用户名: 密码: 验证码:
船舶与海洋结构物阴极保护电位数值仿真与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国船舶工业的迅速发展,船舶与海洋结构物日渐趋于大型化和复杂化,这对阴极保护系统的防护有效性也提出了更高的要求。因而寻求实用有效的船舶与海洋结构物阴极保护电位预报与优化设计方法对船舶与海洋工程的发展具有重要意义。
     在传统的阴极保护工程设计中,大多采用实际测量或经验估计来获得保护电位分布。实际测量虽然直观、可靠性高,但由于时空、环境等因素的限制往往施工困难,费用昂贵,依靠经验估计也在某种程度上不能保证结果的准确性。近年来计算机的出现和数值仿真技术的兴起,为科学预报、评估和优化船舶与海洋结构物阴极保护系统提供了全新的技术手段。数值仿真方法具有快捷、经济、获得数据全面、结果直观等优点,因此本文研究船舶与海洋结构物的阴极保护电位数值仿真和优化设计具有重要的理论意义和工程实用价值。
     本文首先研究了应用传统公式进行船舶与海洋结构物阴极保护方案的初步设计方法。根据船舶与海洋结构物结构特点、营运环境和材料的电化学特性,选取阴极保护方法和主要设计参数——保护电位和保护电流密度,由结构图纸或计算公式得出保护面积,进而确定辅助阳极或牺牲阳极的类型和数量,最终得出满足腐蚀防护目标要求的阴极保护初步方案。为后续章节的阴极保护电位数值仿真和优化设计奠定基础。
     本文采用三维边界元方法求解阴极保护数学模型,通过引入分段拟线性化方法处理边界条件的非线性问题,建立线性方程组并求解,最终应用FORTRAN语言实现自主开发阴极保护电位数值仿真软件。该软件克服了以往商业软件中存在的仿真模型建立方式唯一和模型不具有通用性的缺陷,仿真结果输出形式多样,可对多种阴极保护方法的保护电位进行数值仿真,便于操作和工程实际应用。通过将软件计算结果与实验值比较,验证了软件计算方法的可行性和计算结果的准确性。应用该软件对本文设计的9200TEU集装箱船外加电流阴极保护系统和400ft自升式钻井平台牺牲阳极阴极保护系统的保护电位进行仿真预报,可得出详细准确全面的电位分布计算结果。本文根据工程实际应用经验,提出仿真计算的建模流程和边界条件设定方法。在9200TEU集装箱船外加电流阴极保护电位仿真过程中,采用在极化曲线中保持电位不变,改变电流密度的方法实现模拟涂层破损率。在400ft自升式钻井平台牺牲阳极阴极保护电位仿真过程中,采用分块边界元方法解决计算中电解质不一致问题,提出分区域建模方法解决电解质不连续问题,通过将模型整体电位分布计算中获得的内面电位值作为边界条件加载到计算结构相贯区域电位分布模型中相对应的内面节点上,得到自升式平台复杂节点保护电位分布。分析计算结果得出:400ft自升式钻井平台牺牲阳极阴极保护初步方案合理可行,9200TEU集装箱船外加电流阴极保护初步方案还需进行优化。
     鉴于大型船舶根据计算公式设计外加电流阴极保护方案时在细节方面易存在不足,导致部分区域出现保护不足和过保护,本文分别以保护电位均匀分布和阳极输出电流最小为优化目标,以阳极输出电流为优化参数,将模拟退火算法与边界元方法相结合,编写阴极保护优化设计软件。通过控制冷却进度表,该软件实现了优化过程可控。通过将船舶优化后保护电位分布与优化前对比,分析得出应用本文的优化方法可提高阴极保护电位分布的均匀性和保护方案的经济性,降低析氢反应概率,应用该方法所编写的软件具有较高的优化效率。
With the rapid development of China's shipping industry, ship and ocean structureincreasingly tend to be more and more complicated, which put forward higher request for theeffectiveness of cathodic protection system. Thus seeking practical and effective cathodicprotection potential prediction and optimization method of ship and ocean structures is ofgreat significance to the development of ship and ocean engineering.
     Traditional cathodic protection design mostly adopts measures or experience to estimatepotential distribution. Actual measurement, while intuitive, high reliability, because of timeand space and environmental factors limit, is often constructed difficulty and expensive.Estimates based on the experience to some extent also cannot guarantee the accuracy of theresults. In recent years the rise of the computer and the numerical simulation technologyprovides a new technical method to the prediction, evaluation and optimization of cathodicprotection system of ship and ocean structures. Numerical simulation method is quick andeconomy, so this article’s research has important theoretical significance and engineeringpractical value.
     At first, this paper applied traditional formula to design ship and ocean structurepreliminary cathodic protection scheme. According to the structure mode and operatingenvironment and electrochemical properties of the ship and ocean structures, selectedprotection method and main parameter of cathodic protection design——protection potentialand protection current density. Obtained protection area by structure drawings or formula, andthen determined the types and number of auxiliary anode or sacrificial anode. Finallyconclude preliminary scheme which satisfies the requirement of corrosion protection goals.The above work lays the foundation for numerical simulation and optimization of cathodicprotection.
     This paper used the three-dimensional boundary element method to calculate themathematical model of cathodic protection. Introduced piecewise quasi linearized method todeal with nonlinear problem of boundary conditions. Established linear equations and solve it.Finally applied FORTRAN language to development numerical simulation software forpredicts cathodic protection potential. The software has flexible modeling mode and variousresults output forms, and is advantageous for the operation and practical engineering applications. Compared with experimental data, the results calculated by the software areaccuracy. Applied the software to forecast protection potential of9200TEU container shipimpressed current cathodic protection system and400ft jack-up drilling platform sacrificialanode cathodic protection system, and get accurate results. Put forward the modeling processand the boundary condition setting method according to the engineering applicationexperience. Adopt the method that keep the potential unchange in the polarization curve, andchange current density to simulate coating breakage in simulation process of9200TEUcontainer ship impressed current cathodic protection. Adopt block boundary element methodto solve electrolyte continuous problem and points regional modeling to solve electrolyteinconsistency in400ft jack-up drilling platform sacrificial anode cathodic protection. Themodel loaded into the inside potential value obtained in the calculation of whole area interiorsurface corresponding to the nodes in the model as boundary condition, jack-up platformcomplex node protection potential distribution was obtained. From the results we canconcluded that the400ft jack-up drilling platform sacrificial anode cathodic protection systemmeet the protection targets and the9200TEU container ship impressed current cathodicprotection system needed optimized.
     With that evenly distributed protection potential and minimum anode output current asoptimize targets, and the anode output current as optimize parameters, combine simulatedannealing algorithm and boundary element method to achive the ship’s cathodic protectiondesign optimization. By controlling the cooling schedule, this software realized theoptimization of process control. Adopt numerical simulation methods to calculate cathodicprotection potential of before and after optimization, and through analysis the potentialcontours of the ship drawn that the methods are feasible and efficient.
引文
[1]孙吉星.海洋结构物阴极保护优化模型及数值计算[D].中国海洋大学硕士学位论文,2006,5.
    [2]向斌,吴丹刚,刘建武.100%固体份刚性聚氨酯重防腐涂料及其在海洋工程中的应用[J].水运工程,2005,6.
    [3]许立坤,王朝臣.我国海洋腐蚀与防护领域发展展望[J].海洋科学,2007,2.
    [4] http://baike.baidu.com/view/35235.htm
    [5] RINA. Derbyshire-The search, assessment and survey[A].The Naval Architect, TheRoyal Institution of Naval Architectures,1996,5,44-48P.
    [6] Paik JK. Time-variant ultimate longitudinal strength of corroded bulk carriers[J]. MarineStructure,2003, Vol.16:567-600P.
    [7] http://www.ciata.org.cn/hyzl/cjdf.html
    [8] http://www.ciata.org.cn/hyxw/2011/1107/mjjh.html
    [9]苏南.海洋工程装备迎来历史性发展机遇[J].中国能源报,2011,9.
    [10]衣正尧.一种船舶企业创新团队的建立方案探讨[J].中国水运,2011,12.
    [11]任振铎,董德岐.创建大防腐工作体系,推动行业跨越式发展[J].全面腐蚀控制,2010,10.
    [12] W.v.贝克曼, W.施文克, W.普林兹.阴极保护工程手册.第三版[M].北京:化学工业出版社,2005.
    [13]兰志刚.海洋石油平台导管架阴极保护数值仿真研究[D].中国科学院博士学位论文,2012,4.
    [14]王巍.几种金属在海水中阴极保护数值计算及瞬态激励影响研究[D].中国科学院博士学位论文,2011,5.
    [15]董宇.船舶海水管路防腐技术研究[D].大连理工大学学士学位论文,2002.
    [16]候保荣.腐蚀研究与防护技术[M].北京:海洋工业出版社,1998.
    [17]龙学渊.埋地管线阴极保护站输出参数调整研究[D].西南石油大学硕士学位论文,2007,4.
    [18]魏宝明主编.金属腐蚀理论及应用[M].化学工业出版社,1984.
    [19]胡舸.海底管线腐蚀检测与腐蚀预测的研究[D].重庆大学博士学位论文,2007,3.
    [20]夏炳仁.船舶及海洋工程结构物的腐蚀与防护[M].大连海运学院出版社,1993.
    [21] Degiorgi V G, Wimmer S A. Geometric details and modeling accuracy requirements forshipboard impressed current cathodic protection system modeling[J]. EngineeringAnalysis with Boundary Elements,2005,29:15-28P.
    [22] Degiorgi V G, Thomas E D, Lucas K E. Scale effects and verification of modeling ofship cathodic protection systems[J]. Eng Anal Bound Elem,1998,22:41-59P.
    [23] Zamani N G. Boundary element simulation of the cathodic protection system in aprototypic ship[J]. Appl Math Comput,1988,26:119-134P.
    [24] Bialecki R A, Ostrowski Z, Kassab A J, etal. Coupling BEM, FEM and analyticsolutions in steady-state potential problems[J]. Eng Anal Bound Elem,2002,26:597-61P.
    [25] Douglas P R, Mark E O. A mathematical model for the cathodic protection of tankbottoms [J]. Corrosion Science,2005,47:849-86P.
    [26] Santiago J A F, Tells J C F. A solution technique for cathodic protection with dynamicboundary conditions by the boundary element method[J]. Advances in EngineeringSoftware,1999,30:663-671P.
    [27] Hassanein A M, Glass G K, Buenfeld N R. Protection current distribution in reinforcedconcrete cathodic protection systems[J]. Cement&Concrete Composition,2002,24:159-167P.
    [28] Kranc S C, Alberto A S. Detailed modeling of corrosion macrocells on steel reinforcingin concrete [J]. Corrosion Science,2001,43:1355-1372P.
    [29]邱枫,徐乃欣.用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布[J].中国腐蚀与防护学报,1997,17(2):106-110页.
    [30]张鸣镝,杜元龙等.有限差分法计算海底管道阴极保护时的电位分布[J].中国腐蚀与防护学报,1994,14(1):77-81页.
    [31]刘曼,殷正安,战广深.流动场管内阴极保护的电位分布计算[J].大连理工大学学报,1998,38(5):599-302页.
    [32]翁永基.阴极保护设计中的模型研究及其应用[J].腐蚀科学与防护技术,1999,11(2):99-111页.
    [33]杜艳霞,张国忠,李蓉蓉.阴极保护电位分布数值计算的研究进展[C].全国腐蚀电化学及测试方法学术会议论文集,2006,5.
    [34] Degiorgi.V.G, Wimmer.S.A. Geometric details and modeling accuracy requiremen forshipboard impressed current cathodic protection system modeling[J]. EngineeringAnalysis with Boundary Elements,2005,29:15-28P.
    [35] R. G. Kasper, M. G. April. Electrogalvanic finite element analysis of partially protectedmarine structures[J]. Corrosion,1983,39(5):181-188P.
    [36] Fu J W. A Finite Element Analysis of Corrosion Cells.[J]. Corrosion,1982, Vol.38, No.5, pp.295-296.
    [37] Hassanein.A.M, Glass.G.K, Buenfeld.N.R. Protection current distribution reinforcedconcrete cathodic protection systems[J]. Cement&Concrete Compositio,2002,24:159-167P.
    [38]邱枫,徐乃欣.用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布[J].中国腐蚀与防护学报,1997,17(2):106-110页.
    [39]邱枫,徐乃欣.码头钢管桩阴极保护时的电位分布[J].中国腐蚀与防护学报,1997,17(1):12-18页.
    [40]邱枫,徐乃欣.钢质贮罐底板外侧阴极保护时的电位分布[J].中国腐蚀与防护学报,1996,16(1):29-36页.
    [41]杜艳霞,张国忠.储罐底板外侧阴极保护电位分布的数值模拟[J].中国腐蚀与防护学报,2006,26(6):346-350页.
    [42]杜艳霞,张国忠.阴极保护电位分布的数值计算[J].中国腐蚀与防护学报,2008,28(1):54-56页.
    [43]杜艳霞,张国忠.金属储罐底板外侧阴极保护电位分布的数值模拟[J].金属学报,2007,43(3):297-302页.
    [44]杜艳霞,张国忠,刘刚.储罐外侧深井阳极阴极保护电位分布规律研究[J].电化学,2006,12(1):55-59页.
    [45] J.A.Klingent, S.Lynn, C.W.Tobias. Electrochimica Acta[J]. Corrosion, Vol.9,1964,297-311P.
    [46] Fleck, R.N. MSC Thesis, Numerical Evaluation of Current Distribution in ElectricalSystems[A]. MSC Thesis, University of Caliofrnia, Sept1964.
    [47] Helle, Beek G.H.M, Ligtelijn J.T.H.. Numerical Determination of Potential Distributionsand Current Densities in Multi-Electrode Systems[C]. Corrosion/NACE,1981,37(9):522-530P.
    [48] Strommen, R.D. Computer modeling of Cathodic Protection Systems Utilised in CPMonitoring[C]. OTC4357, Houston.
    [49] Roe Strommen, Arild Rodland. Computerized Techniques Applied In Design OfOsffhore Cathodic Protection Systems[J]. Materials Perofrmance,1981(4):15-20P.
    [50]钱海军,刘小光,张树霞,陶永顺,肖世猛.管内阴极保护的数值模拟(II)—有限差分法计算大口径管内的电位分布[J].化工机械,1997, Vol.24No.5,281-283页.
    [51]吴建华,云风玲,邢少华,姚萍,闫永贵.数值模拟计算在舰艇阴极保护中的应用[J].装备环境工程,2008,6.
    [52] Raymond S. Munn. A Mathematical model for a Galvanic Anode Cathodic ProtectionSystem[J]. Materials Performance, August1982,29-36P.
    [53]陈世一,吴先策,江国业.管道强制电流阴极保护电流和电位计算的数值方法[J].石油化工高等学校学报,2008, Vol.21No.3,75-78P.
    [54]王在峰,孙虎元,孙立娟.海水中A3钢样阴极保护电化学场的二维有限元计算[J].海洋科学,2006, Vol.30No.7,37-42页.
    [55]王巍,孙虎元,孙立娟,王顺,李红玲.海水中阴极保护35钢有限元模拟研究[J].腐蚀与防护,2009,7, Vol.30No.7,462-465页.
    [56] Fu.J.W and Chow.J.S. Cathodic Protection Designs Using an Integral EquationNumerical Method[J]. Corrosion,1982:163-169P.
    [57] Danson, D.J., Wanre, M.A. Current Density/Voltage Calculations using BoundaryElement Techniques[C]. NACE Conference, Los Angeles, USA,1983.
    [58] Adey R.A. and Niku S.M. Computer modeling of corrosion using the boundary elementmethod[J]. Computer Modeling in Corrosion, STP-1154, Philadelphia, PA: AmericanSociety for Testing and Materials,1992:248-264P.
    [59] R.A. Adey, C.A. Brebbia, S.M.Niku. Application of Boundary Elements in CorrosionEngineering[J].Topics in Boundary Elements Research, ed C.A. Brebbia, Vol.7(Berlin,Germany: Springer-Verlag,1990),.34.
    [60]王秀通.海水和海泥中阴极保护系统的边界元计算[D].中国科学院研究生院博士学位论文,2005.
    [61]胡舸,向斌,张胜涛.MATLAB在海底管线阴极保护电场计算中的应用[J]. MarineSciences,2007, Vol.31No.12,34-37页.
    [62] Carvalho.s.l.d., Telles J.C.F. On the Effect of Some Critical Parameters in CathodicProtection System[J]. Computer Modeling in Corrosion. ASTM STP1154248-264P,1992.
    [63] Telles J.C.F., Mansur W.J., Wrobel L.C., Marinho M.G. Numerical Simulation of aCathodically Protected Semi-Submersible Platform Using the PROCAT System[J].Corrosion Journal,46, pp.513-518,1990.
    [64] P.O.Gartland, R.Johnsen, Corrosion/85[J]. Paper No.319, Houston, TX (1985).
    [65] R.A.Adey, S.MNiku, C.A.Brebbia, Computer Aided of Cathodic protection System[J].Boundary Element VII, Vol.2,1985.
    [66] Aoki S., Amaya K. Optimization of cathodic protection system by BEM[J]. EngineeringAnalysis with Boundary Elements,1997,19:147-156P.
    [67] Luiz C.W., Panayiotis M. Genetic algorithms for inverse cathodic protection problems[J].Engineering Analysis with Boundary Elements,2004,28:267-277P.
    [68] Adey Robert A, BAYNHAM John. Design and Optimisation of Cathodic ProtectionSystems Using Computer Simulation[J]. Corrosion,2000:1-12P.
    [69] DIAZ E. Santana, ADEY R., BAYNHAM J. Optimising the Location of Anodes inCathodic Protection Systems[J]. Computer Aided Optimum Design of Structures,2005,VIII:175-184P.
    [70] DIAZ E. Santana, ADEY R. Optimising the Location of Anodes in Cathodic ProtectionSystems to Smooth Potential Distribution[J]. Engineering Software,2005,36:591-598P.
    [71]梁旭魏,吴中元.阴极保护系统中电流优化控制[J].天津纺织工学院学报,1999,18(1):37-40页.
    [72]何其昀.海洋工程防腐系统数值模拟优化设计技术研究[D].大连理工大学硕士学位论文,2009.
    [73]胡士信.阴极保护工程手册[M].北京:化学工业出版社,1998.
    [74]王远志.16Mn钢在土壤中的腐蚀及阴极极化行为研究[D].中国海洋大学硕士学位论文,2004,4.
    [75]火时中.电化学保护[M].北京:化学工业出版社,1998:18-26.
    [76]中国腐蚀与防护学会《金属腐蚀手册》编缉委员会.金属腐蚀手册[M].上海:上海科学技术出版社,1987:56-58.
    [77] GB8841-88《海船牺牲阳极阴极保护设计和安装》[S].国家质量技术监督局,1988.
    [78] GJB156-86《港工设施牺牲阳极保护设计和安装》[S].国防科学技术工业委员会,1986.
    [79] GJB157-86《海船牺牲阳极保护设计和安装》[S].国防科学技术工业委员会,1986.
    [80] RP0169-97《埋地或水下金属管线系统的外部腐蚀控制》[S].NACE,1997.
    [81] BS7361《阴极保护规范》[S].英国标准局,1987.
    [82] GB3108-82《船体外加电流阴极保护系统》[S].国家质量技术监督局,1982.
    [83]肖纪美.腐蚀总论[M].北京:化学工业出版社,1985.
    [84]舰船材料编辑室.舰船及海上设施阴极保护[M].船舶材料研究院,1985.
    [85]舰船材料编辑室.海洋钢结构物的腐蚀控制[M].船舶材料研究院,1985.
    [86]侯宝荣等.海洋腐蚀环境理论及其应用[M].北京:科学出报社.1999,2.
    [87] W.v.贝克曼, W.施文克, W.普林兹.阴极保护工程手册.第三版[M].北京:化学工业出版社,2005.
    [88] GB8841-88《海洋牺牲阳极保护设计及安装》[S].国家标准局.
    [89] W.弗莱特,陈丽娟.近海平台腐蚀[J].国外舰船技术,1983,12.
    [90]何亮亮.边界元法评价和优化船舶腐蚀防护方案的研究[D].大连海事大学,2008,3.
    [91]夏炳仁.船舶及海洋工程结构物的腐蚀与防护[M].大连海运学院出版社,1993.
    [92]陈岗军,陈彤.海洋平台腐蚀特点分析及涂料涂装工艺应用[J].船海工程,2010,6.
    [93] V. G. Degiorgi, S. A. Wimmer. Geometric details and modeling accuracy requirementsfor shipboard impressed current cathodic protection system modeling[J]. EngineeringAnalysis with Boundary Elements,2005,29:15-28P.
    [94] V. G. Degiorgi, E. D. Thomas, K. E. Lucas. Scale effects and verification of modeling ofship cathodic protection systems[J]. Engineering Analysis with Boundary Elements,1998,22:41-59P.
    [95] N. G. Zamani. Boundary element simulation of the cathodic protection system in aprototypic ship[J]. Appl Math Comput,1988,26:119-134P.
    [96] Robert E. Melchers. The effect of corrosion on the structural reliability of steel offshorestructures[J]. Corrosion Science,2005,47:2391-2410P.
    [97] Robert E. Melchers, Tony Wells. Models for the anaerobic phases of marine immersioncorrosion[J]. Corrosion Science,2006,48:1791-1811P.
    [98] E. Santana Diaz, R. Adey. Optimizing the location of anodes in cathodic protectionsystems to smooth potential distribution[J]. Advances in Engineering Software,2005,36:591-59P.
    [99] A. Stacey, J. V. Sharp. Safety factor requirements for the offshore industry[J].Engineering Failure Analysis,2007,14:442-458P.
    [100]J. K. Robert Wood. Erosion-corrosion interactions and their effect on marine andoffshore materials[J]. Wear,2006,261:1012-1023P.
    [101]杜艳霞.金属储罐底板外侧阴极保护电位分布规律研究[D].中国石油大学博士学位论文,2007,4.
    [102]王仲奕等编著.工程电磁场导论[M].西安交通大学出版社,2001.
    [103]赵菊梅.舰船阴极保护电磁效应数值模拟仿真研究[D].大连理工大学硕士学位论文,2005,6.
    [104]朱相荣,王相润等编著.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社,1999.
    [105]郭宇.LNG船运动与载荷计算方法研究[D].哈尔滨工程大学硕士学位论文,2010,3.
    [106]张海彬.FPSO储油轮与半潜式平台波浪载荷三维计算方法研究[D].哈尔滨工程大学博士学位论文,2004,4.
    [107]李辉.船舶波浪载荷的三维水弹性分析方法研究[D].哈尔滨工程大学博士学位论文,2009,6.
    [108]于寿海.数值模拟在阴极保护工程中的应用[J].全腐蚀控制,第12卷,第1期,1998.
    [109]曹楚南.腐蚀电化学原理(第2版)[M].北京:化学工业出版社,2004.
    [110]孙建斌.金属储罐阴极保护试验及效果分析[J].油气储运,2001,20(1):23-24页.
    [111]孙建斌.仪征泵站大罐阴极保护试验及保护效果分析[J].石油库与加油站,2001,10(1):31-32页.
    [112]邱文德.胜利浅海钢结构平台腐蚀状态自动监测系统优化研究[D].中国海洋大学硕士学位论文,2005,6.
    [113]DIAZE Santana, ADEY R. Optimisation of the Performance of an ICCP System byChanging Current Supplied and Position of the Anode[J]. Boundary Elements XXIV,2003:1-16.
    [114]孙毅.基于有记忆的模拟退火算法的放射性配电网络并联电容器的优化配置[D].四川大学硕士学位论文,2003,4.
    [115]项宝卫.结构优化中的模拟退火算法研究和应用[D].大连理工大学硕士学位论文,2004,6.
    [116]Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E. Equations of StateCalculation by Fast Computing Machines[J]. The Journal of Chemical Physics,1953,(21):1087-1092P.
    [117]Kirkpatrick S., Gelatt C. and Vecchi M. Optimization by Simulated Annealing[J].Science1983,(220):671-680P.
    [118]邢文训,谢金星编著.现代优化计算方法[M].北京:清华大学出版社,1999.
    [119]王凌著.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [120]王世初.长距离激光焊接路径规划研究[D].南京航空航天大学硕士学位论文,2007,1.
    [121]庞峰.模拟退火算法的原理及算法在优化问题上的应用[D].吉林大学硕士学位论文,2006,10.
    [122]巩峰.染料敏化太阳能电池阻抗分析[D].天津大学硕士学位论文,2007,6.
    [123]高尚.模拟退火算法中的退火策略研究[J].航空计算技术,2002年12月,第22卷,第4期.
    [124]冯玉蓉.模拟退火算法的研究及其应用[D].昆明理工大学硕士学位论文,2005,3.
    [125]林晖钢.MDLRPPD模型构建及其启发式组合优化算法研究[D].长安大学硕士学位论文,2009,5.
    [126]石小闯.基于模拟退火算法的板翅式换热器优化设计[D].华东理工大学硕士学位论文,2012,1.
    [127]http://wenku.baidu.com/view/30d31f8583d049649b6658c6.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700