cho, Junyoung Lee, Youngbok Kim. Vortex-inducedmotion of a deep-draft semi-submersible in current and waves[A]. Proceedingsof the18th international society offshore and polar engineering[C]. ISOPE,2008,453-459.
    [68] Sherry Xiang, Peimin Cao, Oriol Rijken, Jian Ma, Yongjun Chen. Riser vimfatigue design induced by deep draft semi-submersible[A]. Proceedings of theASME29th International Conference on Offshore Mechanics and ArcticEngineering[C], OMAE,2010-20339.
    [69] Steven Lecerette, Oriol Rijken, William Dooley. Analysis of TLP VIV responseto eddy currents[A]. Offshore Technology Conference[C]//OffshoreTechnology Conference Preceedings. OTC,2003-15289.
    [70]黄志勇.柔性立管涡激振动时域响应分析[D].上海交通大学博士学位论文,2008.
    [71] B. Mutlu Sumer, Jorgen Fredsoe. Hydrodynamics around cylindrical structures[M]. World Scientific,1997.
    [72] Blevins R D. Flow-induced vibration[M]. Van Nostrand Reinhold, New York,1990.
    [73]潘志远.海洋立管涡激振动机理与预报方法研究[D].上海交通大学博士学位论文,2006.
    [74]王颖. Spar平台涡激运动关键特性研究[D].上海交通大学博士学位论文,2010.
    [75]刘岳元,冯铁城,刘应中.水动力学基础[M].上海交通大学出版社,1995.
    [76]张亮,李云波.流体力学[M].哈尔滨工程大学出版社,2006.
    [77]吴望一.流体力学[M].北京大学出版社.1983.
    [78]许维德.流体力学[M].国防工业出版社.1989.
    [79] John D. Anderson, Jr. Fundamentals of Aerodynamics[M]. Quebecor WorldFairfield Inc,2001.
    [80]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [81]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [82]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [83] Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tu-be bundles[J]. International Journal of Heat and Fluid Flow,1999,20(3):241-254.
    [84]黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [85] Fluent Inc. FLUENT User’s Guide. Fluent Inc,2003.
    [86] Fluent Inc. FLUENT User Defined Function Manual. Fluent Inc,2003.
    [87] Hinze J O, Turbulence[M]. McGraw-Hill, New York,1975.
    [88] Wilcox D C. Reassessment of the scale-determining equation for advancedturbulence models[J]. AIAA Journal,1988,26(11):1299-1310.
    [89] Menter F R. Two-equation eddy-viscosity turbulence models for engineeringapplications [J]. AIAA Journal,1994,32(8):1598-1605.
    [90] Abbott M B, Basco D R. Computational Fluid Dynamics–An Introduction forEngineers[M]. Longman Scientific&Technical, Harlow,England,1989.
    [91] Feiz A A, Ould-Rouis M, Lauriat G. Large eddy simulation of turbulent flow ina rotating pipe[J]. International Journal of Heat and Fluid Flow,2003,24(3):412-420.
    [92] Ivan M, Pierre S. Large eddy simulation of flow around an airfoil nearstall[J].AIAA Journal,2002,40(6):1139-1145.
    [93] Grigoriadis D G E, Bartzis J G, Goulas A. Efficient treatment of complexgeometries for large eddy simulations of turbulent flows[J]. Computers andFluids,2004,33(2):201-222.
    [94] Li J C. Large eddy simulation of complex turbulent flows: Physical aspects andresearch trends[J]. Acta Mechaniea Sinica,2001,17(4):289-301.
    [95]张兆顺.湍流[M].北京:国防工业出版社,2001.1.
    [96]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008.1.
    [97] Laetitia D, Christian T, Loc T P. LES of spatially developing3D compressiblemixing layer[J]. Computational Fluid Mechanics,2000,328(7):567-573.
    [98] Felten F, Fautrelle Y, Du Terrail Y, Metais O. Numerical modeling ofelectrognetically-riven turbulent flows using LES methods[J]. AppliedMathematical Modeling,2004,28(1):15-27.
    [99] Smagorinsky J. General circulation experiments with primitive equations[J].Monthly Weather Rev,1963,91(3):99-164.
    [100] Piller M, Nobile E, Thomas J. DNS study of turbulent transport at low Prandtlnumbers in a channel flow[J]. Journal of Fluid Mechanics,2002,458:419-441.
    [101] Wissink J G. DNS of separating low Reynolds number flow in a turbinecascade with incoming wakes[J]. International Journal of Heat and Fluid Flow,2003,,24(4):626-635.
    [102] Michelassi V, Wissink J G, Rodi W. Direct numerical simulation, large eddysimulation and unsteady Reynolds-averaged Navier-Stokes simulations ofperiodic unsteady flow in a low-pressure turbine cascade: A comparison[J].Journal of Power and Energy,2003,217(4):403-412.
    [103] Stephane V. Local mesh refinement and penalty methods dedicated to theDirect Numerical Simulation of incompressible multiphase flows[A].Proceedings of the ASME/JSME Joint Fluids Engineering Conference[C]:2003,1299-1305.
    [104] Spalart P R, et al. Comments on the feasibility of LES for wings and on ahybrid RANS. Advances in DNS/LES[M]. Greyden Press Columbus,1997.
    [105] Piomelli U, et al. The inner-outer interface in large-eddy simulations withwall-layer models[J]. International Journal of Heat and Fluid Flow,2003(24):538-550.
    [106]张兆顺,崔桂香,许春晓.湍流值理论与模拟[M].北京:清华大学出版社,2005.9.
    [107] Goodheart K, Dykas S, Schnerr G H. Numerical insights into the solution oftransonic flow test cases using the Wilcox k-ω, EASM and SST models[A].41st Aerospace Sciences Meeting and Exhibit[C], Reno, Nevada, USA,6-9Jan2003.
    [108] WS Atkins Consultants.Best Practice Guidelines for Marine Applications ofComputational Fluid Mechanics[R]. Report of the MARNET CFD project,2003.
    [109]张德良.计算流体力学教程[M].高等教育出版社.2010.
    [110]张凯,王瑞金,王刚. Fluent基础与应用实例[M].清华大学出版社.2010.
    [111]江帆,黄鹏. Fluent高级应用与实例分析[M].清华大学出版社.2008.
    [112] Patanker S V. Numerical Heat Transfer and Fluid Flow[M]. Hemisphere,Washington,1980.
    [113] Patanker S V, Spalding D B. A calculation procedure for heat, mass andmomentum transfer in three-dimensional parabolic flows[J]. Int. J Heat MassTransfer,1972,15:1787-1806.
    [114]杜特专,黄晨光,王一伟,方新.动网格技术在非稳态空化流计算中的应用[J].水动力学研究与进展,2010,25(2):190-198.
    [115]张来平,邓小刚,张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展,2010,40(4):424-447.
    [116]张潇,王延荣,张小伟,裴伟.基于多层动网格技术的流固耦合方法研究[J].船舶工程,2009,31(1):64-66.
    [117] OWIS F M, NAYFEH A H. Numerical simulation of3-D incompressible,multi-phase flows over cavitating projects[J]. European Journa of Mechanics–B/Fluids.2004,23(2):339-351.
    [118] ZHANG Min-di, WANG Guo-yu, DONG Zi-qiao, et al. Experiment study ofcloudy cavitating flows around hydrofoils[J]. Journal of EngineeringThermophysics.2008,29(1):71-74.
    [119] Mavriplis DJ. Unstructures mesh generation and adaptivity. VKI Lect. Ser.Comput. Fluid Dyn., VKI-LS1995-02.1992.
    [120] ZHANG LP, Chang XU, Wang ZY, et al. Implicit algorithm forincompressible unsteady flows on dynamic hybrid grid. Comput. Fluid Dyn.J.2007,15(4):411-421.
    [121] Parthasarathy V, Kallinderis Y. New multigrid approach forthree-dimensional unstructured, adaptive grids. AIAA J.1994,32(5):956-963.
    [122] Sabersky R H, Fluid Flow: A First Course in Fluid Mechanics[M]. PrenticeHall.1998.
    [123]崔尔杰.钝物体绕流旋涡脱落和流致振动的数学模型[A].第一届全国流体弹性学术会议论文集[C],1983.
    [124] Cui E J. An approaximate method for calculating the vortex-inducedoscillation of bluff bodies in air and water[A]. ASME Winter AnnualMeeting[C].1981, AD-01:155-173.
    [125] Staubi T. Calculation of the vibration of an elastically mounted cylinder usingexperimental data from forced oscillation[J]. Trans. Of the ASME, J. ofFluids Engineering.1983,105:225-229.
    [126] Birkhoff G, Zarantonello E H. Jets, Wakes and Cavities [M]. Academic Press,New York.1957.
    [127] Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in aflowing field[A]. Proc. Roy. Soc. Ser. A[C].1964(277):51-75.
    [128] Hartlen R T, Currie I G. Lift oscillation model for vortex-induced vibration[J].Engineering Mechanics.1970,96:577-591.
    [129] Iwan W, Blevins R. A model for vortex-induced oscillations of structures[J].Journal of Applied Mechanics.1974,41(3):581-586.
    [130] Sarpkaya T. A critical review of the intrinsic nature of vortex-inducedvibrations[J]. Journal of Fluids and Structures.2004(19):389-447.
    [131] Parkinson G V. Mathematical models of flow-induced vibrations of bluffbodies. Flow-Induced Structural Vibrations[M], Springer, Berlin.1974:81-127.
    [132] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillatingcylinder[J]. Journal of Fluids and Structures.1988(2):355-381.
    [133]李俊,陈刚,杨建民.深水畸形波的实验室物理模拟[J].中国海洋平台,2009,24(3):22-25.
    [134]杨冠声,董艳秋,陈学闯.畸形波[J].海洋工程,2002,20(4):105-108.
    [135]刘赞强,张宁川.基于Longuet-Higgins模型的畸形波模拟方法[J].水道港口,2010,31(40):236-241.
    [136]张运秋,胡金鹏,张宁川.非线性聚焦生成畸形波规律之研究[J].水道港口,2010,31(3):153-180.
    [137]黄玉新,裴玉国,张宁川.基于小波变化的畸形波生成过程时频特性研究[J].水动力学研究与进展,2009,24(6):754-760.
    [138]裴玉国,张宁川,张运秋.利用波浪频谱数值模拟畸形波的方法探究[J].海洋学报,2007,29(3):172-178.
    [139]张运秋,张宁川,裴玉国.畸形波数值模拟的一个有效模型[J].大连理工大学学报,2008,48(3).
    [140]裴玉国,张宁川,张运秋.畸形波数值模拟和定点生成[J].海洋工程,2006,24(4):20-26.
    [141]胡金鹏,张运秋,朱良生.基于Benjamin-Feir不稳定性的畸形波模拟[J].华南理工大学学报(自然科学版),2009,37(6):113-116.
    [142]赵西增,孙昭晨,梁书秀.高阶谱方法建立三维畸形波聚焦模拟模型[J].海洋工程,2009,27(1):33-39.
    [143]刘赞强,张宁川,郭传胜.改进的相位调制法模拟畸形波:Ⅱ-畸形波特征参数和模拟效率的影响因素探讨[J].水动力学研究与进展,2010,25(6):813-821.
    [144]崔成,张宁川,裴玉国.畸形波生成、演化过程研究—波面时间过程随位置的变化.海洋通报,2011,30(4):387-396.
    [145]崔成,张宁川,裴玉国.畸形波生成、演化过程时频能量结构研究.海洋工程,2011,29(3):59-66.
    [146]肖鑫,腾斌,勾莹等.畸形波作用下张力腿平台的瞬时响应[J].水运工程,2009,5:9-14.
    [147] Kriebel D L. Eficient simulation of extreme waves in a random sea[J].Olagnon M, Athanassoulis G, Rogue Waves. Brest:Ifremer,2000.
    [148]黄智勇,潘志远,崔维成.两向自由度低质量比圆柱体涡激振动的数值计算[J].船舶力学,2007,11(1):1-9.
    [149]梁亮文,万德成.横向受迫振荡圆柱低雷诺数绕流问题数值模拟[J].海洋工程,2009,7(4):45-60.
    [150]徐枫,欧进萍.正三角形排列三圆柱绕流与涡致振动数值模拟[J].空气动力学学报,2010,28(5):582-590.
    [151]郑德乾,顾明,张爱社.基于流体并行计算的二维方柱涡激振动数值模拟[J].噪声与振动控制,2009,6:85-91.
    [152]方平治,顾明.高雷诺数条件下二维方柱涡激振动的数值模拟[J].同济大学学报(自然科学版),2008,36(2):161-165.
    [153] Longbin Tao, Krish Thiagarajan. The influence of edge sharpness on theheave damping forces experienced by a TLP column[A]. Proceedings of the10th international offshore and polar engineering conference[C].2000,277-282.
    [154] Lyn D A, Einav S, Rodi W. Laser-doppler velocimetry study of ansemble-averaged characteristics of the turbulent near wake of a squarecylinder[J]. Journal of Fluid Mechanics,1995,304:285-292.
    [155] Bouris D, Bergeles G.2-D LES of vortex shedding from a square cylinder[J].Journal of Wind Engineering and Industrial Aerodynam ics,1999,80:31-42.
    [156] Durao D F G, Heitor M V, Pereira J C F. Measurements of turbulent andperiodic flows around a square cross-secti on cylinder[J]. Experiments inFluids,1988,6(5):298-309.
    [157] Lbcke H. Comparison of LES and RANS in bluff-body flows[J]. Journal ofWind Engineering and Indust rial Aerodynamics,2001,89:1471-1483.
    [158] Franke R, Rodi W. Calculati on of vortex shedding past a square cylinderwith various turbulence models[A]. Proceeding s of the8th InternationalSymposium on Turbulent Shear Flows [C], New York:Springer-Verlag Press,1991:189-204.
    [159] Rodi W, Ferzig er J, Breuer M. Status of large eddy simulation: results of aworkshop[J]. Journal of Fluids Engineering,1997,119(2):248-261.
    [160]张伟,葛耀君.方柱绕流粒子图像测速试验与数值模拟[J].同济大学学报(自然科学版),2009,37(7):857-892.
    [161]黄娟,张志国, A.V.Mudaliar.2D非稳态方柱绕流的数值模拟与分析[J].武汉理工大学学报(交通科学与工程版),2004,33(1):192-195.
    [162]魏英杰,朱蒙生,何钟怡.并列双方柱绕流的大涡模拟及频谱分析[J].应用数学和力学,2009,25(8):824-830.
    [163]吴七二,周岱,付功义.串列方形钝体构筑物绕流的数值模拟[J].上海交通大学学报,2012,46(1):130-135.
    [164]刘松,符松.串列双圆柱扰流问题的数值模拟[J].计算力学学报,2000,17(3):260-266.
    [165]李偆萱,彭少波,吴子牛.附属小圆柱对主圆柱绕流影响的数值模拟[J].北京航空航天大学学报,2003,29(11):951-958.
    [166]廖俊,景思睿.高雷诺数下圆柱绕流的数值模拟[J].水动力学研究与进展,2001,16(1):101-110.
    [167]陈素琴,黄自萍,沈剑华.两串列方柱绕流的干扰数值研究[J].同济大学学报,2001,29(3):320-325.
    [168]顾志福,孙天风.三圆柱绕流的实验研究[J].空气动力学学报,2000,18(4):442-447.
    [169] Kim M K, Kim D K, Yoo n S H, et al. Measurmements of the flow fieldsaround two square cylinders in a tandem arrangement[J]. Journal ofMechanical Science and Technology,2008,22(2):397-407.
    [170] Lankadasu A, Veng adesan S. Interference effect of two equal sized squarecylinders in tandem a rrang ement: With planar shear flow[J]. InternationalJournal of Numerical Methods in Fluids,2008,57(8):1005-1021.
    [171] Rizwan Sheikh, Alison Brown. Extreme vertical deepwater current profiles inthe south China, offshore Borneo[A]. Proceedings of the ASME201029thinternational conference on ocean, Offshore and Arctic Engineering[C].OMAE,2010-49151.
    [172]樊娟娟,唐友刚,张若瑜,邵卫东.高雷诺数下圆柱绕流与大振幅比受迫振动的数值模拟[J].水动力学研究与进展.2012,27(1):24-32.
    [173]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟[J].上海交通大学学报.2001,35(10):1465-1469.
    [174]马驰,董艳秋,胡志敏. TLP的涡激非线性振动[J].天津大学学报,2000,33(6):701-706.
    [175]陈伟.涡激振动的离散涡数值模拟[D].大连理工大学硕士学位论文.2009.
    [176] Willden,R.H.J, Graham,JMR. Multi-modal Vortex-Induced Vibrations of avertical riser pipe subjected to a uniform current profile[J]. European Journalof Mechanics-B/Fluids23,pp.209-218.
    [177] Schulz, K.W. Meling, T.S.2004. Multi-Strip numerical analysis for flexibleriser response[A]. Proceedings of OMAE[C]. Vancouver, Canada.2004,379-384.
    [178] Chaplin,J.R., Bearman, P.W., Huera Huarteb,F.J. and Pattenden, R.J.Laboratory measurements of vortex-induced vibrations of a vertical tensionriser in stepped current[J]. Joournal of Fluids and Structures,2005,21:3-24.
    [179] Huera-Huarte,F.J.,Bearman,P.W.,. Wake structures and vortex-inducedvibrations of a long flexible cylinder-Part1: Dynamic response[J]. Journal ofFluids and Structures,2009,25:969-990.
    [180] McSheery,R.J.,Willden,R.H.J,Graham,J.R. Numerical simulations of the flowpast cross-flow oscillating circular cylinders and marine riser pipes[A].Proceedings of the26th International Conference on Offshore Mechanics andArctic Engineering[C]. OMAE,2007-29265.
    [181] Lima A.A.,Meneghini,J.R.,Mourelle.M. Numerical investigation ofvortex-induced vibration of a marine SCR[A]. Proc. of the26th InternationalConference on Offshore Mechanics and Arctic Engineering[C].OMAE,2007-29269.
    [182] Soni,P.K.,Larsen,C.M. Investigating the relevance of strip-theory forpipelines subjected to vortex induced vibration[A]. Proc. of the27thInternational Conference on Offshore Mechanics and Arctic Engineering[C].OMAE,2008-57551.
    [183] Aronsen,K. An Experimental Investigation of In-line and Combined In-lineCross-flow Vortex Induced Vibration[D]. Ph.D. thesis, Faculty of MarineTechnology,NTNU,Trondheim.2007.
    [184] Yamamoto.C.T.,Meneghini, F.,etc. Numerical simulations of vortex-inducedvibration on flexible cylinders[J]. Journal of Fluids and Structures.2004,19,467-489.
    [185] Changjiang He, Zhongdong Duan, Jinping Ou. Numberical simulation ofvortex-induced vibrations on a flexible riser in uniform currents[A].Proceedings of the29th International Conference on Offshore Mechanics andArctic Engineering[C]. OMAE,2010-20178.
    [186] Lie,H.,Kaasen,K.E. Modal analysis of measurements from a large-scale VIVmodel test of a riser in linearly sheared flow[J]. Journal of Fluids andStructures,2006,22:557-575.
    [187] Srinil,N.,Wiercigroch,M.,O’Brien,P.,Younger,R. Vortex-Induced Vibration ofCatenary Riser: Reduced-Order Modeling and Lock-in Analysis using WakeOscillator[A]. Proceedings of the28th International Conference on OffshoreMechanics and Arctic Engineering[C]. OMAE,2009-79116.
    [188] Skop,R.A.,Balasubramanian,S. A new twist on an old model forvortex-excited vibrations[J]. Journal of Fluids and structure1997,11:395-412.
    [189] Srinil,N.,,O’Brien,P.,Younger,R. Wiercigroch,M. Numerical and experimentalcomparisons of vortex-induced vibrations of marine risers in uniform/shearedcurrents[A]. Proceedings of the29th International Conference on OffshoreMechanics and Arctic Engineering[C]. OMAE,2010-20192.
    [190] Srinil,N. Analysis and prediction of vortex-induced vibrations ofvariable-tension vertical risers in linearly sheared currents[J]. Applied OceanResearch2011,33:41-53.
    [191] Huang,K.,Chen,H.C.,Chen,C.R. Time-domain simulation of riser viv insheared current[A]. Proceedings of the26th International Conference onOffshore Mechanics and Arctic Engineering[C]. OMAE,2007-29363.
    [192] Constantinides,Y., O.H. Oakley. Numerical prediction of VIV andcomparison with field experiments[A]. Proceedins of the27th InternationalConference on Offshore Mechanics and Arctic Engineering[C].OMAE,2008-57215.
    [193] Lie,H.,Larsen,C.M.,Kaasen,.K.E. Frequency domain model for prediction ofstochastic vortex induced vibrations for deep water risers[A]. Procedings ofthe27th International Conference on Offshore Mechanics and ArcticEngineering[C]. OMAE,2008-57556.
    [194] Nozawa,T.,Suzuki,H.,Ohta,M. Numerical prediction and suppression of VIVof deepwater riser[A]. Proceedings of the29th International Conference onOffshore Mechanics and Arctic Engineering[C]. OMAE,2010-20135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700