用户名: 密码: 验证码:
混合量子系统应用于量子信息处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学是利用量子物理规律进行信息处理的科学,在计算、通信等方面具有重要应用价值。然而,由于现有的量子物理系统都不能满足实现量子信息处理的所有要求,量子信息处理的物理实现面临巨大的挑战。近年来,人们提出了一种新的研究思路,那就是利用混合量子系统,通过使其中的各个系统能够优势互补。本文主要研究利用混合量子系统实现量子信息处理的新方案。主要结果和创新点归纳如下:
     1、我们提出了一个制备多光子偏振状态W型纠缠的方案。该方案利用相干光与多个彼此独立的光子进行非线性相互作用,使相干光获得与光子集体偏振态相关的相位,然后对相干光进行测量。通过选取合适的测量结果,能够制备出接近理想的W态。尽管方案中使用的非线性相互作用很弱,但是通过增大相干光的强度仍能实现很高的成功制备概率。与利用参量下转换制备光子W态的方法相比,该方案具有成功概率高和不需要进行单光子探测的优点。
     2、各种量子中继方案是实现远距离量子通信的关键,而‘静止’量子系统(原子系综)和‘飞行’量子系统(光子)组成的混合系统在实现量子中继方面很有优势。现有的量子中继方案都严重地依赖于光子偏振状态的稳定,而实际信道中存在随机噪声,使得偏振状态难以保持稳定。我们提出了一个能够抵抗信道偏振噪声的量子中继方案。通过在光子态中引入时间标记,并相应地调整干涉光路和探测方式,使受信道噪声干扰的信号被自动剔除,从而不会降低纠缠分发的忠实度。该方案还具有对信道损耗和信道长度涨落等噪声的鲁棒性,因此能抵抗各种信道噪声干扰。另外该方案具有简单易行的特点,有望用于构建实用的量子中继器。
     3、近年来随着制造和冷却技术的发展,纳米尺度的机械谐振器已能被制备到量子状态,并被应用于量子信息学。我们提出一个利用纳米机械谐振器实现原子量子位和超导量子位强耦合的方案。纳米机械谐振器和原子的耦合通过机械振动产生的电场和把原子激发到里德堡态实现。该方案能用于实现原子和超导量子位之间的量子态转移,从而构成一个既能被快速量子操控(超导量子位)又能长时间存储信息(原子量子位)的混合系统。
     4、我们提出一个利用纳米机械谐振器(NAMR)实现超导传输线共振腔(TLR)和单电子自旋量子位(EQ)强耦合的方案。该方案中NAMR和超导腔、NAMR和单电子自旋的耦合都能达到强耦合区域,并且可通过调节外部参数控制耦合的强度。与已有方案利用TLR和EQ直接耦合相比,该方案实现的TLR-EQ有效耦合更强。与已有方案利用超导量子位作为中介实现TLR-EQ有效耦合相比,该方案用作中介的NAMR具有更长的相干时间。该方案中实现的可控强耦合能用于执行单自旋量子位和超导腔之间高忠实度的量子态转移。
Quantum information science is a subject which takes advantage of quantum laws toimplement information processing, and has important application values in the field ofcomputation, communication and so on. However,the physical implementations ofquantum information processing are facing huge challenges since the existing quantumphycial systems can not be able to fulfill all these requirements for implementingquantum information processing. In recent years, a new research idea was beingproposed which is ultilizing the hybrid quantum systems and make the componentsystems complement and benefit each other. The thesis mainly studies on new schemesfor implementing quantum information processing with hybrid quantum systems. Themain results and the creative points are as follows.
     We present a scheme for preparing three-photon polarization-entangled W states.The signal photons and a strong probe field interact via weak cross-Kerr nonlinearitythat conditionally causes a phase shift on the probe coherent state. A W state is thenprepared with a high success probability by the homodyne measurement andpostselection. Compared with preparing photonic W states via parametric downconversion, the scheme has the characters with high success probability and norequirement for single photon detection.
     Various quantum repeater schemes are crucial for realizing long-distance quantumcommunication, and the hybrid systems consisting of ‘static’ quantum systems (atomicensembles) and ‘flying’ quantum system (photons) have the distinguished advantages.The exsiting quantum repeater schemes seriously depend on the stability of polarizationstates of the photons, while there are random noises in the real channels where it is veryhard to maintain the stability of polarization states. We propose a quantum repeaterscheme which is robust against polarization noise of photons transmitted overlong-distance channel. We introduce time-bin photonic states and adjust the two-photoninterference configuration and the detection way, which make the disturbed signals beeliminated, so the fidelity of distributing entanglement is not affected. Our scheme alsois robust against channel loss and channel length fluctuations. Our scheme can beperformed with current experimental setups through making some simple adjustments,and is promsing for constructing practical quantum repeater.
     With the development of fabrication and cooling techniques, nanomechanicalresonators recently have been made to quantum ground states and applied in quantuminformation science. We propose a scheme to realize strong coupling between atomicqubit and superconducting qubit via a nanomechanical resonator. The coupling of theatom to the nanomechancial resonator is achieved via the electric field created by thevibratons and by exciting the atom into Rydberg states. The scheme can be used to implementing quantum state transfer between atomic qubit and superconducting qubit,and construct a hybrid system consisting of the fast quantum manipulated part(superconducting qubit) and the long-information-storage time part (atomic qubit).
     We propose a scheme to achieve strong coupling between a transmission lineresonator (TLR) and an individual electronic spin qubit (EQ) via a nanomechanicalresonator (NAMR). Both the NAMR-TLR and the NAMR-EQ reach the strongcoupling regime, and the coupling strengthes can be controlled by adjusting externalparameters. Compared with a direct coupling between a EQ and a TLR, the achievedcoupling can be stronger. Compared with the SCQ-mediated systems for realizingTLR-EQ effective coupling, the NAMR as a mediator has a longer coherence time. Thecontrollable strong couplings achived in the scheme be used to implement ahigh-fidelity quantum state transfer between the spin qubit and the TLR.
引文
[1]李承祖,黄明球,陈平形,梁林梅.量子通信和量子计算[M].长沙:国防科技大学出版社,2000.
    [2] Nielsen M A and Chuang I L. Quantum Computation and QuantumInformation [M]. United Kingdom: Cambridge University Press,2000.
    [3] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L.Quantum computers [J]. Nature,2010,464:45~53.
    [4] Scully M O and Zubairy M S. Quantum Optics [M]. United Kingdom:Cambridge University Press,1997.
    [5] Walls D F and Milburn G J. Quntum Optics [M]. New York: Springer-Verlag,1995.
    [6] Cirac J I and Zoller P. Quantum computations with cold trapped ions [J]. Phys.Rev. Lett.1995,74:4091~4094.
    [7] Monroe C, Meekhof D M, King B E, Itano W M, and Wineland D J.Demonstration of fundamental quantum logic gate [J]. Phys. Rev. Lett.1995,75:4714~4717.
    [8] Leibfried D, Blatt R, Monroe C, and Wineland D. Quantum dynamics of singletrapped ions [J]. Rev. Mod. Phys.2003,75:281~324.
    [9] Bloch I. Quantum coherence and entanglement with ultracold atoms in opticallattices [J]. Nature,2008,453:1016~1022.
    [10] Clarke John and Wilhelm Frank K. Superconducting quantum bits[J]. Nature,2008,453:1031~1042.
    [11] Ronald Hanson and David D. Awschalom. Coherent manipulation of singlespins in semiconductors [J]. Nature,2008,453:1043~1049.
    [12] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki and KarolHorodecki. Quantum entanglement [J]. Rev. Mod. Phys.2009,81:867~942.
    [13] Rainer Blatt and David Wineland. Entangled states of trapped atomic ions [J].Nature,2008,453:1008~1015.
    [14] Nicolas Gisin, Gr é goire Ribordy, Wolfgang Tittel, and Hugo Zbinden.Quantum cryptography [J]. Rev. Mod. Phys.2002,74:145~195.
    [15] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, MiloslavDu ek, Norbert Lütkenhaus and Momtchil Peev. The security of practical quantum keydistribution [J]. Rev. Mod. Phys.2009,81:1301~1350.
    [16] Simon C, Afzelius M, Appel J, Wrachtrup J, and Young R J. Quantummemories [J]. Eur. Phys. J. D,2010,58:1~22.
    [17] M. Saffman and T. G. Walker. Analysis of a quantum logic device based ondipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A2005,72:022347(1~21).
    [18] Philipp Treutlein, Peter Hommelhoff, Tilo Steinmetz, Theodor W. Hansch,and Jakob Reichel. Coherence in microchip traps [J]. Phys. Rev. Lett.2004,92:203005(1~4).
    [19] Zheng Shi-Biao and Guo Guang-Can. Efficient Scheme for Two-AtomEntanglement and Quantum Information Processing in Cavity QED [J]. Phys. Rev. Lett.2000,85:2392~2395.
    [20] van Enk S J, Cirac J I and Zoller P. Photonic Channels for QuantumCommunication [J]. Science,1998,279:205~208.
    [21] Tian L, Rabl P, Blatt R, and Zoller P. Interfacing Quantum-Optical andSolid-State Qubits [J]. Phys. Rev. Lett.2004,92:247902(1~4).
    [22] S rensen Anders S, van der Wal Caspar H, Childress Lilian I and LukinMikhail D. Capacitive Coupling of Atomic Systems to Mesoscopic Conductors [J].Phys. Rev. Lett.2004,92:063601(1~4).
    [23] Schoelkopf R J and Girvin S M. Wiring up quantum systems [J]. Nature,2008,451:664~669.
    [24] Ekinci K L and Roukes M L. Nanoelectromechanical systems [J]. Rev. Sci.Instrum.2005,76:061101(1~12).
    [25] Kippenberg T J and Vahala K J. Cavity Optomechanics: Back-Action at theMesoscale [J]. Science,2008,321:1172~1176.
    [26] Samuel L. Braunstein and Peter van Loock. Quantum information withcontinuous variables [J]. Rev. Mod. Phys.2005,77:513~577.
    [27] Munro W J, Nemoto Kae, Beausoleil R G and Spiller T P. High-efficiencyquantum-nondemolition single-photon-number-resolving detector [J]. Phys. Rev. A,2005,71:033819(1~4).
    [28] Nemoto Kae and Munro W J. Nearly Deterministic Linear OpticalControlled-NOT Gate [J]. Phys. Rev. Lett.2004,93:250502(1~4).
    [29] Jin Guang-Sheng, Lin Yuan, and Wu Biao. Generating multiphotonGreenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity [J]. Phys. Rev. A,2007,75:054302(1~4).
    [30] Barrett S D, Pieter Kok, Nemoto Kae, Beausoleil R G, Munro W J and SpillerT P. Symmetry analyzer for nondestructive Bell-state detection using weaknonlinearities [J]. Phys. Rev. A,2005,71:060302(1~4).
    [31] Qian Jun, Feng Xun-Li, and Gong Shang-Qing. Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection [J].Phys. Rev. A,2005,72:052308(1~3).
    [32] Nemoto Kae and Munro W J. Universal quantum computation on the powerof quantum non-demolition measurements [J]. Phys. Lett. A,2005,344:104~110.
    [33] Munro W J, Nemoto K and Spiller T P. Weak nonlinearities: a new route tooptical quantum computation [J]. New J. Phys.2005,7:137(1~12).
    [34] Spiller T P, Nemoto Kae, Braunstein Samuel L, Munro W J, van Loock P andMilburn G J. Quantum computation by communication [J]. New J. Phys.2006,8:30(1~25).
    [35] van Loock P, Munro W J, Nemoto Kae, Spiller T P, Ladd T D, BraunsteinSamuel L, and Milburn G J. Hybrid quantum computation in quantum optics [J]. Phys.Rev. A,2008,78:022303(1~5).
    [36] Ladd T D, van Loock P, Nemoto K, Munro W J and Yamamoto Y. Hybridquantum repeater based on dispersive CQED interactions between matter qubits andbright coherent light [J]. New J. Phys.2006,8:184(1~42).
    [37] van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto Kae, Munro W J,and Yamamoto Y. Hybrid Quantum Repeater Using Bright Coherent Light [J]. Phys.Rev. Lett.2006,96:240501(1~4).
    [38] Bishop Lev S, Tornberg L, Price D, Ginossar E, Nunnenkamp A, Houck A A,Gambetta J M, Koch Jens, Johansson G, Girvin S M and Schoelkopf R J. Proposal forgenerating and detecting multi-qubit GHZ states in circuit QED [J]. New J. Phys.2009,11:073040(1~16).
    [39] Alexei Ourjoumtsev, Franck Ferreyrol, Rosa Tualle-Brouri and PhilippeGrangier. Preparation of non-local superpositions of quasi-classical light states [J]. Nat.Phys.2009,5:189~192.
    [40] Brask J B, Rigas I, Polzik E S, Andersen U L, and S rensen Anders S. Hybridlong-distance entanglement distribution protocol [J]. Phys. Rev. Lett.2010,105:160501(1~4).
    [41] Koji Azuma, Naoya Sota, Ryo Namiki, ahin Kaya zdemir, TakashiYamamoto, Masato Koashi, and Nobuyuki Imoto. Optimal entanglement generation forefficient hybrid quantum repeaters [J]. Phys. Rev. A2009,80:060303(1~4).
    [42] Ludmi a Praxmeyer and Peter van Loock. Near-unit-fidelity entanglementdistribution scheme using Gaussian communication [J]. Phys. Rev. A2010,81:060303(1~4).
    [43] Gao Ming, Hu Wen-Hua and Li Cheng-Zu. Generating polarization-entangledW states using weak nonlinearity [J]. J. Phys. B: At. Mol. Opt. Phys.2007,40:3525~3529.
    [44] Briegel H J, Dür W, Cirac J I, and Zoller P. Quantum Repeaters: The Role ofImperfect Local Operations in Quantum Communication[J]. Phys. Rev. Lett.1998,81:5932~5935.
    [45] Dür W, Briegel H J, Cirac J I, and Zoller P.Quantum repeaters based onentanglement purification [J]. Phys. Rev. A,1999,59:169~181.
    [46] Cabrillo C, Cirac J I, García-Fernández P and Zoller P. Creation of entangledstates of distant atoms by interference [J]. Phys. Rev. A,1999,59:1025~1033.
    [47] Duan L M, Lukin M D, Cirac J I and Zoller P. Long-distance quantumcommunication with atomic ensembles and linear optics [J]. Nature,2001,414:413~418.
    [48] Sangouard N, Dubessy R, and Simon C. Quantum repeaters based on singletrapped ions [J]. Phys. Rev. A2009,79:042340(1~6).
    [49] Childress L, Taylor J M, S rensen A S, and Lukin M D. Fault-tolerantquantum repeaters with minimal physical resources and implementations based onsingle-photon emitters [J]. Phys. Rev. A,72:052330(1~16).
    [50] Childress L, Taylor J M, S rensen A S, and Lukin M D. Fault-TolerantQuantum Communication Based on Solid-State Photon Emitters [J]. Phys. Rev. Lett.2006,96:070504(1~4).
    [51] Hammerer Klemens, S rensen Anders S. and Polzik Eugene S. Quantuminterface between light and atomic ensembles [J]. Rev. Mod. Phys.2010,82:1041~1093.
    [52]王义遒.原子的激光冷却与陷俘[M].北京大学出版社,2007.
    [53] Meystre P. Atom optics [M]. New York: Springer-Verlag,2001.
    [54] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, Nicolas Gisin.Quantum repeaters based on atomic ensembles and linear optics [J]. Rev. Mod. Phys.2011,83:33~80.
    [55] Kimble H J. The quantum internet [J]. Nature2008,453:1023~1030.
    [56] Razavi Mohsen and Shapiro Jeffrey H. Long-distance quantumcommunication with neutral atoms [J]. Phys. Rev. A2006,73:042303(1~14).
    [57] Lloyd S, Shahriar M S, and Shapiro J H. Long Distance unconditionalTeleportation of Atomic States via Complete Bell State Measurements [J]. Phys. Rev.Lett.2001,87:167903(1~4).
    [58] Christoph Simon, Hugues de Riedmatten, Mikael Afzelius, NicolasSangouard, Hugo Zbinden, and Nicolas Gisin. Quantum Repeaters with Photon PairSources and Multimode Memories [J]. Phys. Rev. Lett.2007,98:190503(1~4).
    [59] Nicolas Sangouard, Christoph Simon, Ji í Miná, Hugo Zbinden, Hugues deRiedmatten, and Nicolas Gisin. Long-distance entanglement distribution withsingle-photon sources [J]. Phys. Rev. A2007,76:050301(1~4).
    [60] Christoph Clausen, Imam Usmani, Félix Bussières, Nicolas Sangouard,Mikael Afzelius, Hugues de Riedmatten and Nicolas Gisin. Quantum storage ofphotonic entanglement in a crystal [J]. Nature,2011,469:508~511.
    [61] Erhan Saglamyurek, Neil Sinclair, Jeongwan Jin, Joshua A. Slater, DanielOblak, Félix Bussières, Mathew George, Raimund Ricken, Wolfgang Sohler andWolfgang Tittel. Broadband waveguide quantum memory for entangled photons[J].Nature,2011,469:512~515.
    [62] Matsukevich D N and Kuzmich A. Quantum state transfer between matterand light [J]. Science,2004,306:663~666.
    [63] Matsukevich D N, Chanelière T, Bhattacharya M, Lan S Y, Jenkins S D,Kennedy T A B, and Kuzmich A. Entanglement of a Photon and a Collective AtomicExcitation [J]. Phys. Rev. Lett.2005,95:040405(1~4).
    [64] Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J andKimble H J. Measurement-induced entanglement for excitation stored in remote atomicensembles [J]. Nature,2005,438:828~832.
    [65] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B andKuzmich A. Storage and retrieval of single photons transmitted between remotequantum memories [J]. Nature,2005,438:833~836.
    [66] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Zhao R, Kennedy TA B and Kuzmich A. Quantum Interference of Electromagnetic Fields from RemoteQuantum Memories [J]. Phys. Rev. Lett.2007,98:113602(1~4).
    [67] Chou Chin-Wen, Laurat Julien, Deng Hui, Kyung Soo Choi, Hugues deRiedmatten, Daniel Felinto, Kimble H Jeff. Functional Quantum Nodes forEntanglement Distribution over Scalable Quantum Networks [J]. Science,2007,316:1316~1320.
    [68] Chen Shuai, Chen Yu-Ao, Zhao Bo, Yuan Zhen-Sheng, J rg Schmiedmayer,and Pan Jian-Wei. Demonstration of a Stable Atom-Photon Entanglement Source forQuantum Repeaters [J]. Phys. Rev. Lett.2007,99:180505(1~4).
    [69] Yuan Zhen-Sheng, Chen Yu-Ao, Zhao Bo, Chen Shuai, J rg Schmiedmayerand Pan Jian-Wei. Experimental demonstration of a BDCZ quantum repeater node [J].Nature,2008,454:1098~1101.
    [70] Zhao Bo, Chen Zeng-Bing, Chen Yu-Ao, J rg Schmiedmayer and PanJian-Wei. Robust Creation of Entanglement between Remote Memory Qubits [J]. Phys.Rev. Lett.2007,98:240502(1~4).
    [71] Chen Zeng-Bing, Zhao Bo, Chen Yu-Ao, J rg Schmiedmayer and PanJian-Wei. Fault-tolerant quantum repeater with atomic ensembles and linear optics [J].Phys. Rev. A2007,76:022329(1~12).
    [72] Jiang L, Taylor J M and Lukin M D. Fast and robust approach tolong-distance quantum communication with atomic ensembles [J]. Phys. Rev. A2007,76:012301(1~10).
    [73] Nicolas Sangouard, Christoph Simon, Zhao Bo, Chen Yu-Ao, Hugues deRiedmatten, Pan Jian-Wei, and Nicolas Gisin. Robust and efficient quantum repeaterswith atomic ensembles and linear optics [J]. Phys. Rev. A2008,77:062301(1~7).
    [74] Gao Ming, Liang Lin-Mei, Li Cheng-Zu, and Wang Xiang-Bin. Robustquantum repeater with atomic ensembles against phase and polarization instability [J].Phys. Rev. A,2009,79:042301(1~4).
    [75] Zhang Bin-bin and Xu Ya-qiong. Atomic-ensemble-based quantum repeateragainst general polarization and phase noise [J]. Phys. Rev. A,2011,84:014304(1~3).
    [76] Yin Zhen-Qiang, Zhao Yi-Bo, Yang Yong, Han Zheng-Fu, and Guo Guang-Can. Quantum repeaters free of polarization disturbance and phase noise [J]. Phys. Rev.A,2009,78:044302(1~4).
    [77] Hartmann L, Kraus B, Briegel H J, and Dür W. Role of memory errors inquantum repeaters [J]. Phys. Rev. A,2007,75:032310(1~17).
    [78] Razavi M, Piani M and Lütkenhaus N. Quantum repeaters with imperfectmemories: Cost and scalability [J]. Phys. Rev. A,2009,80:032301(1~8).
    [79] Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, KennedyT A B and Kuzmich A. Long-lived quantum memory [J]. Nat. Phys.2009,5:100~104.
    [80] Zhao Bo, Chen Yu-Ao, Bao Xiao-Hui, Strassel Thorsten, Chuu Chih-Sung,Jin Xian-Min, J rg Schmiedmayer, Yuan Zhen-Sheng, Chen Shuai and Pan Jian-Wei. Amillisecond quantum memory for scalable quantum networks [J]. Nat. Phys.2009,5:95~99.
    [81] József Fortágh and Claus Zimmermann. Magnetic microtraps for ultracoldatoms [J]. Rev. Mod. Phys.2007,79:235~289.
    [82] J rg Wrachtrup and Fedor Jelezko. Processing quantum information indiamond [J]. J. Phys.: Condens. Matter,2006,18:807~824.
    [83] Blais Alexandre, Huang Ren-Shou, Wallraff Andreas, Girvin S M, andSchoelkopf R. J. Cavity quantum electrodynamics for superconducting electricalcircuits: An architecture for quantum computation [J]. Phys. Rev. A2004,69:062320(1~14).
    [84] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S,Girvin S M and Schoelkopf R J. Strong coupling of a single photon to asuperconducting qubit using circuit quantum electrodynamics [J]. Nature,2004,431:162~167.
    [85] Sillanp Mika A, Park Jae I and Simmonds Raymond W. Coherent quantumstate storage and transfer between two phase qubits via a resonant cavity [J]. Nature,2007,449:438~442.
    [86] Majer J, Chow J M, Gambetta J M, Koch Jens, Johnson B R, Schreier J A,Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais1A, Devoret M H, Girvin S Mand Schoelkopf R J. Coupling superconducting qubits via a cavity bus [J]. Nature,2007,449:443~447.
    [87] DiCarlo L, Chow J M, Gambetta J M, Bishop Lev S, Johnson B R, SchusterD I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J. Demonstration oftwo-qubit algorithms with a superconducting quantum processor [J]. Nature,2009,460:240~244.
    [88] David Petrosyan, Guy Bensky, Gershon Kurizki, Igor Mazets, JohannesMajer, and J rg Schmiedmayer. Reversible state transfer between superconductingqubits and atomic ensembles [J]. Phys. Rev. A,2009,79:040304(1~4).
    [89] Twamley J and Barrett S D. Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond [J]. Phys. Rev. B,2010,81:241202(1~4).
    [90] Atac Imamo lu. Cavity QED Based on Collective Magnetic Dipole Coupling:Spin Ensembles as Hybrid Two-Level Systems [J]. Phys. Rev. Lett.2009,102:083602(1~4).
    [91] Wesenberg J H, Ardavan A, Briggs G A D, Morton J J L, Schoelkopf R J,Schuster D I, and M lmer K. Quantum Computing with an Electron Spin Ensemble [J].Phys. Rev. Lett.2009,103:070502(1~4).
    [92] Rabl P, DeMille D, M. Doyle J, Lukin M D, Schoelkopf R J, and Zoller P.Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid StateCircuits [J]. Phys. Rev. Lett.2006,97:033003(1~4).
    [93] Verdú J, Zoubi H, Koller Ch, Majer J, Ritsch H, and Schmiedmayer J. StrongMagnetic Coupling of an Ultracold Gas to a Superconducting Waveguide Cavity [J].Phys. Rev. Lett.2009,103:043603(1~4).
    [94] Blencowe Miles. Quantum RAM [J]. Nature,2010,468:44~45.
    [95] Chiorescu I, Groll N, Bertaina S, Mori T and Miyashita S. Magnetic strongcoupling in a spin-photon system and transition to classical regmie [J]. Phys. Rev. B,201082:024413(1~7).
    [96] Schuster D I, Sears A P, Ginossar E, DiCarlo L, Frunzio L, Morton J J L, WuH, Briggs A D G, Buckley B B, Awschalom D D, and Schoelkopf R J.High-Cooperativity Coupling of Electron-Spin Ensembles to Superconducting Cavities[J]. Phys. Rev. Lett.2010,105:140501(1~4).
    [97] Kubo Y, Ong F R, Bertet P, Vion D, Jacques V, Zheng D, Dréau A, Roch J F,Auffeves A, Jelezko F, Wrachtrup J, Barthe M F, Bergonzo P, and Esteve D. StrongCoupling of a Spin Ensemble to a Superconducting Resonator [J]. Phys. Rev. Lett.2010,105:140502(1~4).
    [98] Wu Hua, George Richard E, Wesenberg Janus H, M lmer Klaus, SchusterDavid I, Schoelkopf Robert J, Itoh Kohei M, Arzhang Ardavan, Morton John J L, andBriggs G. Andrew D. Storage of Multiple Coherent Microwave Excitations in anElectron Spin Ensemble [J]. Phys. Rev. Lett.2010,105:140503(1~4).
    [99] R. Amsüss, Koller Ch, N bauer T, Putz S, Rotter S, Sandner K, Schneider S,Schramb ck M, Steinhauser G, Ritsch H, Schmiedmayer J, and Majer J. Cavity QEDwith magnetically coupled collective spin states [J]. Phys. Rev. Lett.2011,107:060502(1~4).
    [100] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D, and S rensen A S.Coupling Nitrogen-Vacancy Centers in Diamond to Superconducting Flux Qubits [J].Phys. Rev. Lett.2011,105:210501(1~4).
    [101] Ekinci K L. Electromechanical Transducers at the Nanoscale: Actuation andSensing of Motion in Nanoelectromechanical Systems [J]. Small,2005,8-9:786~797
    [102] Kippenberg T J and Vahala K J. Cavity Opto-Mechanics [J]. Opt. Exp.2007,15:17172~17205.
    [103] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi.Entangling Macroscopic Oscillators Exploiting Radiation Pressure [J]. Phys. Rev. Lett.2002,88:120401(1~4).
    [104] Marshall William, Simon Christoph, Penrose Roger, and Bouwmeester Dik.Towards Quantum Superpositions of a Mirror [J]. Phys. Rev. Lett.2003,91:130401(1~4).
    [105] Aires Ferreira, Ariel Guerreiro, and Vlatko Vedral. Macroscopic ThermalEntanglement Due to Radiation Pressure [J]. Phys. Rev. Lett.2006,96:060407(1~4).
    [106] Vitali D, Gigan S, Ferreira A, B hm H R, Tombesi P, Guerreiro A, Vedral V,Zeilinger A, and Aspelmeyer M. Optomechanical Entanglement between a MovableMirror and a Cavity Field [J]. Phys. Rev. Lett.2007,98:030405(1~4).
    [107] Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J, andAspelmeyer M. Creating and Probing Multipartite Macroscopic Entanglement withLight [J]. Phys. Rev. Lett.2007,99:250401(1~4).
    [108] David Vitali, Stefano Mancini and Paolo Tombesi. Stationary entanglementbetween two movable mirrors in a classically driven Fabry–Perot cavity [J]. J. Phys. A:Math. Theor.2007,40:8055~8068.
    [109] Hartmann Michael J and Plenio Martin B. Steady State Entanglement in theMechanical Vibrations of Two Dielectric Membranes [J]. Phys. Rev. Lett.2008,101:200503(1~4).
    [110] Galve Fernando, Pachón Leonardo A, and Zueco David. BringingEntanglement to the High Temperature Limit [J]. Phys.Rev. Lett.2010,105:180501(1~4).
    [111] Wei L F, Liu Yu-xi, Sun C P, and Nori Franco. Probing tiny motions ofnanomechanical resonators: Classical or Quantum Mechanical?[J] Phys. Rev. Lett.2006,97:237201(1~4).
    [112] Wilson-Rae I, Nooshi N, Zwerger W, and Kippenberg T J. Theory ofGround State Cooling of a Mechanical Oscillator Using Dynamical Backaction [J]. Phys.Rev. Lett.2007,99:093901(1~4).
    [113] Marquardt Florian, Chen Joe P, Clerk A A, and Girvin S M. QuantumTheory of Cavity-Assisted Sideband Cooling of Mechanical Motion [J]. Phys. Rev. Lett.2007,99:093902(1~4).
    [114] Xue Fei, Wang Y D, Liu Yu-xi, and Nori Franco. Cooling amicromechanical beam by coupling it to a transmission line [J]. Phys. Rev. B.2007,76:205302(1~6).
    [115] Bhattacharya M and Meystre P. Trapping and Cooling a Mirror to ItsQuantum Mechanical Ground State [J]. Phys. Rev. Lett.2007,99:073601(1~4).
    [116] Genes C, Vitali D, Tombesi P, Gigan S, and Aspelmeyer M. Ground-statecooling of a micromechanical oscillator: Comparing cold damping and cavity-assistedcooling schemes [J]. Phys. Rev. A,2008,77:033804(1~9).
    [117] Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, and Zwerger W.Cavity-assisted backaction cooling of mechanical resonators [J]. New J. Phys.2008,10:095007(1~19).
    [118] Naik A, Buu O, LaHaye M D, Armour A D, Clerk A A, Blencowe M P, andSchwab K C. Cooling a nanomechanical resonator with quantum back-action [J]. Nature,2006,443:193~196.
    [119] Gigan S, B hm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B,Schwab K C, B uerle D, Aspelmeyer M, and Zeilinger A. Self-cooling of a micromirrorby radiation pressure [J]. Nature,2006,444:67~70.
    [120] Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A. Radiation-pressure cooling and optomechanical instability of a micromirror [J]. Nature,2006,444:71~74.
    [121] Poggio M, Degen C L, Mamin H J, and Rugar D. Feedback Cooling of aCantilever’s Fundamental Mode below5mK [J]. Phys. Rev. Lett.2007,99:017201(1~4).
    [122] Thompson J D, Zwickl B M, Jayich A M, Marquardt Florian, Girvin S M,and Harris J G E. Strong dispersive coupling of a high-finesse cavity to amicromechanical membrane [J]. Nature,2008,452:72~75.
    [123] Park Young-Shin and Wang Hailin. Resolved-sideband and cryogeniccooling of an optomechanical resonator [J]. Nat. Phys.2009,5:489~493.
    [124] Schliesser A, Arcizet O, Rivière R, Anetsberger G, and Kippenberg T J.Resolved-sideband cooling and position measurement of a micromechanical oscillatorclose to the Heisenberg uncertainty limit [J]. Nat. Phys.2009,5:509~514.
    [125] Rivière R, Deléglise S, Weis S, Gavartin E, Arcizet O, Schliesser A, andKippenberg T J. Optomechanical sideband cooling of a micromechanical oscillatorclose to the quantum ground state [J]. Phys. Rev. A,2011,83:063835(1~9).
    [126] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and SchwabK C. Preparation and detection of a mechanical resonator near the ground state ofmotion [J]. Nature,2010,463:72~75.
    [127] O’Connell A D, Hofheinz M, Ansmann M, Bialczak Radoslaw C, LenanderM, Erik Lucero, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis John M,and Cleland A N. Quantum ground state and single-phonon control of a mechanicalresonator [J]. Nature,2010,464:697~703.
    [128] Teufel J D, Donner T, Li Dale, Harlow J W, Allman M S, Cicak K, Sirois AJ, Whittaker J D, Lehnert K W, and Simmonds R W. Sideband cooling ofmicromechanical motion to the quantum ground state [J]. Nature,2011,475:359~363.
    [129] Armour A D, Blencowe M P, and Schwab K C. Entanglement anddecoherence of a micromechanical resonator via coupling to a cooper-Pair Box [J]. Phys.Rev. Lett.2002,88:148301(1~4).
    [130] Cleland A N and Geller M R. Superconducting Qubit Storage andEntanglement with Nanomechanical Resonators [J]. Phys. Rev. Lett.2004,93:070501(1~4).
    [131] Xue Fei, Wang Y D, Sun C P, Okamoto H, Yamaguchi H, and Semba K.Controllable coupling between flux qubit and nanomechanical resonator by magneticfield [J]. New J. Phys.2007,9:35(1~18).
    [132] Vitali D, Tombesi P, Woolley M J, Doherty A C, and Milburn G J.Entangling a nanomechanical resonator and a superconducting microwave cavity [J]Phys. Rev. A,2007,76:042336(1~6).
    [133] Tian L, Allman M S, and Simmonds R W. Parametric coupling betweenmacroscopic quantum resonators [J]. New J. Phys.2008,10:115001(1~15).
    [134] Zhang P, Wang Y D, and Sun C P. Cooling Mechanism for a Nano-mechanical Resonator by Periodic Coupling to a Cooper Pair Box [J] Phys. Rev. Lett.2005,95:097204(1~4).
    [135] Martin Ivar, Shnirman Alexander, Tian Lin, and Zoller Peter. Ground-statecooling of mechanical resonators [J]. Phys. Rev. B,2005,69:125339(1~12).
    [136] Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist. Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit [J]. New J.Phys.2008,10:095019(1~23).
    [137] Rabl P, Shnirman A, and Zoller P. Generation of squeezed states ofnanomechanical resonators by reservoir engineering [J]. Phys. Rev. B,2004,70:205304(1~12).
    [138] Xue Fei, Liu Yu-xi, Sun C P, and Nori Franco. Two-mode squeezed statesand entangled states of two mechanical resonators [J]. Phys. Rev. B,2007,76:064305(1~9).
    [139] Huo Wen Yi, and Long Gui Lu. Generation of squeezed states ofnanomechanical resonator using three-wave mixing [J]. Appl. Phys. Lett.2008,92:133102(1~3).
    [140] LaHaye M D, Suh J, Echternach P M, Schwab K C, and Roukes M L.Nanomechanical measurements of a superconducting qubit [J]. Nature,2009,459:960~964.
    [141] Regal C A, Teufel J D, and Lehnert K W. Measuring nanomechanicalmotion with a microwave cavity interferometer [J]. Nat. Phys.2008,4:555~560.
    [142] Teufel J D, Donner T, Castellanos-Beltran M A, Harlow J W, and Lehnert KW. Nanomechanical motion measured with an imprecision below that at the standardquantum limit [J]. Nat. Nano.2009,4:820~823.
    [143] Hertzberg J B, Rocheleau T, Ndukum T, Savva M, Clerk A A, and SchwabK C. Back-action-evading measurements of nanomechanical motion [J]. Nat. Phys.2010,6:213~217.
    [144] Gr blacher Simon, Hammerer Klemens, Vanner Michael R, and AspelmeyerMarkus. Observation of strong coupling between a micromechanical resonator and anoptical cavity field [J]. Nature,2009,460:724~727.
    [145] Wang Ying-Ju, Eardley Matthew, Knappe Svenja, Moreland John, HollbergLeo, and Kitching John. Magnetic Resonance in an Atomic Vapor Excited by aMechanical Resonator [J]. Phys. Rev. Lett.2006,97:227602(1~4).
    [146] Philipp Treutlein, David Hunger, Stephan Camerer, Theodor W. H nsch,and Jakob Reichel. Bose-Einstein Condensate Coupled to a Nanomechanical Resonatoron an Atom Chip [J]. Phys. Rev. Lett.2007,99:140403(1~4).
    [147] David Hunger, Stephan Camerer, Theodor W. H nsch, Daniel K nig, J rg P.Kotthaus, Jakob Reichel, and Philipp Treutlein. Resonant Coupling of a Bose-EinsteinCondensate to a Micromechanical Oscillator [J]. Phys. Rev. Lett.2010,104:143002(1~4).
    [148] Rabl P, Cappellaro P, Gurudev Dutt M V, Jiang L, Maze J R, and Lukin MD. Strong magnetic coupling between an electronic spin qubit and a mechanicalresonator [J]. Phys. Rev. B,2009,79:041302(1~4).
    [149] Geller M R and Cleland A N. Superconducting qubits coupled tonanoelectromechanical resonators: An architecture for solid-state quantum-informationprocessing [J]. Phys. Rev. A.2005,71:032311(1~17).
    [150] Rabl P, J. Kolkowitz S, Koppens F H L, Harris J G E, Zoller P, and Lukin MD. A quantum spin transducer based on nanoelectromechanical resonator arrays [J]. Nat.Phys.2010,6:602~608.
    [151] Xu Z Y, Hu Y M, Yang W L, Feng M, and Du J F. Deterministicallyentangling distant nitrogen-vacancy centers by a nanomechanical cantilever [J]. Phys.Rev. A,2009,80:022335(1~4).
    [152] Zhou Li-gong, Wei L F, Gao Ming, and Wang Xiang-bin. Strong couplingbetween two distant electronic spins via a nanomechanical resonator [J]. PhysicalReview A,2010,81:042323(1~5).
    [153] Geraci Andrew A and Kitching John. Ultracold mechanical resonatorscoupled to atoms in an optical lattice [J]. Phys. Rev. A,2009,80:032317(1~5).
    [154] Stannigel K, Rabl P, S rensen A S, Zoller P, and Lukin M D.Optomechanical Transducers for Long-Distance Quantum Communication [J]. Phys.Rev. Lett.2010,105:220501(1~4).
    [155] Rugar D, Budakian R, Mamin H J, and Chui B W. Single spin detection bymagnetic resonance force microscopy [J]. Nature,2004,430:329~332.
    [156] Mamin H J, Poggio M, Degen C L, and Rugar D. Nuclear magneticresonance imaging with90-nm resolution [J]. Nat. Nano.2007,2:301~306.
    [157] Grinolds M S, Maletinsky P, Hong S, Lukin M D, Walsworth R L, andYacoby A. Quantum control of proximal spins using nanoscale magnetic resonanceimaging [J]. Nat. Phys.2011,7:687~692.
    [158] Gao Ming,Liu Yu-xi, and Wang Xiang-Bin. Coupling Rydberg atoms tosuperconducting qubits via nanomechanical resonator [J]. Physical Review A,2011,83:022309(1~5).
    [159] Gao Ming, Wu Chun-Wang, Deng Zhi-Jiao, Zou Wen-Jie, Zhou Li-gong, LiCheng-Zu, and Wang Xiang-Bin. Controllable strong coupling between individual spinqubits and a transmission line resonator via nanomechanical resonators. Physics LettersA,2012,376:595~598.
    [1]李承祖,陈平形,梁林梅,戴宏毅.量子计算机研究(上)[M].北京:科学出版社,2011.
    [2] Nielsen M A and Chuang I L. Quantum Computation and QuantumInformation [M]. United Kingdom: Cambridge University Press,2000.
    [3] Scully M O. and Zubairy M S. Quantum Optics [M]. United Kingdom:Cambridge University Press,1997.
    [4] Brahim Lounis and Michel Orrit. Single-photon sources [J]. Rep. Prog. Phys.2005,68:1129~1179.
    [5] Nicolas Gisin, Gr é goire Ribordy, Wolfgang Tittel, and Hugo Zbinden.Quantum cryptography [J]. Rev. Mod. Phys.2002,74:145~195.
    [6] Kimble H J. Strong Interactions of Single Atoms and Photons in Cavity QED[J]. Physica Scripta,1998,76:127~137.
    [7] Samuel L. Braunstein and Peter van Loock. Quantum information withcontinuous variables [J]. Rev. Mod. Phys.2005,77:513~577.
    [8]喀兴林.高等量子力学(第二版)[M].高等教育出版社,2001.
    [9]王义遒.原子的激光冷却与陷俘[M].北京大学出版社,2007.
    [10] Meystre P. Atom optics [M]. New York: Springer-Verlag,2001.
    [11] Yuan Zhen-Sheng, Chen Yu-Ao, Zhao Bo, Chen Shuai, J rg Schmiedmayerand Pan Jian-Wei. Experimental demonstration of a BDCZ quantum repeater node [J].Nature,2008,454:1098~1101.
    [12] Jaksch D and Zoller P. The cold atom Hubbard toolbox [J]. Annals of Physics,2005,315:52~79.
    [13] Bloch I. Quantum coherence and entanglement with ultracold atoms in opticallattices [J]. Nature,2008,453:1016~1022.
    [14] József Fortágh and Claus Zimmermann. Magnetic microtraps for ultracoldatoms [J]. Rev. Mod. Phys.2007,79:235~289.
    [15] Philipp Treutlein, Peter Hommelhoff, Tilo Steinmetz, Theodor W. Hansch,and Jakob Reichel. Coherence in microchip traps [J]. Phys. Rev. Lett.2004,92:203005(1~4).
    [16] Herbert Walther, Benjamin T H Varcoe, Berthold-Georg Englert and ThomasBecker. Cavity quantum electrodynamics [J]. Rep. Prog. Phys.2006,69:1325~1382.
    [17] Saffman M, Walker T G, and M lmer K. Quantum information with Rydbergatoms [J]. Rev. Mod. Phys.2010,82:2313~2363.
    [18] Gallagher T F. Rydberg atoms [J]. Rep. Prog. Phys.1988,51:143-188.
    [19] Jaksch D, Cirac J I, Zoller P, Rolston S L, C té R, and Lukin M D. Fastquantum gates for neutral atoms [J]. Phys. Rev. Lett.2000,85:2208~2211.
    [20] Lukin M D, Fleischhauer M, Coté R, Duan L M, Jaksch D, Cirac J I, andZoller P. Dipole Blockade and Quantum Information Processing in Mesoscopic AtomicEnsembles [J]. Phys. Rev. Lett.2001,87:037901(1~4).
    [21] Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G, andSaffman M. Rabi Oscillations between Ground and Rydberg States with Dipole-DipoleAtomic Interactions [J]. Phys. Rev. Lett.2008,100:113003(1~4).
    [22] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G andSaffman M. Observation of Rydberg blockade between two atoms [J]. Nature Physics,2009.
    [23] Saffman M and Walker T G.Analysis of a quantum logic device based ondipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A2005,72:022347(1~21).
    [24] Clarke John and Wilhelm Frank K. Superconducting quantum bits[J]. Nature,2008,453:1031~1042.
    [25] Martinis J M, Nam S, Aumentado J, and Urbina C. Rabi oscillations in a largeJosephson-junction qubit [J]. Phys. Rev. Lett.2002,89:117901(1~4).
    [26] Geller M R and Cleland A N. Superconducting qubits coupled tonanoelectromechanical resonators: An architecture for solid-state quantum-informationprocessing [J]. Phys. Rev. A.2005,71:032311(1~17).
    [27] Schoelkopf R J and Girvin S M. Wiring up quantum systems [J]. Nature,2008,451:664~669.
    [28] Blais Alexandre, Huang Ren-Shou, Wallraff Andreas, Girvin S M, andSchoelkopf R. J. Cavity quantum electrodynamics for superconducting electricalcircuits: An architecture for quantum computation [J]. Phys. Rev. A2004,69:062320(1~14).
    [29] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S,Girvin S M and Schoelkopf R J. Strong coupling of a single photon to asuperconducting qubit using circuit quantum electrodynamics [J]. Nature,2004,431:162~167.
    [30] Sillanp Mika A, Park Jae I and Simmonds Raymond W. Coherent quantumstate storage and transfer between two phase qubits via a resonant cavity [J]. Nature,2007,449:438~442.
    [31] Majer J, Chow J M, Gambetta J M, Koch Jens, Johnson B R, Schreier J A,Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais1A, Devoret M H, Girvin S Mand Schoelkopf R J. Coupling superconducting qubits via a cavity bus [J]. Nature,2007,449:443~447.
    [32] Rabl P, DeMille D, M. Doyle J, Lukin M D, Schoelkopf R J, and Zoller P.Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid StateCircuits [J]. Phys. Rev. Lett.2006,97:033003(1~4).
    [33] Atac Imamo lu. Cavity QED Based on Collective Magnetic Dipole Coupling:Spin Ensembles as Hybrid Two-Level Systems [J]. Phys. Rev. Lett.2009,102:083602(1~4).
    [34] Wesenberg J H, Ardavan A, Briggs G A D, Morton J J L, Schoelkopf R J,Schuster D I, and M lmer K. Quantum Computing with an Electron Spin Ensemble [J].Phys. Rev. Lett.2009,103:070502(1~4).
    [35] David Petrosyan, Guy Bensky, Gershon Kurizki, Igor Mazets, JohannesMajer, and J rg Schmiedmayer. Reversible state transfer between superconductingqubits and atomic ensembles [J]. Phys. Rev. A,2009,79:040304(1~4).
    [36] Schwab Keith C and Roukes Michael L. Putting Mechanics into QuantumMechanics [J]. Physics Today,2005,7:36~42.
    [37] Ekinci K L and Roukes M L. Nanoelectromechanical systems [J]. Rev. Sci.Instrum.2005,76:061101(1~12).
    [38] Ekinci K L. Electromechanical Transducers at the Nanoscale: Actuation andSensing of Motion in Nanoelectromechanical Systems [J]. Small,2005,8-9:786~797
    [39] Kippenberg T J and Vahala K J. Cavity Opto-Mechanics [J]. Opt. Exp.2007,15:17172~17205.
    [40] Kippenberg T J and Vahala K J. Cavity Optomechanics: Back-Action at theMesoscale [J]. Science,2008,321:1172~1176.
    [41] Wilson-Rae I, Nooshi N, Zwerger W, and Kippenberg T J. Theory of GroundState Cooling of a Mechanical Oscillator Using Dynamical Backaction [J]. Phys. Rev.Lett.2007,99:093901(1~4).
    [42] Marquardt Florian, Chen Joe P, Clerk A A, and Girvin S M. Quantum Theoryof Cavity-Assisted Sideband Cooling of Mechanical Motion [J]. Phys. Rev. Lett.2007,99:093902(1~4).
    [43] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and SchwabK C. Preparation and detection of a mechanical resonator near the ground state ofmotion [J]. Nature,2010,463:72~75.
    [44] O’Connell A D, Hofheinz M, Ansmann M, Bialczak Radoslaw C, LenanderM, Erik Lucero, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis John M,and Cleland A N. Quantum ground state and single-phonon control of a mechanicalresonator [J]. Nature,2010,464:697~703.
    [45] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi.Entangling Macroscopic Oscillators Exploiting Radiation Pressure [J]. Phys. Rev. Lett.2002,88:120401(1~4).
    [46] Marshall William, Simon Christoph, Penrose Roger, and Bouwmeester Dik.Towards Quantum Superpositions of a Mirror [J]. Phys. Rev. Lett.2003,91:130401(1~4).
    [47] Wei L F, Liu Yu-xi, Sun C P, and Nori Franco. Probing tiny motions ofnanomechanical resonators: Classical or Quantum Mechanical?[J] Phys. Rev. Lett.2006,97:237201(1~4).
    [48] Cleland A N and Geller M R. Superconducting Qubit Storage andEntanglement with Nanomechanical Resonators [J]. Phys. Rev. Lett.2004,93:070501(1~4).
    [49] LaHaye M D, Suh J, Echternach P M, Schwab K C, and Roukes M L.Nanomechanical measurements of a superconducting qubit [J]. Nature,2009,459:960~964.
    [50] Rabl P, Cappellaro P, Gurudev Dutt M V, Jiang L, Maze J R, and Lukin M D.Strong magnetic coupling between an electronic spin qubit and a mechanical resonator[J]. Phys. Rev. B,2009,79:041302(1~4).
    [51] Xue Fei, Wang Y D, Liu Yu-xi, and Nori Franco. Cooling a micromechanicalbeam by coupling it to a transmission line [J]. Phys. Rev. B.2007,76:205302(1~6).
    [52] Regal C A, Teufel J D, and Lehnert K W. Measuring nanomechanical motionwith a microwave cavity interferometer [J]. Nat. Phys.2008,4:555~560.
    [53]廖洁桥.纳米机械共振腔的相干操纵及其在量子信息中的应用[D].长沙:湖南师范大学,2008:13~25.
    [1] Nemoto Kae and Munro W J. Nearly Deterministic Linear OpticalControlled-NOT Gate [J]. Phys. Rev. Lett.2004,93:250502(1~4).
    [2] Munro W J, Nemoto Kae, Beausoleil R G and Spiller T P. High-efficiencyquantum-nondemolition single-photon-number-resolving detector [J]. Phys. Rev. A,2005,71:033819(1~4).
    [3] Gao Ming, Hu Wen-Hua and Li Cheng-Zu. Generating polarization-entangledW states using weak nonlinearity [J]. J. Phys. B: At. Mol. Opt. Phys.2007,40:3525~3529.
    [4]李承祖,黄明球,陈平形,梁林梅.量子通信和量子计算[M].长沙:国防科技大学出版社,2000.
    [5] Nielsen M A and Chuang I L. Quantum Computation and QuantumInformation [M]. United Kingdom: Cambridge University Press,2000.
    [6] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki and Karol Horodecki.Quantum entanglement [J]. Rev. Mod. Phys.2009,81:867~942.
    [7] Dür W, Vidal G, and J. I. Cirac Three qubits can be entangled in twoinequivalent ways [J]. Phys. Rev. A,2000,62:062314(1~12).
    [8] Pankaj Agrawal and Arun Pati. Perfect teleportation and superdense codingwith W states [J]. Phys. Rev. A,2002,74:062320(1~5).
    [9] Shi Bao-Sen and Tomita Akihisa. Teleportation of an unknown state by Wstate [J]. Phys. Letts. A,2002,296:161~164.
    [10] Joo J, Park Y J, Oh S and Kim J. Quantum teleportation via a W state [J].New J. Phys.2003,5:136(1~9).
    [11] Guo G C and Zhang Y S. Scheme for preparation of the W state via cavityquantum electrodynamics [J]. Phys. Rev. A,2002,65:054302(1~4).
    [12] Christian F. Roos, Mark Riebe, Hartmut H ffner, Wolfgang H nsel, JanBenhelm, Gavin P. T. Lancaster, Christoph Becher, Ferdinand Schmidt-Kaler, RainerBlatt. Control and Measurement of Three-Qubit Entangled States [J]. Science,2004,304:1478~1480.
    [13] Takashi Yamamoto, Kiyoshi Tamaki, Masato Koashi, and Nobuyuki Imoto.Polarization-entangled W state using parametric down-conversion [J]. Phys. Rev. A,2002,66:064301(1~4).
    [14] Xiang Guo-Yong, Zhang Yong-Sheng, Li Jian and Guo Guang-Can. Schemefor preparation of the W-state by using linear optical elements [J]. J. Opt. B: QuantumSemiclass. Opt.2003,5:208~210.
    [15] Manfred Eibl, Nikolai Kiesel, Mohamed Bourennane, Christian Kurtsiefer,and Harald Weinfurter. Experimental Realization of a Three-Qubit Entangled W State[J]. Phys. Rev. Lett.2004,92:077901(1~4).
    [16] Said R S, Wahiddin M R B and Umarov B A. Generation of Three-QubitEntangled W-State by Nonlinear Optical State Truncation [J]. J. Phys. B: At. Mol. Opt.Phys.2006,39:1269~1273.
    [17] Samuel L. Braunstein and Peter van Loock. Quantum information withcontinuous variables [J]. Rev. Mod. Phys.2005,77:513~577.
    [18] Nemoto Kae and Munro W J. Universal quantum computation on the powerof quantum non-demolition measurements [J]. Phys. Lett. A,2005,344:104~110.
    [19] Munro W J, Nemoto K and Spiller T P. Weak nonlinearities: a new route tooptical quantum computation [J]. New J. Phys.2005,7:137(1~12).
    [20] Spiller T P, Nemoto Kae, Braunstein Samuel L, Munro W J, van Loock P andMilburn G J. Quantum computation by communication [J]. New J. Phys.2006,8:30(1~25).
    [21] van Loock P, Munro W J, Nemoto Kae, Spiller T P, Ladd T D, BraunsteinSamuel L, and Milburn G J. Hybrid quantum computation in quantum optics [J]. Phys.Rev. A,2008,78:022303(1~5).
    [22] Jin Guang-Sheng, Lin Yuan, and Wu Biao. Generating multiphotonGreenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity [J]. Phys. Rev. A,2007,75:054302(1~4).
    [23] Barrett S D, Pieter Kok, Nemoto Kae, Beausoleil R G, Munro W J and SpillerT P. Symmetry analyzer for nondestructive Bell-state detection using weaknonlinearities [J]. Phys. Rev. A,2005,71:060302(1~4).
    [24] Qian Jun, Feng Xun-Li, and Gong Shang-Qing. Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection [J].Phys. Rev. A,2005,72:052308(1~3).
    [1] Briegel H J, Dür W, Cirac J I, and Zoller P. Quantum Repeaters: The Role ofImperfect Local Operations in Quantum Communication [J]. Phys. Rev. Lett.1998,81:5932~5935.
    [2] Philipp Treutlein, Peter Hommelhoff, Tilo Steinmetz, Theodor W. Hansch, andJakob Reichel. Coherence in microchip traps [J]. Phys. Rev. Lett.2004,92:203005(1~4).
    [3] Kimble H J. The quantum internet [J]. Nature2008,453:1023~1030.
    [4] Chien Liu, Zachary Dutton, Cyrus H. Behroozi Lene Vestergaard Hau.Observation of coherent optical information storage in an atomic medium using haltedlight pulses [J]. Nature,2001,409:490~493.
    [5] D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, M. D. Lukin.Storage of Light in Atomic Vapor [J]. Phys. Rev. Lett.2001,86:783~786.
    [6] Duan L M, Lukin M D, Cirac J I and P. Zoller. Long-distance quantumcommunication with atomic ensembles and linear optics [J]. Nature,2001,414:413~418.
    [7] Matsukevich D N and Kuzmich A. Quantum state transfer between matter andlight [J]. Science,2004,306:663~666.
    [8] Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J andKimble H J. Measurement-induced entanglement for excitation stored in remote atomicensembles [J]. Nature,2005,438:828~832.
    [9] Matsukevich D N, Chanelière T, Bhattacharya M, Lan S Y, Jenkins S D,Kennedy T A B, and Kuzmich A. Entanglement of a Photon and a Collective AtomicExcitation [J]. Phys. Rev. Lett.2005,95:040405(1~4).
    [10] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B andKuzmich A. Storage and retrieval of single photons transmitted between remotequantum memories [J]. Nature,2005,438:833~836.
    [11] Chou Chin-Wen, Laurat Julien, Deng Hui, Kyung Soo Choi, Hugues deRiedmatten, Daniel Felinto, Kimble H Jeff. Functional Quantum Nodes forEntanglement Distribution over Scalable Quantum Networks [J]. Science,2007,316:1316~1320.
    [12] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Zhao R, Kennedy TA B and Kuzmich A. Quantum Interference of Electromagnetic Fields from RemoteQuantum Memories [J]. Phys. Rev. Lett.2007,98:113602(1~4).
    [13] Chen Shuai, Chen Yu-Ao, Zhao Bo, Yuan Zhen-Sheng, J rg Schmiedmayer,and Pan Jian-Wei. Demonstration of a Stable Atom-Photon Entanglement Source forQuantum Repeaters [J]. Phys. Rev. Lett.2007,99:180505(1~4).
    [14] Yuan Zhen-Sheng, Chen Yu-Ao, Zhao Bo, Chen Shuai, J rg Schmiedmayerand Pan Jian-Wei. Experimental demonstration of a BDCZ quantum repeater node [J].Nature,2008,454:1098~1101.
    [15] Zhao Bo, Chen Zeng-Bing, Chen Yu-Ao, J rg Schmiedmayer and PanJian-Wei. Robust Creation of Entanglement between Remote Memory Qubits [J]. Phys.Rev. Lett.2007,98:240502(1~4).
    [16] Chen Zeng-Bing, Zhao Bo, Chen Yu-Ao, J rg Schmiedmayer and PanJian-Wei. Fault-tolerant quantum repeater with atomic ensembles and linear optics [J].Phys. Rev. A2007,76:022329(1~12).
    [17] Jiang L, Taylor J M and Lukin M D. Fast and robust approach tolong-distance quantum communication with atomic ensembles [J]. Phys. Rev. A2007,76:012301(1~10).
    [18] Nicolas Sangouard, Christoph Simon, Zhao Bo, Chen Yu-Ao, Hugues deRiedmatten, Pan Jian-Wei, and Nicolas Gisin. Robust and efficient quantum repeaterswith atomic ensembles and linear optics [J]. Phys. Rev. A2008,77:062301(1~7).
    [19] Gao Ming, Liang Lin-Mei, Li Cheng-Zu, and Wang Xiang-Bin. Robustquantum repeater with atomic ensembles against phase and polarization instability [J].Phys. Rev. A,2009,79:042301(1~4).
    [20] Zhang Bin-bin and Xu Ya-qiong. Atomic-ensemble-based quantum repeateragainst general polarization and phase noise [J]. Phys. Rev. A,2011,84:014304(1~3).
    [21] Yin Zhen-Qiang, Zhao Yi-Bo, Yang Yong, Han Zheng-Fu, and Guo Guang-Can. Quantum repeaters free of polarization disturbance and phase noise [J]. Phys. Rev.A,2009,78:044302(1~4).
    [22] Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, and WeinfurterH. Towards Long-Distance Atom-Photon Entanglement [J]. Phys. Rev. Lett.2008,101:260403(1~4).
    [23] Terry Rudolph and Lov Grover. Quantum Communication Complexity ofEstablishing a Shared Reference Frame [J]. Phys. Rev. Lett.2003,91:217905(1~4).
    [24] Gisin Nicolas, Ribordy Gr é goire, Tittel Wolfgang, and Zbinden Hugo.Quantum cryptography [J]. Rev. Mod. Phys.2002,74:145~195.
    [25] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Phys. Rev.Lett.1991,67:661~664.
    [26] Yuan Zhen-Sheng, Chen Yu-Ao, Chen Shuai, Zhao Bo, Koch Markus,Strassel Thorsten, Zhao Yong, Zhu Gan-Jun, Schmiedmayer J rg, and Pan Jian-Wei.Synchronized Independent Narrow-Band Single Photons and Efficient Generation ofPhotonic Entanglement [J]. Phys. Rev. Lett.2007,98:180503(1~4).
    [1] Ekinci K L and Roukes M L. Nanoelectromechanical systems [J]. Rev. Sci.Instrum.2005,76:061101(1~12).
    [2] Kippenberg T J and Vahala K J. Cavity Optomechanics: Back-Action at theMesoscale [J]. Science,2008,321:1172~1176.
    [3] Wilson-Rae I, Nooshi N, Zwerger W, and Kippenberg T J. Theory of GroundState Cooling of a Mechanical Oscillator Using Dynamical Backaction [J]. Phys. Rev.Lett.2007,99:093901(1~4).
    [4] Marquardt Florian, Chen Joe P, Clerk A A, and Girvin S M. Quantum Theoryof Cavity-Assisted Sideband Cooling of Mechanical Motion [J]. Phys. Rev. Lett.2007,99:093902(1~4).
    [5] Genes C, Vitali D, Tombesi P, Gigan S, and Aspelmeyer M. Ground-statecooling of a micromechanical oscillator: Comparing cold damping and cavity-assistedcooling schemes [J]. Phys. Rev. A,2008,77:033804(1~9).
    [6] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and Schwab KC. Preparation and detection of a mechanical resonator near the ground state of motion[J]. Nature,2010,463:72~75.
    [7] O’Connell A D, Hofheinz M, Ansmann M, Bialczak Radoslaw C, Lenander M,Erik Lucero, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis John M, andCleland A N. Quantum ground state and single-phonon control of a mechanicalresonator [J]. Nature,2010,464:697~703.
    [8] Teufel J D, Donner T, Li Dale, Harlow J W, Allman M S, Cicak K, Sirois A J,Whittaker J D, Lehnert K W, and Simmonds R W. Sideband cooling ofmicromechanical motion to the quantum ground state [J]. Nature,2011,475:359~363.
    [9] Armour A D, Blencowe M P, and Schwab K C. Entanglement and decoherenceof a micromechanical resonator via coupling to a cooper-Pair Box [J]. Phys. Rev. Lett.2002,88:148301(1~4).
    [10] Cleland A N and Geller M R. Superconducting Qubit Storage andEntanglement with Nanomechanical Resonators [J]. Phys. Rev. Lett.2004,93:070501(1~4).
    [11] LaHaye M D, Suh J, Echternach P M, Schwab K C, and Roukes M L.Nanomechanical measurements of a superconducting qubit [J]. Nature,2009,459:960~964.
    [12] Tian L and Zoller P. Coupled Ion-Nanomechanical Systems [J]. Phys. Rev.Lett.2004,93:246403(1~4).
    [13] Singh S, Bhattacharya M, Dutta O, and Meystre P. Coupling NanomechanicalCantilevers to Dipolar Molecules [J]. Phys. Rev. B,2008,101:263603(1~4).
    [14] Wang Ying-Ju, Eardley Matthew, Knappe Svenja, Moreland John, HollbergLeo, and Kitching John. Magnetic Resonance in an Atomic Vapor Excited by aMechanical Resonator [J]. Phys. Rev. Lett.2006,97:227602(1~4).
    [15] Philipp Treutlein, David Hunger, Stephan Camerer, Theodor W. H nsch, andJakob Reichel. Bose-Einstein Condensate Coupled to a Nanomechanical Resonator onan Atom Chip [J]. Phys. Rev. Lett.2007,99:140403(1~4).
    [16] David Hunger, Stephan Camerer, Theodor W. H nsch, Daniel K nig, J rg P.Kotthaus, Jakob Reichel, and Philipp Treutlein. Resonant Coupling of a Bose-EinsteinCondensate to a Micromechanical Oscillator [J]. Phys. Rev. Lett.2010,104:143002(1~4).
    [17] József Fortágh and Claus Zimmermann. Magnetic microtraps for ultracoldatoms [J]. Rev. Mod. Phys.2007,79:235~289.
    [18] Philipp Treutlein, Peter Hommelhoff, Tilo Steinmetz, Theodor W. Hansch,and Jakob Reichel. Coherence in microchip traps [J]. Phys. Rev. Lett.2004,92:203005(1~4).
    [19] Gao Ming,Liu Yu-xi, and Wang Xiang-Bin. Coupling Rydberg atoms tosuperconducting qubits via nanomechanical resonator [J]. Physical Review A,2011,83:022309(1~5).
    [20] Geller M R and Cleland A N. Superconducting qubits coupled tonanoelectromechanical resonators: An architecture for solid-state quantum-informationprocessing [J]. Phys. Rev. A.2005,71:032311(1~17).
    [21] Saffman M and Walker T G. Quantum information with Rydberg atoms [J].Rev. Mod. Phys.2010,82:2313~2363.
    [22] Li Wenhui, Mourachko I, Noel M W, and Gallagher T F. Millimeter-wavespectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects ofthe ns, np, and nd series [J]. Phys. Rev. A,2003,67:052502(1~7).
    [23] Zhou Li-gong, Wei L F, Gao Ming, and Wang Xiang-bin. Strong couplingbetween two distant electronic spins via a nanomechanical resonator [J]. PhysicalReview A,2010,81:042323(1~5).
    [24] James D F V and Jerke J. Effective Hamiltonian theory and its applications inquantum information [J]. Can. J. Phys.2007,85:625~632.
    [25] Crosse J A, Ellingsen Simen, Clements Kate, Buhmann Stefan Y, andScheel Stefan. Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces[J]. Phys. Rev. A,2010,82:010901(1~4).
    [26] Clarke John and Wilhelm Frank K. Superconducting quantum bits[J]. Nature,2008,453:1031~1042.
    [27] Michael Mayle, Igor Lesanovsky, and Peter Schmelcher. Magnetic trappingof ultracold Rydberg atoms in low angular momentum states [J]. Phys. Rev. A,2009,80:053410(1~12).
    [28] Sandoghdar V, Sukenik C I, Hinds E A, and Haroche Serge. Directmeasurement of the van de Waals interaction between an atom and its image in amicron-sized cavity [J]. Phys. Rev. Lett.68,3432~3435(1992).
    [29] S rensen Anders S, van der Wal Caspar H, Childress Lilian I and LukinMikhail D. Capacitive Coupling of Atomic Systems to Mesoscopic Conductors [J].Phys. Rev. Lett.2004,92:063601(1~4).
    [30] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G andSaffman M. Observation of Rydberg blockade between two atoms [J]. Nat. Phys.2009,5:110~114.
    [1] Schoelkopf R J and Girvin S M. Wiring up quantum systems [J]. Nature,2008,451:664~669.
    [2] Clarke John and Wilhelm Frank K. Superconducting quantum bits[J]. Nature,2008,453:1031~1042.
    [3] Rabl P, DeMille D, M. Doyle J, Lukin M D, Schoelkopf R J, and Zoller P.Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid StateCircuits [J]. Phys. Rev. Lett.2006,97:033003(1~4).
    [4] David Petrosyan, Guy Bensky, Gershon Kurizki, Igor Mazets, Johannes Majer,and J rg Schmiedmayer. Reversible state transfer between superconducting qubits andatomic ensembles [J]. Phys. Rev. A,2009,79:040304(1~4).
    [5] Atac Imamo lu. Cavity QED Based on Collective Magnetic Dipole Coupling:Spin Ensembles as Hybrid Two-Level Systems [J]. Phys. Rev. Lett.2009,102:083602(1~4).
    [6] Wesenberg J H, Ardavan A, Briggs G A D, Morton J J L, Schoelkopf R J,Schuster D I, and M lmer K. Quantum Computing with an Electron Spin Ensemble [J].Phys. Rev. Lett.2009,103:070502(1~4).
    [7] Schuster D I, Sears A P, Ginossar E, DiCarlo L, Frunzio L, Morton J J L, WuH, Briggs A D G, Buckley B B, Awschalom D D, and Schoelkopf R J.High-Cooperativity Coupling of Electron-Spin Ensembles to Superconducting Cavities[J]. Phys. Rev. Lett.2010,105:140501(1~4).
    [8] Kubo Y, Ong F R, Bertet P, Vion D, Jacques V, Zheng D, Dréau A, Roch J F,Auffeves A, Jelezko F, Wrachtrup J, Barthe M F, Bergonzo P, and Esteve D. StrongCoupling of a Spin Ensemble to a Superconducting Resonator [J]. Phys. Rev. Lett.2010,105:140502(1~4).
    [9] Wu Hua, George Richard E, Wesenberg Janus H, M lmer Klaus, SchusterDavid I, Schoelkopf Robert J, Itoh Kohei M, Arzhang Ardavan, Morton John J L, andBriggs G. Andrew D. Storage of Multiple Coherent Microwave Excitations in anElectron Spin Ensemble [J]. Phys. Rev. Lett.2010,105:140503(1~4).
    [10] R. Amsüss, Koller Ch, N bauer T, Putz S, Rotter S, Sandner K, Schneider S,Schramb ck M, Steinhauser G, Ritsch H, Schmiedmayer J, and Majer J. Cavity QEDwith magnetically coupled collective spin states [J]. Phys. Rev. Lett.2011,107:060502(1~4).
    [11] Dobrovitski V V, Feiguin A E, Awschalom D D, and Hanson R. Decoherencedynamics of a single spin versus spin ensemble [J]. Phys. Rev. B2008,77:245212(1~6).
    [12] Twamley J and Barrett S D. Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond [J]. Phys. Rev. B,2010,81:241202(1~4).
    [13] Marcos D, Wubs M, Taylor J M, Aguado R, Lukin M D, and S rensen A S.Coupling Nitrogen-Vacancy Centers in Diamond to Superconducting Flux Qubits [J].Phys. Rev. Lett.2011,105:210501(1~4).
    [14] Rugar D, Budakian R, Mamin H J, and Chui B W. Single spin detection bymagnetic resonance force microscopy [J]. Nature,2004,430:329~332.
    [15] Grinolds M S, Maletinsky P, Hong S, Lukin M D, Walsworth R L, andYacoby A. Quantum control of proximal spins using nanoscale magnetic resonanceimaging [J]. Nat. Phys.2011,7:687~692.
    [16] Rabl P, Cappellaro P, Gurudev Dutt M V, Jiang L, Maze J R, and Lukin M D.Strong magnetic coupling between an electronic spin qubit and a mechanical resonator[J]. Phys. Rev. B,2009,79:041302(1~4).
    [17] Xu Z Y, Hu Y M, Yang W L, Feng M, and Du J F. Deterministicallyentangling distant nitrogen-vacancy centers by a nanomechanical cantilever [J]. Phys.Rev. A,2009,80:022335(1~4).
    [18] Zhou Li-gong, Wei L F, Gao Ming, and Wang Xiang-bin. Strong couplingbetween two distant electronic spins via a nanomechanical resonator [J]. PhysicalReview A,2010,81:042323(1~5).
    [19] Regal C A, Teufel J D, and Lehnert K W. Measuring nanomechanical motionwith a microwave cavity interferometer [J]. Nat. Phys.2008,4:555~560.
    [20] Wilson-Rae I, Nooshi N, Zwerger W, and Kippenberg T J. Theory of GroundState Cooling of a Mechanical Oscillator Using Dynamical Backaction [J]. Phys. Rev.Lett.2007,99:093901(1~4).
    [21] Marquardt Florian, Chen Joe P, Clerk A A, and Girvin S M. Quantum Theoryof Cavity-Assisted Sideband Cooling of Mechanical Motion [J]. Phys. Rev. Lett.2007,99:093902(1~4).
    [22] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and SchwabK C. Preparation and detection of a mechanical resonator near the ground state ofmotion [J]. Nature,2010,463:72~75.
    [23] Gao Ming, Wu Chun-Wang, Deng Zhi-Jiao, Zou Wen-Jie, Zhou Li-gong, LiCheng-Zu, and Wang Xiang-Bin. Controllable strong coupling of individual electronicspin qubits to a transmission line resonator via nanomechanical resonators. PhysicsLetters A,2012,376:595~598.
    [24] Rabl P, J. Kolkowitz S, Koppens F H L, Harris J G E, Zoller P, and Lukin MD. A quantum spin transducer based on nanoelectromechanical resonator arrays [J]. Nat.Phys.2010,6:602~608.
    [25] Ronald Hanson and David D. Awschalom. Coherent manipulation of singlespins in semiconductors [J]. Nature,2008,453:1043~1049.
    [26] Blais Alexandre, Huang Ren-Shou, Wallraff Andreas, Girvin S M, andSchoelkopf R. J. Cavity quantum electrodynamics for superconducting electricalcircuits: An architecture for quantum computation [J]. Phys. Rev. A2004,69:062320(1~14).
    [27] Tian L, Allman M S, and Simmonds R W. Parametric coupling betweenmacroscopic quantum resonators [J]. New J. Phys.2008,10:115001(1~15).
    [28] Ekinci K L and Roukes M L. Nanoelectromechanical systems [J]. Rev. Sci.Instrum.2005,76:061101(1~12).
    [29] Philipp Treutlein, David Hunger, Stephan Camerer, Theodor W. H nsch, andJakob Reichel. Bose-Einstein Condensate Coupled to a Nanomechanical Resonator onan Atom Chip [J]. Phys. Rev. Lett.2007,99:140403(1~4).
    [30] Mamin H J, Poggio M, Degen C L, and Rugar D. Nuclear magnetic resonanceimaging with90-nm resolution [J]. Nat. Nano.2007,2:301~306.
    [31] Nielsen M A and Chuang I L. Quantum Computation and QuantumInformation [M]. United Kingdom: Cambridge University Press,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700