用户名: 密码: 验证码:
西藏阿里高寒草原四种牧草根际促生菌资源筛选及促生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏是我国传统的五大牧区之一,是“世界屋脊”,阿里地区是世界屋脊的屋脊,主要以高原寒带草原为主,生态环境极其脆弱,对全球变化和人类活动的响应高度敏感,生态系统与环境的关系以其自身的临界性和生物独特的适应机理为基本特征,分布着特有、珍稀的生物资源。特殊的地域特点和丰富的自然资源成为了许多学者关注的热点地域,收集、研究特殊地域的微生物资源为我国生物资源的保护和开发利用有着重要的意义。
     本研究以西藏阿里地区高寒草原四种牧草(披碱草Elymus dahuricus、燕麦Avenasterilis、紫花苜蓿Medicago sativa和草地早熟禾Poa pretensis)为研究对象,采用常规分析法测定了植物根际土壤的理化性质,用选择性培养基分离了植物根际不同部位(根系较远的土壤、根表土壤、根系表面和根内)细菌和PGPR菌株的数量和分布,分析了根际养分含量与细菌数量和分布的相关性;研究PGPR菌株的固氮、溶磷和分泌IAA等促生特性,筛选优良菌株并进行了鉴定,同时测定了优良菌株在披碱草根际的定殖能力及对生长的影响,并研究了溶磷菌的溶磷机理,主要研究结果如下:
     1.不同植物根际土壤理化性质、细菌和PGPR菌株数量及分布差异显著
     四种植物根际土壤养分含量较低,土壤总体有效养分的供给能力较弱,并且不同植物根际养分含量、分布细菌的数量差异显著,植物根际土壤的理化性质和养分含量与细菌的数量间存在一定的相关性。四种供试植物根际分离到PGPR菌株222株,其中,固氮菌71株、溶解无机磷菌株73株和溶解有机磷菌株78株。PGPR菌株的数量表现出“根表>根表土>远根土>根内”的分布趋势,表现出强烈的根际效应。
     2.PGPR菌株促生特性各异
     采用乙炔还原法(ARA)对分离获得的71株固氮菌的固氮能力进行了测定,采用平板溶磷圈法和液培钼锑抗比色法、显色法和Salkowaki比色法对分离到的222株菌株的溶磷和分泌IAA能力进行了测定、筛选,结果表明:28株具有良好的固氮酶活性,固氮酶活性在1.08~446.63nmol C-12H4·hmL~(-1);15株具有良好的溶解无机磷的能力,D/d值在1.12~1.69,溶磷量在1.66~40.89μg/mL;32株具有良好的溶解有机磷的能力,D/d值在1.23~3.47,溶磷量在11.05~26.03μg/mL;38株具有分泌IAA的能力,分泌量在7.63~26.20μg/mL。
     3.优良PGPR菌株以假单胞属和杆菌属为主
     优良PGPR菌株16S rDNA鉴定结果表明:菌株PWXZ10、PYXP1、NXZ8、NXZ17、003PWXZ3、003NXZ4、003NXZ6、003NXZ9与Pseudomonas sp.具有很高的同源性,因此鉴定属假单胞菌属;菌株PYXZ1、PWXZ6、NXZ4与Pseudomonas fluorescens具有很高的同源性,因此鉴定为荧光假单胞菌;菌株PWXZ23、NXP17与Bacterium具有很高的同源性,因此鉴定属杆菌属。
     4.优良PGPR菌株可在植物根际成功定殖,对植物促生效果显著
     选择优良PGPR菌株26株(溶磷菌17株,固氮菌9株)制备接菌剂,进行了接种试验,结果表明:PGPR接菌处理后披碱草的的株高、地上和地下植物干重显著高于对照,各菌株接菌处理后对披碱草根系性状的影响差异显著(P<0.05),其中,菌株003PWXZ6、NXP17处理后对植株的株高的促进作用最为明显;菌株PYXP1、 NXP17处理对植株的地上、地下植物干重及总干重增加最显著;菌株PWXZ10、003NXZ5处理的根冠比最高;菌株PYXZ7、NXZ9处理对根系平均直径的影响最大;菌株003NXZ5接菌处理后,植株的根总长、根表面积、根体积均最大。各菌株处理对披碱草根系不同直径段植株根总长、根表面积、根体积及其分布的影响也各有不同,菌株PYXZ19处理根系直径大于0.45mm和菌株NXZ16处理根系直径大于0.15mm的根长、根表面积、根体积所占比例最高。供试菌株能在披碱草根际成功定殖,对披碱草地上、地下部分和整株磷、氮含量和植株地上部分粗蛋白含量的影响差异显著(P<0.05),菌株003PWXZ6处理植株地上、地下及部分及整株的含磷量最高,菌株NXP17处理植株地上、地下部分及整株的氮含量和植株地上部分粗蛋白含量最高。综合分析接菌处理对各指标的影响,菌株003PWXZ6、NXP17、PYXP1、PWXZ10、003NXZ5、PYXZ7、NXZ9等菌株具有研制微生物肥料的潜质。
     5.溶磷菌株溶磷机理存在多样性
     选择6株溶磷菌株进行液培处理,分别在第2、4、6、8、10d,采用钼锑抗比色法、pH计法、3,5-二硝基水杨酸法、磷酸苯二钠比色法和高效液相色谱法,动态测定了各处理培养液的有效磷含量、pH的变化、蔗糖酶的活性、磷酸酶的活性、有机酸的种类和含量,并分析有效磷的含量和其他各指标间的相关性,结果表明:培养第10d时PKO和蒙金娜培养液有效磷含量与pH值间均呈现线性相关(P<0.01)。在各处理培养10d内,蒙金娜培养液各处理的蔗糖酶活性较在PKO培养液高,菌株PWXZ6在PKO培养液和菌株PYXZ23在蒙金娜培养液有效磷含量与蔗糖酶活性间存在一定的正相关性(P<0.05)。培养液有效磷含量与磷酸酶活性间存在正相关关系,但各处理有效磷含量与磷酸酶活性间的相关性差异显著。各菌株在培养期间均能分泌一定量的乳酸、甲酸、乙酸、柠檬酸、酒石酸、草酸、苹果酸、富马酸、丁二酸等,但菌株不同,分泌的有机酸的种类和数量差异较大。在培养期间各菌株分泌有机酸总量动态变化呈先增加后减少,再增加再减少的变化趋势。
     6.溶磷菌株溶磷途径存在多样性
     本研究供试菌株中,菌株PYXZ1在溶解无机磷时的主要途径是溶液的pH的降低和磷酸酶的作用,菌株PWXZ10的主要溶磷途径是溶液的pH的降低的作用,菌株PWXZ6的主要途径是溶液的pH的降低、蔗糖酶、磷酸酶和有机酸的共同作用,菌株PYXZ3的主要途径是溶液的蔗糖酶、磷酸酶和有机酸的共同作用。
Tibet, one of the five major traditional pastoral areas of China, is named by "the roofof the world". However, Ali region is the roof of the roof of the world with vast grassland,used as the main substance basis of grassland animal husbandry development Ali region.Mainly plateau frigid desert grassland and ecological environment is fragile, is highlysensitive to the response of the global change and human activities, ecosystem and theenvironment relations to its criticality and the unique biological adaptation mechanism asthe basic characteristics, there are unique, rare biological resources. There has become afocus of many scholars because of its special geographical features and abundant naturalresources. Research on special geographical microbial resources laid the foundation forresources protection and resources application.
     In present paper, the physicochemical properties of plant rhizosphere soil from fourdominant forages (Elymus dahuricus, Avena sterilis, Medicago sativa and Poa pretensis) inAli region, Tibet, was measured using routine analysis method. The number anddistribution of bacteria and PGPR (plant growth promoting rhizobacteria) was determinedand analyze the correlation between the nutrient content of rhizosphere and number anddistribution of bacteria. The PGPR strains were selected and identified based on themeasurement of nitrogen fixation capacity, phosphate-solubilization capacity and IAAsecretion capacity. The potential PGPR were used for in vitro inoculation experiment andpot inoculation experiment, respectively in order to study the effects of PGPR on thegrowth parameters of Elymus and colonization activity in the rhizosphere of Elymus, andexplore the phosphorus-solubilizing mechanisms of several strains. The results wereobtained as follows:
     1. Different plant rhizosphere soil physical and chemical properties, the number ofbacteria and PGPR strains and significant distribution differences
     The nutrient content of four plant rhizosphere soils was low, the supply ability of totaleffective soil nutrient was weak, and significant difference was detected for nutrientcontent and the number of distribution in the rhizosphere of different plants, there was acorrelation between soil physical and chemical property of rhizosphere, nutrient contentand the number of bacteria. There were222strains of PGPR were isolated from therhizosphere of four tested plants, consist of71strains nitrogen fixing bacteria,73strains soluble inorganic phosphorus strains and78strains dissolving organic phosphorus strains.The number of bacteria was presented as RS (root soil)> NRS (soil away from roots)> RP(rhizoplan or surface of roots)≧HP (histoplan or interior of roots), having an obviousrhizosphere effect.
     2. PGPR strain grows characteristic difference was different
     The nitrogen fixation ability of71azotobacter strains were determined by using theacetylene reduction assay method (ARA) while the phosphorus-solubilizing activity andIAA secretion capacity of222strains were measured and screened base onphosphate-solubilizing ring method, molybdenum blue method, Salkowski colorimetrymethod. The results indicated that28strains had good nitrogenase activity, which variedfrom1.08to446.63nmol C2H4·h-1mL-1;15strains have good ability of dissolvinginorganic phosphorus, the values of D/d were between1.12and1.69and the amount ofdissolved phosphorus in1.66-40.89μg/mL while32strains can dissolve organicphosphorus, the values of D/d were between1.23and3.47and the amount of dissolvedphosphorus in11.05-26.03μg/mL;38strains have the ability to secreting IAA, itssecretion was in7.63-26.20μg/mL.
     3. Good PGPR strain mainly were the bacteria belong to the pseudomonas andbacillus genus
     The potential PGPR were identified based on16s rDNA, the results showed that eightstrains (PWXZ10, PYXP1, NXZ8, NXZ17,003PWXZ3,003NXZ4,003NXZ6,003NXZ9),having high homology with Pseudomonas sp., were identified as Pseudomonas genus;Strain PYXZ1, PWXZ6, NXZ4have high homology with Pseudomonas fluorescens,therefore identified them as Pseudomonas fluoresceut while Strain PWXZ23, NXP17wereidentified as bacillus genus for having a very high homology with Bacterium.
     4. Good PGPR strains in plant rhizosphere colonization, the success of plant growseffect were remarkable
     Inoculants, composed of17stains soluble phosphorus bacteria and9strainsazotobacter were used for inoculation experiment. The results indicated that the height,aboveground biomass and underground biomass of Elymus dahuricus treated by PGPRinoculants were significantly higher than that of control (CK), different inoculants hadsignificant effect on the root parameters of Elymus dahuricus (P<0.05). Strains003PWXZ6, NXP17had the most obvious promoting effect on plant height while PYXP1 and NXP17had positive effect on aboveground biomass, underground biomass and totalweight. The root shoot ratio of PWXZ10and003NXZ5were the highest while StrainPYXZ7and NXZ9had the maximum root volume. Root length, root surface area, rootvolume of plant treated by PYXZ19were maximum. The effects of different stains on totalroot length, root surface area, root volume and their distribution were different, there is thehighest ratio among plant root length, root surface area, root volume between strainPYXZ19treatment root diameter greater than0.45mm and strain NXZ16treatment rootdiameter greater than0.15mm. Strains can be successful colonization on the rhizosphereof Elymus dahuricus, and had a significant impact on the phosphorus, nitrogen content ofaboveground, underground part and the whole plant and protein content of abovegroundpart (P<0.05), the phosphorus content of aboveground, underground part and the wholeplant after inoculating003PWXZ6was the highest while NXP17had the highest nitrogencontent of aboveground, underground part and the whole plant and protein of abovegroundpart. Therefore, the comprehensive analysis of all parameters confirmed that these strains(003PWXZ6、NXP17、PYXP1、PWXZ10、003NXZ5、PYXZ7、NXZ9) had the potentialto produce biofertilizer.
     5. Mechanism of dissolving phosphorus strains were diverse
     Six solubilizing phosphorus bacteria were cultivated in liquid LB medium, theavailable phosphorus content, change of pH and sucrase activity, phosphatase activity, thetype and content of organic acid of culture solution were detected in different time (2,4,6,8,10d) by using molybdenum antimony colorimetric method, pH meter method,3,5-dinitrosalicylic acid method, pyrocatechol phosphate disodium colorimetric methodand high performance liquid chromatography (HPLC) method, respectively, and analyzedthe correlation of available phosphorus content and other index. The results indicated thatthere had a linear correlation (P<0.01) between available phosphorus content and pH valuefor the10d PKO and Mengjinna liquid medium. All treatments training within10d, thesucrase activity of PKO were superior to that of Mengjinna, strain PWXZ6in PKO brothand strain PYXZ23in Mengjinna broth had certain positive correlation between availablephosphorus content and sucrase activity(P<0.05). Meanwhile, there had a significantlypositive correlation relationship between available phosphorus content and phosphataseactivity of broth. All the strainscultured in broth can secrete a certain amount of lactic acid,formic acid, acetic acid, citric acid, tartaric acid, oxalic acid, malic acid, fumaric acid, succinic acid, etc., however, the type and amount of organic acid depended on strain.During cultivation period, the dynamic change of total organic acid secreted by strains wasbimodal curve.
     6. Soluble phosphorus strains of dissolving phosphorus approaches were diverse
     In this study, strains PYXZ1when dissolved inorganic phosphorus is the main way toreduce the pH of solution and the role of phosphatase, strain PWXZ10the main way ofdissolving phosphorus was to reduce the pH of solution, strain PWXZ6the main way is toreduce the pH of solution, the common role of sucrase, phosphatase, and organic acids,strain PYXZ3solution was the main way of the combination of sucrase, phosphatase, andorganic acids.
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999.
    [2]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2001.
    [3]蔡磊,李文鹏,张克勤.高效解磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究[J].土壤通报,2002,33(1):44-46.
    [4]蔡苗,彭方仁,陈隆升,陈永忠.油茶根际高效联合固氮菌的初步鉴定[J].应用研究,2011,25(5):62-64.
    [5]崔宗均,苏宝林,海伟力,等.北方水稻田固氮细菌资源的研究[J].中国农业大学学报,1996,(3):64-80.
    [6]程宝森,房玉林,刘延林,等.渭北旱塬葡萄根际解磷细菌的筛选及其对葡萄促生效应研究[J].西北农业学报,2009,4:185-190.
    [7]陈廷伟.钾细菌[M].北京:农业出版社:1959.
    [8]陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志,2000,20(1):38-41.
    [9]戴梅,宫象辉,丛蕾等.PGPR制剂研发现状与发展趋势.山东科学,2006,19(6):45-48.
    [10]董彩霞,董圆圆,王建,等.统一流动相测定植物体内12种有机酸和维生素C的高效液相色谱法[J].土壤学报,2005,42(2):331-335.
    [11]杜立新,冯书亮,曹克强等.枯草芽抱杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究[J].河北农业大学学报,2004,27(6):80-82.
    [12]窦新田.生物固氮[M].北京:农业出版社,1989.146-149.
    [13]冯瑞章,姚拓,周万海,等.溶磷菌和固氮菌荣解磷矿粉时的互作效应[J].生态学报,2006,26(8):2764-2769.
    [14]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525-530.
    [15]高旭升,田种存,郝学宁,等.三江源区高寒草原草地不同退化程度土壤养分变化[J].青海大学学报,2006,24(5):37-40.
    [16]高安社,郑淑华,赵萌莉,等.不同草原类型土壤有机碳和全氮的差异[J].中国草地,2005,27(6):44-48.
    [17]顾小平,吴晓丽.毛竹及浙江淡竹根际固氮的研究[J].林业科学研究,1994,7(6):618-623.
    [18]海伟力,潘佩平,朱世琴等.两种联合固氮菌剂对玉米的拌种实验[J].山西农业科学,1999,27(3):48-50.
    [19]韩文星,姚拓,席琳乔,等.PGPR菌肥制作及其对燕麦生长和品质影响的研究[J].草业学报,2008,17(4):75-84.
    [20]海伟力,王耀东,尤崇邵.水稻根际固氮细菌的研[J].微生物学报,1993,33(2):79-85.
    [21]郜春花,王岗,董云中,等.解磷菌剂盆栽及大田施用[J].山西农业科学,2003,31(3):40-43.
    [22]胡小加,江木兰,张银波.巨大芽孢杆菌在油菜根部定殖和促生作用的研究[J].土壤学报,2004,41(6):945-948.
    [23]胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966.
    [24]胡炳福. PGPR及其在我国林业上应用研究[J].贵州林业科技,2004,28(2):41-47.
    [25]湖北省微生物研究所生物固氮组.玉米根际固氮细菌的研究[J].微生物学报,1979,19(2):160-165.
    [26]郝晶,洪坚平,刘冰,等.石灰性土壤解磷细菌菌株分离、筛选及组合[J].应用与环境生物学报,2006(3):404-408.
    [27]何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响[J].土壤学报,1990,27(4):377-383.
    [28]黄伟,黄欠加,胡蜂,等.红壤溶磷菌的筛选及溶磷能力的比较[J].生态与农村环境学报,2006(3):37-40.
    [29]国辉,毛志泉,刘训理.植物与微生物互作的研究进展[J].中国农学通报,2011,27(9):28-33.
    [30]顾小平,吴晓丽.接种固氮菌对毛竹实生苗生长影响[J].林业科学研究,1999,12,(1):7-12.
    [31]顾小平,吴晓丽,汪阳东.几种丛生竹根际固氮的研究[J].林业科学研究,2001,14(1):28-34.
    [32]李勇,黄小芳,丁万隆.根系分泌物及其对植物根际土壤微生态环境的影响[J].华北农学报(增刊),2008,23:182-186.
    [33]李永吉,吴绍于,杨胜坤等.应用PGPP接种剂培育马尾松壮苗和沾根造林.贵州林业科技,1996,24(3):49-52.
    [34]李永兴,王继文,李久蒂等.玉米根际联合固氮菌57-7菌株的基本特性的研究[J].微生物学报,1993,33(6):151-158.
    [35]李艳琴,赵春贵,梁丽韫,等.能产生植物抗性诱导蛋白harpin的自生工程固氮菌的构建[J].高技术通讯,2000,(7):20-23.
    [36]李凤霞,梁锦秀,周涛.宁夏产枸杞根际溶磷菌分离及溶磷能力分析[J].植物资源与环境学报,2006(3):29-32.
    [37]李凤霞,张德罡,姚拓.燕麦根际促生菌特性研究[J].草业学报,2005,2(14):58-62.
    [38]李凤汀,刘容昌,杨则媛等.32P标记玉米联合固氮菌在植株内分布的研究[J].土壤,1997,6:263~295.
    [39]廖金凤.海南地带性土壤微量元素含量及其地理分布[J].地域性研究与开发,2003,22(3):66-68.
    [40]林敏,尤崇杓.根际固氮作用的研究进展[J].植物生理通讯,1992,28(6):310-313.
    [41]林葆,李家康,黄照愿.中国肥料.上海:上海科学技术出版社,1994:13-32.
    [42]林启美,赵海英,赵小蓉.4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002,29(6):24-28.
    [43]林启美,饶正华,孙焱鑫,等.一株胶质芽孢杆菌RGBc13的解磷解钾作用[J].华北农学报,2000,15(4):116~119.
    [44]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报,2001,28(2):26-301.
    [45]林凡,王正芳,宋末,等.联合固氮菌的应用效益与增产机理[J].中国农学通报,1998,14(3):32~34.
    [46]刘江,黄学跃,李天飞,等. VA菌根真菌与根瘤菌双接种对烟苗生长的影响[J].烟草科技栽培与调制,2000(2):43-441
    [47]刘荣昌,汪文燕,李凤汀,等.谷子根系固氮菌分离及初步应用[J].微生物学报,1989,29(4):303-306.
    [48]刘荣昌等.生物钾肥在农业生产中的作用[J].1995年全国微生物肥料专业会议论文集,1995,121-125.
    [49]刘荣昌,李凤汀,李春辉等.小麦接种联合固氮菌增产效果研究[J].华北农学报,1989,4(3):74~80.
    [50]刘育红.三江源地区不同退化程度草地土壤微量元素含量研究[J].西北农业学报,2007,16(4):101-105.
    [51]刘青海.六株溶磷菌与四株固氮菌互作效应及其菌剂对苜蓿促生效果研究[D].甘肃:甘肃农业大学硕士学位论文,2011.
    [52]吕泽勋,李久蒂,朱至清.玉米内生固氮菌的回接分离及限菌条件下在玉米根内的定殖[J].应用与环境生物学报,2001,7(3):207-212.
    [53]陆文龙,王敬国,曹一平,等.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报,1998,35(4):493-500.
    [54]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [55]罗孝扬,蒋亚平,杨宝玉等.固氮螺菌突变株cwv-22对提高小麦固氮的初步研究[J].微生物学报,1989,29(2):137-140.
    [56]梁绍芬,姜瑞波,葛诚.微生物肥料的生产和发展及存在的问题[M].北京:中国农牧业科技出版社,1996,61-65.
    [57]莫文英.水稻根际固氮量及根系不同部位的固氮活性[J].土壤学报,1985,22(1):93-98.
    [58]马玉珍,史清亮.山西省玉米根基固氮特性研究[J].土壤肥料,1994,1:43-46.
    [59]南京农业大学.土壤农化分析(第二版)[M].北京:农业出版社,1988.
    [60]倪礼斌,施振云,陈志忠.玉米应用联合固氮菌增产效果探讨[J].上海农业科技,1999,1:62.
    [61]席琳乔,姚拓,张德罡.固氮菌对燕麦不同生育期促生作用的研究[J].草业学报,2007,16(3):38-42.
    [62]席琳乔,张德罡,姚拓.15N同位素稀释法测定燕麦根际固氮菌固氮量的研究[J].核农学报,2007,21(4):417-420.
    [63]丘明祺,卢秋雁,朱红惠,等.耐氨固氮菌分泌物对水稻秧苗生长的影响[J].微生物学通报,2002,29(4):1-4.
    [64]孙珊,黄星,范宁杰,等.一株溶磷细菌的分离、鉴定及其溶磷特性研究[J].土壤,2010,42(1):117-122.
    [65]隋文志,卢林纲,钟鄂荣,等.玉米品种和氮肥对固氮工程菌E-7接种效应的影响[J].玉米科学,2000,8(3):51-53.
    [66]沈荔花,郭琼霞,林文雄,等.加拿大一枝黄花对土壤微生物区系的影响研究[J].中国农学通报,2007,23(4):323-323.
    [67]汤春梅,陈秀蓉,姚拓,瑞军.九种根际促生菌最适培养条件初探[J].草原与草坪,2005,3:27-31.
    [68]唐勇,陆玲,杨启银等.解磷微生物及其应用的研究进展[J].天津农业科学,2001,7(2):1-4.
    [69]田颖,李宏高,牛育华,王艳.关中地区小麦根际共生固氮菌的初步研究[J].陕西科技大学学报(自然科学版),2005,1:12-17.
    [70]王小妹,袁生,常志洲,等.一株土生克雷伯氏杆菌(K.pneumoniae)溶磷能力的初步研究[J].微生物通报,2006(4):753-756.
    [71]王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556.
    [72]王光华,周可琴,金剑.不同碳源对三种溶磷真菌溶解磷矿粉能力的影响[J].生态学杂志,2004,23(2):32-36.
    [73]王庆仁,崔岩山,董艺婷.植物修复重金属污染土壤整治有效途径[J].生态学报,2001,21(1):326-327.
    [74]王术,戴俊英,王伯伦,等.有效微生物群(EM)对水稻秧苗素质的影响[J].沈阳农业大学学报,2003,34(2):81-84.
    [75]王富民,刘桂芝,张彦.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J].生物技术,1992,2(6):34-37.
    [76]王文颖,王启基,鲁子豫,等.高寒草甸土壤组分碳氮含量及草甸退化对组分碳氮的影响[J].中国科学,2009,39(5):647-654.
    [77]王子芳,曾宽容,扬一平.水稻根表固氮的研究[J].微生物学通报,1987,14(6):241-243.
    [78]翁启勇,陈庆河,赵健,等.利福平标记菌株BS1在番茄、茄子根部及土壤中的定殖动态.福建农业学报,2003,18(2):87-88.
    [79]王召娜,于雪云,杨合同,扈进冬,赵晓燕.微生物解磷机理的研究进展[J].山东农业科学,2008,2:88-91.
    [80]吴初国.我国磷矿资源形势与可持续供应的对策意见[J].化学工业,2004(4):3-5.
    [81]吴文礼,陈汉清.德克斯氏菌一新种[J].微生物学报,1990,30:243-248.
    [82]吴凡,崔萍,夏尚远,等.桑树根际解磷细菌的分离鉴定及解磷能力的测定[J].蚕业科学,2007,33(4):521-527.
    [83]许光辉,郑洪元主编.土壤微生物分析方法手册.北京:农业出版社,1986.246-248.
    [84]徐俊兵.扬州市土壤有机质和速效磷钾的分布研究[J].土壤,2004,36(1):99-103.
    [85]夏觅真,马忠友,曹媛媛,等.棉花根基固氮菌、溶磷菌及解钾菌的相互作用[J].中国微生态学杂志,2010,22(2):103-105.
    [86]辛桢凯,龚文琪,胡纯,等.溶磷微生物的选育及除磷研究[J].武汉理工大学学报,2011(1):121-124.
    [87]姚拓,龙瑞军,王刚,胡自治.兰州地区盐碱地小麦根际固氮菌分离及部分特性研究[J].土壤学报,2004,3:23-28.
    [88]姚拓,高寒地区燕麦根际固氮菌研究.草业学报,2004,13(3):85-90.
    [89]姚拓,蒲小鹏,张德罡,等.高寒地区燕麦根际联合固氮菌研究Ⅲ固氮菌对燕麦生长的影响及其固氮量测定[J].草业学报,2004,13(10):101-105.
    [90]姚拓,马丽萍,张德罡.我国草地土壤微生物生态研究进展及浅评[J].草业科学,2005,22(11):1-7.
    [91]姚槐应,黄长勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    [92]虞伟斌,杨兴明,沈其荣,徐阳春. K3解磷菌的解磷机理及其对缓冲容量的响应[J].植物营养与肥料学报2010,16(2):354–361.
    [93]杨合同,陈凯,李纪顺等.重组巨大芽孢杆菌在小麦根际的定殖及其对植物真菌病害的防治效果[J].山东科学,2003,16(3):12-17.
    [94]尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246.
    [95]尤崇杓,丘元盛.粪产碱菌与水稻幼苗的固氮作用[J].中国农业科学,1982,(6):1-5.
    [96]尤崇杓,李信,王有为.粪产碱菌的培养及其生理特[J].原子能农业应用,1983,(4):27-33.
    [97]尤崇杓.水稻根际联合固氮[M].北京:农业出版社,1990.
    [98]杨珏,阮晓红.土壤磷素循环及其对土壤流失的影响[J].土壤与环境,2001,10(3):256-258.
    [99]喻华,冯艳红,杨剑虹.土壤微量元素有效含量的提取测定方法比较研究[J].西南大学学报,2009,29(9):125-128.
    [100]于建龙,石红霄.高寒草甸不同对化程度土壤微生物数量变化及影响因子[J].西北农业学报,2011,2(11):77-81.
    [101]张宏,宋明芝,刘淑环.玉米根际固氮活力的研究[J].吉林农业科技,1980,(1):70-75.
    [102]张堃,姚拓,张德罡,辛国荣,师尚礼.不同剂型联合固氮菌肥对青稞促生效应和固氮能力研究[J].草地学报,2010,18(3):426-430.
    [103]张堃,姚拓,张德罡,等.高寒地区联合固氮菌肥对青稞的促生效应研究[J].植物营养与肥料学报,2010,16(3):708-713.
    [104]张德罡,马玉秀.草原土壤速效磷测定方法的比较[J].草业科学,1995,12(3):70-72.
    [105]张毅民,孙亚凯,吕学斌,等.高效溶磷菌株Bmp5筛选及活力和培养条件的研究[J].华南农业大学学报,2006(3):61-65.
    [106]张生楹,张德罡,柳小妮,等.开垦利用对东祁连山高寒灌丛草地土壤养分含量的影响[J].肃农业大学学报,2012,47(2):80-84.
    [107]张跃林,莫小真,廖苏华等.粪产碱菌A-15与水稻根的结合作用[J].植物生理学通讯,1984,(6):32~34.
    [108]赵小蓉,林启美,孙焱鑫.细菌解磷能力的测定方法的研究[J].微生物学通报,2001,28(1):1-4.
    [109]林启美,赵小蓉.四种不同生态环境中解磷细菌数量及种群分布[J].土壤环境,2000,9(1):34-37.
    [110]赵小蓉,林启美,李保国. C、N源及C/N比对微生物溶磷的影响[J].植物营养与肥料学报,2002,8(2):197-2041
    [111]赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003,23(3):5-7.
    [112]郑华,欧阳志云,王效科,等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1994-2002.
    [113]钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制[J].土壤学报,2004,41(6):931-937.
    [114]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报,2005(2):286-294.
    [115]朱颖.三叶草根际溶磷菌特性及其促生效果研究[D].甘肃:甘肃农业大学硕士学位论文,2009.
    [116]张英,姚拓,朱颖.复合接种剂对三叶草生长特性和品质影响研究[J].植物营养与肥料学报,2012,18(5):1277-1285.
    [117]张英,朱颖,姚拓,等.分离自牧草根际四株促生菌株(PGPR)互作效应研究[J].草业学报,2013,22(1):29-37.
    [118] Abenavoli M R, Cacco G, Sorgona A, et al. The inhibitory effects of coumarin on the germination ofdurum wheat (Triticum turgidum ssp. durum, cv. Simeto) seeds[J]. Journal of ChemicalEcology,2006,32(2):489-506.
    [119] Abd-Alla M H. Phosphatases and the utilization of organic phosphorus by Rhizobiumleguminosarum biovar viceae.let[J]. Appl.Microbiol.,1994,18:294-296.
    [120] Agnihotri VP. Solubilization of insoluble phosphates by some soil fungi isolated from nurseryseedbeds[J].Can. J.Microbiol.1970,16:877-880.
    [121] Ahuja A, Ghosh S B, D’Souza S F. Isolation of a starch utilizing, phosphate solubilizing fungus onbuffered medium and its charactization[J]. Biores. Technol.,2007(17)3408-3411.
    [122] Ali S, Hamid N, Nagina N and Malik K A. Screening of Phosphate Solublizing MicroorganismsUsing Different Original and Modified Culture Media[J]. Biologia,1998,44(102):110-122.
    [123] Amann R I, Ludwig W, Scheifer K H. Phylogenetic identification and in situ detedtion of individualmicrobial cells without cultivation[J]. Microbilogical Rrviews,1995,59:143-169.
    [124] Antoun H., Danielle Prevost. Ecology of plant growth promoting rhizobacteria[J]. Printed in theNetherlands,2005,4:1-38.
    [125] Arshad M, Frankenberger W T J. Plant Growth-promoting Substance in the Rhizosphere:MicrobialProduction and Function[J].AdvAgro,1998,(62):145-151.
    [126] Asea P E A, Kucey R M N, Stewart J W B. Inorganic phosphate solubilization by two Penicilliumspecies in solution culture and soil[J]. Soil Biol. Biochem.,1988,20:459-464.
    [127] Banchio E, Bogino P C, Zygadlo J, et al. Plant growth promoting rhizobacteria improve growth andessential oil yield in Origanum majorana L[J]. Biochem. Syst. Ecol.,2008,36:766-771.
    [128] Banik S and Dey B K. Available phosphate content of an alluvial soil as influenced by inoculation ofsome isolated phosphate-solubilizing microorganisms[J]. Plant and Soil,1982,69:353-364.
    [129] Bas W. M, Patricia T A, Michel C, et al. Pseudomonas spp.-induced systemic resistance to Botrytiscinerea is associated with induction and priming of defence responses in grapevine[J]. Journal ofExperimental Botany,2010,61:249-260.
    [130] Bashan Y and Holguin. Plant Growth-promoting Bacteria: a Potential Tool for Arid MangroveReforestation[J].Trees,2002,16:159-166.
    [131] Bashan Y, A Rojas and ME Puente. Improved Establishment and Development of Three CactiSpecies Inoculated with Azospirillum brasilense Transplanted into Disturbed Urban Desert Soil[J].Can. J. Microbiol.,1999,45:441-451.
    [132] Biswas J C, Ladha J K, Dazzo F B, et al. Rhizobial inoculation influences seedling vigor and yieldof rice[J]. Agron. J.,2000,92:880-886.
    [133] Bilal R,Malik K A.Seasonal Variation in Rhizosphereic Population of diazotrophs and RootAssociated nitrogenaseActivity of Some Wheat Mutants[J].Pak.J.Bot.,1987,19,(1):29-41.
    [134] Bilal R.Associative Biological Nitrogen Fixation in Plants Growing in Saline Soils
    [D].Ph.D.Thesis.Punjab University,Psakistan.1988.
    [135] Boddy R.M. Biological Nitrogen Fixation Associated with Sugarcane and Rice: Contribuations andProspects for Improvement[J]. Plant and Soil,1995,174:195~209.
    [136] Boddey RM,Baldani VLD,Baldani J I,et al.Effect of inoculation of Azospirillum spp. on thenitrogen assimilation of field grown wheat[J]. Plant Soil,1986,95:109-121.
    [137] Broadbent P. Bacteria and Actinomycetes Antagonistic to Fungal Root Pathogens in Australiansoil[J]. Aust J Biol Sci,1971,24:925-944.
    [138] akmak i R., Erat M., Erdog`an, U. Donmez M F. The influence of plant growth-promotingrhizobacteria on growth and enzyme activities in wheat and spinach plants[J]. J. Plant Nutr. SoilSci.2007,170:288-295.
    [139] Chen Y P, Rekha P D, Arun A B. Phosphate solubilizing bacteria from subtropical soil and theirtricalcium phosphate solubilizing abilities[J].Appl. Soil Ecol.,2006,34:33-411
    [140] Crouch L J, Smith M T, Van S J, et al. Identification of Auxins in Commercial Concentrates[J]. J.Plant Physoil.1992,139:590-594.
    [141] Deubel A, Gransee A, Merbach W. Transformation of organic rhizodeposits by rizoplane bacteriaand its influence on the availability of tertiary calcium phosphate [J]. J.Plant Nutr. Soil Sci.,2000,163:387-3921.
    [142] Dobereiner J, Marriel I E, Nery M, et al. Microbiol[M].1976.22:1464-1473.
    [143] Garcia D S,Dobereiner J.Maine Genotype Effects on the Response to AzospirillumInoculation[J].Biol Fertil Soil,1996,21:193-196.
    [144] Elizabeth P, Miguel S, Mar í a M et al. Isolation and characterization of mineralphosphate2solubilizing bacteria naturally colonizing a limonitic crust in the south2easternVenezuelan region[J]. Soil Biol.Biochem.,2007,39:2905-2914.
    [145] Elliott JM., Mathre D.E., Sands D.C. Identification and Characterization of Rhizosphere-CompetentBacteria of Wheat [J]. Appl. Environ. Microbiol.,1987,53:2793-2799.
    [146] El-komy H.M.A., Moharram T.M.M., Safwat M.S.A. Effect of Azospirillum Inoculation on Growthand N Fixation of Maize Sujected to Different Levels of FYM Using15N-Dillution Method. In:Proceedings7th int. Symp. On “Nitrogen Fixation with Nonlegumes”[C].Eds. Malik K.A., MirzaM.S. and Ladha J.K. Kluwer Publishers, The Netherlands.1998:49-59.
    [147] Esitken A, Yildiz H E, Ercisli S, et al. Effects of plant growth promoting bacteria (PGPB) on yield,growth and nutrient contents of organically grown strawberry[J]. Sci.Hortic-Amsterdam,2010,124:62-66.
    [148] Feng K, Lu HM, Sheng H J, et al. Effect of organic ligands on biological availability of inorganicphosphorus in soils. Pedosphere,2004,14(1):85-92
    [149] GB20287-2006.《农用微生物菌剂》质量标准[S].GB20287-2006.
    [150] Glick B R, Pattern C L, Houlguin G, Penrose D M. Biochemical and Genetic Mechanisms Used byPlant Growth-promoting Bacteria. Imperial College Press, London, UK.1999.
    [151] Goldstein A H, Rogers R D, Mead G. Separating phosphate from ores viabioprocessing[J].Bio.Technology,1993,l1:1250-1254.
    [152] Goldstein A H. Involvement of the quinoprotein glucose dehydrogenase in the solubilization ofexogenous phosphates by Gram-negative bacteria[A]. Torriani2Gorini A, Yagil E, Silver S.Phosphate in microorganisms: Cellular and molecular biology[M]. Washington, DC:ASM Press,1996,197-203.
    [153] Gyaneshwar P, Parekh L J, Archana G, et al. Involvement of aphosphate starvation inducible glucosedehydrogenase in soil phosphate solubilization by Enterobater asburiae[J]. FEMS Microbiol. Lett.,1999,171:223-229.
    [154] Halder A K,Mishra A K,Bhattacharyya P.Solubi1ization of rock phosphate by Rhizobium andBradyrhizobium[J].GenAppl Microbiol,1990,36:81-92.
    [155] Hafeez F Y, Malik K A. Manual on Biofertilizer Technology[M]. Pakistan: National Institute forBiotechnology and Genetic Engineering, Pakistan.2000:35-37.
    [156] Hawksworth D L. The Fungald Imension of Bildiversity: Magnitude, Siginificance andConservation[J]. Mycological Research,1991,95:641-655.
    [157] He C Y, Hsiang T and Wolyn D J. Induction of Systemic Disease and Pathogen Defense Responsesin Asparagus Officinalis Inoculated with Nonpathogenic Strains of Fusarium Infection[J]. PlantPathol,2002,51:225-230.
    [158] Hilda R, Reynaldo F. Phosphat e solubilizing bacteria and their role in plant growth promotion[J].Biot echnology Advances,1999,17:319-339.
    [159] Hoffland E, Findenegg G R, Nelemans J A. Solubilization of rock phosphate by rape II local rootexudation of organic acids as a response to P-starvation[J]. Plant Soil,1989,113:161-165.
    [160] Hong W, Adhityan A, John S. G. Modeling of phosphorus dynamics in aquaticsediments:II-examination of model performance[J].Water Research,2003,37:3939-3953.
    [161] Hussain S., Mirza M. S., Malik K.A. Production of Phytohormones by the Nitrogen Fixing BacteriaIsolated from Sugarcane (Saccharum Officinarum L.) In: Biohorizons Proceedings of First SescobConference: Biochemistry and biotechnology-its role and need in the21st Century [C]. Science,Educational&Social Council of Biochemists, University of Agriculture Faisalabad, Pakistan.1999,2(1-4):61-76.
    [162] Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forestsoil[J]. Soi1Biol Biochem,1992,24:389-395.
    [163] Illmer P, Barbato A, Schinner F. Solubi1isation of hard1y-so1ub1e AIP04with P-solubi1izingmicroorganisms[J]. Soil Biology and Biochemistry,1995,27:265-270.
    [164] Illmer P. Solubilization of inorganic calcium phosphates solubilization mechanisms[J].SoilBiol.Biochem,1995,27(3):257-263.
    [165] Janes E K. Nitrogen fixation in endophytic and association symbiosis[J]. Field Crops Research,2000,65:197-209.
    [166] Jin C W, Li G X, Yu X H, et al. Plant Fe status affects the composition of siderophore-secretingmicrobes in the rhizosphere[J]. Annals of Botany,2010,105:835-841.
    [167] Josephine E, Dixon2Hardy, Victor I Karamushka. Influence of the carbon, nitrogen andphosphorus source on the solubilization of insoluble metal compounds by Aspergillus niger [J].Mycol. Res,1998,102(9):1050-1054.
    [168] Karlidag,H., Esitken,A., Turan,M., Sahin,F. Effects of root inoculation of plant growth promotingrhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple[J]. ScientiaHorticulturae2007,114:16–20.
    [169] Kamilova F, Validov S, Azarova T, et al. Enrichment for Enhanced Competitive Plant Root TipColonizersSelects for a New Class of Biocontrol Bacteria[J]. Environmental Microbiology.2005,7(11):1809-1817.
    [170] Kelly W. D. O’. On the incidence of bovine and human viruses in human tuberculosis inIreland[J].Ireland:Transaction of the RoyalAcademy of Medicine in Ireland,1918,36(1):26-46.
    [171] Kim C H, Han S H, Kim K Y, et al. Cloning and exp rression of pyrroloquinoling quinine(PQQ)genes from a phosphate solubilizing bacterium enterobacter internedium[J]. Curr. Microbiol.,2003,47:457-461.
    [172] Kloepper J W, Rodriguez-U bana G W, Zehnder B, et al. Plan root bacterial interactions in biologicalcontrol of soilborne disease and potential extension to systemic and foliar diseases[J]. Aust PlantPathol,1999,28:21~26.
    [173] Kloepper J W and Schroth M N. Plant Growth Promoting Rhizobacteria on Radishes. In Proceedingsof the4th International Conference on Plant Pathogenic Bacteria[J]. ed. Station de PathologicVegetal et Phytobacteriologic.1978(2):879-882.
    [174] Kloepper J W, Leong J, Teintze M, et al. Enhanced Plant Growth by Siderophores Produced by PlantGrowth-promoting Rhizobacteria[J].Nature,1980,286:885-886.
    [175] Kobus J. The distribution of microorganisms mobilizing phosphorus in different soil[J]. ActaMicrobiology of Polish,1962,11:255-264.
    [176] Kohler J., Caravaca F., Carrasco L., et al. Interactions between a plant growth-promoting bacterium,an AM fungus and a phosphate-solubilising fungus in the rizosphere of Lactuca sativa.[J] AppoiedSoil Ecology,2007,35:480-487.
    [177] Kucey H H, Janzen M E, Legett. Microbially mediated increases in plant-availablephosphorus[J].Adv.Agron,1989,42:199-228.
    [178] Laheurte F., Berthelin J. Effect of a Phosphate Solubilizing Bacteria on Maize Growth and RootExudation over Four Levels of Labile Phosphorus [J]. Plant and Soil,1988,105:11~17.
    [179] Liu ST,Lee LY,Tai CY.Cloning of an Erwinia berbicola necessary for gluconic acid production andenhanced mineral phosphate solubi1ization in Escherichia coil IIB101:nucleotide sequence andprobable involvement in biosynthesis of the coenzyme pyrro1oquino1ine quinine[J].Bacterial,1992,174:5814-5819.
    [180] Luo A C,Sun X. Effect of organic manure on the biological activities associated with insolublephosphorus release in a blue purple paddy soil[J]. Commun. Soil aci. PlantAnal.1994,25:13-14.
    [181] Lucy M, Reed E., Glick B R. Applications of Free Living Plant Growth-promoting Rhizobacteria.Antonie van Leeuwenhoek,2004,86:1-25.
    [182] Mack M C, D'Antonio C M. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiianwood land[J]. EcolAppl,2003,13:154-166.
    [183] Magnusson O T, Toyama, Saeki M, et al. Structure and mechanism of pqqC, the final catalyst in theproduction of pyrroloquinoline quinine[J]. PNAS,2004,101(21):7913-7918.
    [184] Malik K. A., Rasul G., Hassan U. et al. Role of N2Fixation and Growth Hormones ProducingBacteria in Improving Growth of Wheat and Rice. In: Proceedings of6th int. Symp. On “NitrogenFixation with Non-legumes”[C]. Eds. Hegazi N.A., Fayez M, Monib M. Ismailia, Egypt.1994:409~422.
    [185] Malik K.A., Bilal R. Survival and Colonization of Inoculated Bacteria in Kallar Grass Rhizosphereand Quantification of N2-Fixation. In: Nitrogen Fixation with Nonlegumes [C]. Eds. Skinner F.A.,Bodderand R.M., Fendrik I. Kluwer Academic Publishers, The Netherlands.1989:301~310.
    [186] Mehnaz S, Mirza M S, Hassan U, et al. Detection of Inoculated Plant Growth PromotingRhizobacteria in the Rhizosphere of Rice. In: Proceedings7th int. Symp. on "Nitrogen Fixationwith Nonlegumes". Eds. Malik K.A., Mirza S.M. and Ladha J.K. Kluwer Publishers, TheNetherlands.,1998:75-83.
    [187] Meulenberg J J M, Sellink E, Riegman N H, et al. Nucleotide sequence and atructure of theKlebsiella pneumoniae pqq operon[J]. Mol. Gen Genet,1992,232:284-294.
    [188] Morris C J, Biville F, Turlin E, et al. Isolation, phenotypic characterization, and complementationanalysis of mutants of Methylobacterium extorquens AM1unable to synthesize pyrroloquinolinequinine and sequences of pqqD, pqqG, and pqqC[J]. J. Bacteriol.,1994,176:1746-1755.
    [189] Nautiyal Shekar C. An efficient microbiological growth medium for screening phosphatesolubilizing microorganisms[J]. FEMS Microbil. Lett.,1999,170(1):265-270.
    [190] Neilands J B and Nakamura K. Detection,Determination,Isolation,Characterization and Regulationof Microbial Iron Chelates.In CRC Handbook of Microbial Iron Chelates. G.Winkelmann,ed(London:CRC Press),1991:1-14.
    [191] Okon Y, Labandera-Gonzalez C A. Agronomic applications of Azospirillum: an evaluation of20years worldwide field inoculation[J]. Soil Biology and Biochemistry,1994,26:1591-1601.
    [192] Oliveira A M, Urquiaga S, Dobereiner J, et al. The effect of inoculating endophytic N2-fixingbacteria on micropropagated sugarcane plants[J]. Plant Soil,2002,242:205-215.
    [193] Orhan E, Esitken A, Ercisli S, et al. Effects of plant growth promoting rhizobacteria (PGPR) on yield,growth and nutrient contents in organically growing raspberry[J]. Scientia Horticulturae2006,110:38–43.
    [194] Palus J A, Borneman J, Ludden PW, et al. Adiazotrophie bacterial endophyte isolated from stems ofZea mays L. and Zea luxurtans Ihis and Doebley[J]. Plant Soil,1996,186:135-142.
    [195] Paul N B, Sundara Rao W V B. Phosphate-dissolving bacteria in the rhizosphere of some cultivatedlegumes[J]. Plant and Soil,1971,35:127-132.
    [196] Paul NB, Sundara Rao W V.Phosphate-dissolving bacteria in the rhizosphere of some cultivatedhegumes[J].Plant and Soil,1971,35:127-132.
    [197] Perez E, Sulbaran M, Ball M M, et al. Isolation and characterization of mineralphosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-easteinVenezuelan region[J]. Soil Boil. Biochern.,2007,39(11):2905-2914.
    [198] Petra M, Zdenko R. Contributions of rhizosphere Interactions to Soil Biological Fertility[J]. Soilbiological fertility,2003:81-98.
    [199] Prasanna N D, Vijayalakshmi K, Shaheen S K, et al. Screening and isolation of phosphatesolubilizing Pseudomonas stutzeri(EGB(3)) from gut of earthworm (Eisenia foetida): solubilizationas influence by organic acids[J]. J. PureAppl. Microbiol.,2010,4(2):717-723.
    [200] Puente M E, Holguin G, Glick B R, et al. Root-surface Colonization of Black Mangrove Seedlingsby Azospirillum halopraeferens and Azospirillum brasilense in Seawater[J]. FEMS Microbiol Ecol,1999,29:283-292.
    [201] Rao A V,Venkateswarlu B.Cereal Nitrogen Fixation[M].India: International Crops Research Institutefor the Semiarid Tropics Patancheru,1986.37-41.
    [202] Rasul G., Mirza M.S., Hassan U. et al. Inoculation, Survival and Colonization of Plant GrowthPromoting Rhizobacteria (PGPR) in the Rice Rhizosphere. In: Biohorizons [C] Proceedings of FirstSescob Conference: Biochemistry and Biotechnology-Its Role and Need in the21st Century.Science, Educational&Social Council of Biochemists, University of Agriculture Faisalabad,Pakistan.1999:107-116.
    [203] Rasul G., Mirz M.S., Latif F. et al. Identification of Plant Growth Hormones Produced by BacterialIsolates from Rice, Wheat and Kallar Grass. In: Proceedings7th int. Symp. on “Nitrogen Fixationwith Nonlegumes”[C]. Eds. Malik K.A., Mirza M. S. and Ladha J.K. Kluwer Publishers, TheNetherlands.1998:25-37.
    [204] Roos W, Luckner M. Relationships between proton extrusion and fluxes of ammonium ions andorganic acids in Penicillium cyclopium[J].J. Gen. Microbiol.,1984,130:1007-1014.
    [205] Ryder M H, McClure N C. Antibiosis in Relation to Other Mechanisms in Biocontrol byRhizobacteria In Plant Growth-promoting Rhizobacteria: Present Status and Future of an HIVgp120Envelope Glycoprotein in Complex with the CD4Recepter and a Neutralizing Humanantibody[J]. Nature,1998,393:648-59.
    [206] Sachett W G, Patto A J, Bromn C W. The solvent action of soil bacteria upon the insolublephosphates of raw bone meal and natural rock phosphate[J]. Zentralbl Bakteriol,1908,28:668-672.
    [207] Schippers B, Bakker A W, Bakker P. Interacts of Deleterious and Beneficial RhizosphereMicroorganisms and the Effect of Cropping Practices[J]. Ann. Rev. Phytopathoi.1987,25:339-358.
    [208] Seishi I, Takashi O, Mizue A, et al. Community-and Genome-Based Views of Plant-AssociatedBacteria: Plant–Bacterial Interactions in Soybean and Rice[J]. Plant&Cell Physiology,2010,51:1398-1410.
    [209] Siebner-Freibach H, Hadar Y, Chen Y. Siderophores Sorbed on Ca-montmorillonite as an IronSource for Plants[J]. Plant and soil,2003,251:115-124.
    [210] Song Y C, Li X L, Christ ie P. Uptake of organic phosphorus by Arbuscular Mycorrhizal redclover[J]. Pedosphere,2002,12(2):103-110.
    [211] Sophie B, Sandra P, Helene L, et al. Comparative analysis of defence responses induced by theendophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and thenon-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions[J]. Journal ofExperimental Botany,2011,62:595-603.
    [212] Staltrom V A. Boitrag Zur kennturs der Ein-wisking sterilerunder Garung bofindlicher organischerstrofffe auf dilloslickeit der phosphorsen des tricalcium phosphate[J]. Zel.Bskt,1908,11:724-732.
    [213] Sturz A V, Christie B, Nowak J. Bacterial Endophytes: Potential Role in Developing SustainableSystems of Crop Production[J]. Critical Reviews in Plant Science,2000,19:1-30.
    [214] Sundara Rao W V B, Sinha M K, Phosphate dissolving microorganisms in the rhizosphere and soilIndia[J].Agric Sci,1963,33(4):272-278.
    [215] Suneja T, Flanagan K H, Glaser D A. Blue-jean nickel: prevalence and prevention of its release frombuttons[J]. Dermatitis,2007,18(4):208-211.
    [216] Tripura C, Sudhakar Reddy P, Reddy M K, et al. Glucose dehydrogenase of a rhizobacterial strain ofenterobacter asburiae involved in mineral phosphate solubilization shares properties and sequencehomology with other members of enterobacteriaceae[J]. Indian J. Microbiol.,2007,47(2)126-131.
    [217] T. YAO, S. YASMIN, F. Y. HAFEEZ. Potential role of rhizobacteria isolated from NorthwesternChina for enhancing wheat and oat yield[J]. The Journal of Agricultural Science (2008),146,49–56.
    [218] Velterop J S, Sellink E, Meulenberg J M, et al. Synthesis of pyrroloquinoline quinine in vivo and invitro and detection of an intermediate in the biosynthetic pathway[J]. J. Bacteriol.,1995,177(17):5088-5098.
    [219] Villegas J, Fortin J A. Phosphorus solubilization and pH changes as a result of the interactionsbetween soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO-3as nitrogensource[J].Can. J. Bot.,2002,80:571-576.
    [220] Wang J S, Zhao L P, Feng J X. Recombination Microorganisms for Biological Control of PlantDisease[J]. In:Huang D F, eds. Genetic Engineering of Agricultural Microorganisms. Beijing:SciencePress.2001,316-408.
    [221] Xiao C Q, Chi R A, Huang X H. Optimization for rock phosphate solubilization byphosphate2solubilizing fungi isolated from phosphate mines [J].Ecol.Engin.,2008,33:187-193.
    [222] Xie G H, Cai M Y, Tao G C, et al. Cultivable heterotrophic N2-fixing bacterial diversity in ricefields[J].Biol Fertil Soils,2003,37:29-38.
    [223] Yanni Y G, Rizk R Y, El-Fattah F K, et al.The beneficial plant growth-promoting association ofRhizobium leguminosarum bv. trifolii with rice roots[J].Aust. J. Plant Physiol.,2001,28:845-870.
    [224] Yanni Y G, Rizk R Y, Corich V, et al. Natural endophytic association between Rhizobiumleguminosarum bv. trfolii and rice roots and assessment of its potential to promote ricegrowth[J].Plant Soil,1997,194:99-114.
    [225] Yi YM, Huang W Y, Ge Y. Exopolysaccharide: a novel important factor in the microbialdissolution of tricalcium phosphate [J].World J. Microbiol. Biotech.,2008,24:1059-1065.
    [226] Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystemfunction: Are there any links[J]. Ecology,2003,84:2042-2050.
    [227] ZafarY., Wahid A., Rasul E. et al. Root Associated Nitrogen Fixation by Sugarcan (Sacchanrumofficinarum L var Col-54) in Pakistan [J].Pak.J.Bot.,1986,18(2):221-228.
    [228] Zhang J, Zhou J M. Plant Immunity Triggered by Microbial Molecular Signatures[J]. MolecularPlant,2010;3:783-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700