用户名: 密码: 验证码:
多铁性与弱铁磁性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多铁性与多铁材料成为凝聚态物理和材料科学领域最热门的课题之一。多铁材料内部铁电序与磁序等序参量共存并且耦合,不仅在物理上表现出丰富而有趣的特性,而且在传感、存储、逻辑运算和磁电控制等自旋电子学应用方面展现出新奇而光明的前景。
     多铁材料的体系十分庞杂,耦合机制也复杂多样。在第一章中,我们介绍了多铁性的物理内涵和铁电性与磁性聚合于单一体系的困难,并详细罗列了几种铁电性与磁性成功共存的机制。在常规铁电体中讨论了独立体系与孤对电子导致铁电性两类,重点放在铁磁性铁电体BiMnO3和室温多铁材料BiFeO3上。非常规铁电体的铁电序与磁序具有共同的来源或原生的因果关系(比如磁性导致铁电性),因此磁电耦合作用较强。几何铁电体中,铁电性与磁性都与结构转变密切相关(六角YMnO3和HoMnO3)。电荷有序体系中,铁电序起源于离子占位有序或相邻离子成键有序(LuFe2O4, Fe3O4), RMn2O5的铁电性则是电荷有序与交换伸缩效应共同作用的结果。磁致铁电体由于具有原生的磁电因果关系而最受关注。螺旋自旋序为非共线磁序,导致的铁电性在许多化合物中被发现,微观机制有DM模型/自旋流模型和电流抵消模型。E型反铁磁为共线磁序,铁电性机制与交换伸缩有关。除了以上几类,还有第四种基本铁性——铁旋性体系。该体系具有本征的磁电耦合,并表现出新颖的光学磁电效应。多铁材料的应用,主要在磁场传感器、电场调控交换偏置和多铁隧道结实现四种逻辑态等方面作了简介。
     基于DM模型在多铁研究中的重要地位以及DM相互作用与弱铁磁性的关系,我们选定多铁性与弱铁磁的关系作为研究课题。第二章详细推导了弱铁磁性的起源——DM相互作用,并选择了弱铁磁材料Ca3Mn2O7和LuFeO3作为研究对象。
     Ca3Mn2O7具有铁电极化,由结构畸变引起,其弱铁磁性亦与结构畸变相关。磁化-电场依赖关系的测量证实了Ca3Mn2O7的多铁性。我们的讨论比较成功的给出了单畴的微观机制。对于多晶多畴,片面强调电场对极化的转动效应或拉伸效应都不能完全解释实验,须将二者综合起来考虑。另外,LuFeO3虽然和BiFeO3的结构相同,和LuFe2O4的组分相同,但是却没有铁电极化,也没有多铁性。结构和磁性研究显示其具有强各向异性和超高矫顽力,是一种超硬磁材料。
     回到我们的研究课题:多铁性与弱铁磁的关系。实验证实了我们最初关于铁电弱铁磁体具有磁电耦合的推断。结构畸变作为铁电极化和弱铁磁性的共同起源,带来了强磁电耦合作用,为磁电调控提供了便利。虽然Ca3Mn2O7的磁转变温度与磁电耦合温度都很低,但该工作为寻找室温下的强磁电耦合材料提供了基础和范例。
Multiferroicity and multiferroics have become one of the hottest topics of condensed matter physics and material science in recent years. The coexistence and coupling of ferroelectric order and magnetic order in multiferroics not only bring out abundant and intriguing physical properties, but also provide novel and promising potential applications in spintronics, such as magnetic sensor, data storage, logical operation and magnetoelectric controlling.
     Among the dozens of multiferroic materials, the coupling mechanisms are quite different. In Chapter I, we highlight the physical concepts of multiferroicity and the challenges to integrate the ferroelectricity and magnetism into a single-phase system. Subsequently, we summarize various strategies used to combine the two types of order. In the sections about proper ferroelectrics, independent systems and ferroelectricity induced by lone-pair electrons are discussed, with em-phasis on ferromagnetic ferroelectric BiMnO3and room-temperature multiferroic material BiFeO3. The ferroelectric order and magnetic order of improper fer-roelectrics have the common physical origin or intrinsic causal relationship, e.g. ferroelectricity induced by magnetism, and therefore the coupling between them is strong. In geometric ferroelectrics, ferroelectricity and magnetism are both closely related with structural transition (hexagonal YMnO3and HoMnOs). In charge ordered systems, ferroelectricity originates from site-centered order and/or bond-centered order (LuFe2O4, Fe3O4), and the combination of charge order and exchange striction for RMnO5. Special attention is paid to the ferroelectrics whose ferroelectricity is induced by magnetism, for the intrinsic magnetoelectric causal relationship. The ferroelectricity induced by non-collinear spiral/helical order is observed in numerous compounds, with the microscopic mechanism ex-plained as DM model/spin current model and electric current cancellation model. E-type antiferromagnetic order is collinear, and leads to the ferroelectricity in-volving with exchange striction. In spite of the above, the ferrotoroidic systems also have intrinsic magneto electric coupling, and cause some interesting optical magnetoelectric effects. Regarding the application of multiferroics, we give an introduction to magnetic field sensor, electric field control of exchange bias, and four logical states realized in a tunnelling junction.
     Noting the importance of DM model in multiferroic researches and the deter-mining effect of DM interaction on weak ferromagnetism, we choose the relation-ship between multiferroicity and weak ferromagnetism as the research subject. In Chapter II, the origin of weak ferromagnetism, DM interaction, is deduced in detail, and two weak ferromagnetic compounds, Ca3Mn2O7and LuFeO3, is selected.
     On the one hand, Ca3Mn2O7has ferroelectricity and weak magnetism, which are both due to structural distortion. The magnetization-electric field measure-ments verify the multiferroicity of Ca3Mn2O7. We succeed in the explanation for a single domain. As for the polycrystalline multidomain, neither the rotating effect nor the stretching effect can singly explain all the experiments, so the coordination of them is expected. On the other hand, although LuFeO3has the same structure with BiFeO3and the same components with LuFe2O4, it does not possess ferro-electricity or multiferroicity. The structural and magnetic investigations reveal its large anisotropy and extremely high coercivity, and thus being a super hard magnetic material.
     The experiments manifest the truth of our initial conjecture that the ferro-electric weak ferromagnet should have magnetoelectric coupling. As the common origin of ferroelectricity and weak magnetism, structural distortion gives rise to strong magnetoelectric coupling and convenience for magnetoelectric modulation. Even though the magnetic transition point and the coupling temperature are both low, our work provides the foundation and a paradigm for the search of room-temperature multiferroics with strong magnetoelectric coupling.
引文
[1]Y. Tokura, J. Magn. Magn. Mater.310,1145 (2007).
    [2]P. Curie, J. Physique 3,393 (1894).
    [3]P. Debye, Z. Phys.36,300 (1926).
    [4]G. T. Rado and V. J. Folen, Phys. Rev. Lett.7,310 (1961).
    [5]M. Fiebig, J. Phys. D: Appl. Phys.38, R123 (2005).
    [6]C. W. Nan, M. I. Bichurin, S. X. Dong, and D. Viehland, J. Appl. Phys.103,031101 (2008).
    [7]M. Zeng, J. G. Wan, Y. Wang, H. Yu, J.-M. Liu, X. P. Jiang, and C. W. Nan, J. Appl. Phys. 95, 8069 (2004).
    [8]S. X. Dong, J. R. Chen, J. F. Li, and D. Viehland, Appl. Phys. Lett.83,4812 (2003).
    [9]N. Cai, C. W. Nan, J. Y. Zhai, and Y. H. Lin, Appl. Phys. Lett.84,3516 (2004).
    [10]C. W. Nan, G. Li, Y. Lin, and H. Chen, Phys. Rev. Lett.94, 197203 (2005).
    [11]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303,661 (2004).
    [12]J. R. Hattrick-Simpers, L. Y. Dai, M. Wuttig, I. Takeuchi, and E. Quandt, Rev. Sci. Instrum.78, 106103 (2007).
    [13]N. A. Spaldin and M. Fiebig, Science 309,391 (2005).
    [14]H. Schmid, Ferroelectrics 162,317 (1994).
    [15]K. F. Wang, J.-M. Liu, and Z. F. Ren, Adv. Phys.58:4,321 (2009).
    [16]B. B. van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig, Nature 449,702 (2007).
    [17]D. I. Khomskii, J. Magn. Magn. Mater.306,1 (2006).
    [18]R. E. Cohen, Nature 358,136 (1992).
    [19]A. F. Gavriliuk, S. A. Kharlamova, I. S. Lyubutin, I. A. Troyan, S. G. Ovchinnikov, A. M. Potseluiko, M. I. Eremet, and R. Boehler, JETP Lett.80,426 (2004).
    [20]H. Mo, C. H. Nelson, L. N. Bezmaternykh, and V. T. Temerov, Phys. Rev. B 78,214407 (2008).
    [21]E. Ascher, H. Rieder, H. Schmid, and H. Stoessel, J. Appl. Phys.37,1404 (1966).
    [22]E. Ascher, H. Schmid, and D. Tar, Solid State Commun.2,45 (1964).
    [23]H. Schmid, H. Rieder, and E. Ascher, Solid State Commun. 3, 327 (1965).
    [24]Y. N. Venevtsev, V. V. Gagulin, and I. D. Zhitomirsky, Ferroelectric 73,221 (1987).
    [25]L. Yan, J. F. Li, and D. Viehland, J. Appl. Phys.101,104107 (2007).
    [26]Y. Yang, J.-M. Liu, H. B. Huang, W. Q. Zou, P. Bao, and Z. G. Liu, Phys. Rev. B 70,132101 (2004).
    [27]G. A. Smolenskii, A. I. Agranovskaya, S. N. Popov, and V. A. Isupov, Sov. Phys. Usp.3,1981 (1958).
    [28]Y. N. Venevtsev and V. V. Gagulin, Ferroelectrics 162,23 (1994).
    [29]G. A. Smolenskii, Sov. Phys. Tech. Phys.28,2152 (1958).
    [30]V. A. Vokov, Sov. Phys. JETP.15,447 (1962).
    [31]T. Kimura, S. Kawamoto, Ⅰ. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67, 180401 (2003).
    [32]R. Wongmaneerung, X. Tan, R. W. McCallum, S. Ananta, and R. Yimnirun, Appl. Phys. Lett. 90,242905 (2007).
    [33]G. Trinquier and J. R. Hoffmann, J. Phys. Chem.88,6696 (1984).
    [34]G. W. Waston, S. C. Parker, and G. Kresse, Phys. Rev. B 59,8481 (1999).
    [35]R. Seshadri and N. A. Hill, Chem. Mater.13,2892 (2001).
    [36]T. Shishido, N. Mikamo, Y. Uratani, F. Ishii, and T. Oguchi, J. Phys.:Condens. Matter 16, S5677 (2002).
    [37]T. Yokosawa, A. A. Belik, T. Asaka, K. Kimoto, E. Takayama-Muromachi, and Y. Matsui, Phys. Rev. B 77,024111 (2008).
    [38]J. Y. Son and Y.-H. Shin, Appl. Phys. Lett.93,062902 (2008).
    [39]D. Lebeugle, D. Colson, A. Forget, and M. Viret, Appl. Phys. Lett. 91,022907 (2007).
    [40]M. Cazayous, Y. Gallais, and A. Sacuto, Phys. Rev. Lett.101,037601 (2008).
    [41]I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys.15,4835 (1982).
    [42]J. D. Bucci, B. K. Robertson, and W. J. James, J. Appl. Crystallogr.5,187 (1972).
    [43]V. V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel, Appl. Phys. Lett.90,172115 (2007).
    [44]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299,1719 (2003).
    [45]H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, M. D. Biegalski, M. S. Rzchowski, X. Q. Pan, D. G. Schlom, L. Q. Chen, R. Ramesh, and C. B. Eom, Phys. Rev. Lett.101,107602 (2008).
    [46]B. van Aken, T.T.M. Palstra, A. Filippetti, and N. A. Spaldin, Nature Mater.3,164 (2004).
    [47]D.-Y. Cho, J.-Y. Kim, B.-G. Park, K.-J. Rho, J.-H. Park, H.-J. Noh, B. J. Kim, S.-J. Oh, H.-M. Park, J.-S. Ahn, H. Ishibashi, S.-W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett.98,217601 (2007).
    [48]J.-S. Kang, S. W. Han, J.-G. Park, S. C. Wi, S. S. Lee, G. Kim, H. J. Song, H. J. Shin, W. Jo, and B. I. Min, Phys. Rev. B 71,092405 (2005).
    [49]T. J. Sato, S.-H. Lee, T. Katsufuji, M. Masaki, S. Park, J. R. D. Copley, and H. Takagi, Phys. Rev. B 68,014432 (2003).
    [50]M. Fiebig, D. Fro"hlich, Th. Lottermoser, and M. Maat, Phys. Rev. B 66,144102 (2002).
    [51]M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).
    [52]J. H. Park, J.-G. Park, G. S. Jeon, H.-Y. Choi, C. H. Lee, W. Jo, R. Bewley, K. A. McEwen, and T. G. Perring, Phys. Rev. B 68, 104426 (2003).
    [53]M. Tachibana, J. Yamazaki, H. Kawaji, and T. Atake, Phys. Rev. B 72,064434 (2005).
    [54]B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, Phys. Rev. Lett. 92,087204 (2004).
    [55]B. Lorenz, F. Yen, M. M. Gospodinov, and C. W. Chu, Phys. Rev. B 71,014438 (2005).
    [56]H. D. Zhou, J. A. Janik, B. W. Vogt, Y. J. Jo, L. Balicas, M. J. Case, C. R. Wiebe, J. C. Denyszyn, J. B. Goodenough, and J. G. Cheng, Phys. Rev. B 74,094426 (2006).
    [57]T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature 430,541 (2004).
    [58]H. A. Salama, C. J. Voyer, D. H. Ryan, and G. A. Stewart, J. Appl. Phys.105,07E110 (2009).
    [59]C. R. Serrao, S. B. Krupanidhi, J. Bhattacharjee, U. V. Waghmare, A. K. Kundu, and C. N. R. Rao, J. Appl. Phys.100,076104 (2006).
    [60]K. Ramesha, A. Llobet, Th. Proffen, C. R. Serro, and C. N. R. Rao, J. Phys.:Condens. Matter 19,102202 (2007).
    [61]J. H. Lee, P. Murugavel, H. Ryu, D. Lee, J. Y. Jo, J. W. Kim, H. J. Kim, K. H. Kim, Y. Jo, M. H. Jung, Y. H. Oh, Y. W. Kim, J. G. Yoon, J. S. Chung, and T. W. Noh, Adv. Mater.18,3125 (2006).
    [62]F. Yen, C. R. Dela Cruz, B. Lorenz, Y. Y. Sun, Y. Q. Wang, M. M. Gospodinov and C. W. Chu, Preprint cond-mat/0503115 (2005).
    [63]Y. Zhang, H. X. Yang, H. F. Tian, and J. Q. Li, Phys. Rev. Lett.98,247602 (2007).
    [64]Y. Zhang, H. X. Yang, Y. Q. Guo, C. Ma, H. F. Tian, J. L. Luo, and J.Q. Li, Phys. Rev. B 76, 184105 (2007).
    [65]N. Ikeda, H. Ohsumi, K. Ohweda, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, S. Mori, Y. Horibe, and H. Kilo, Nature 436,1136 (2005).
    [66]M. A. Subramanian, T. He, and J. Z. Chen, Adv. Mater.18,1737 (2006).
    [67]H. J. Xiang and M.-H. Whangbo, Phys. Rev. Lett.98,246403 (2007).
    [68]S.-W. Cheong and M. Mostovoy, Nature Mater.6,13 (2007).
    [69]C. Ederer and N. A. Spaldin, Nature Mater.3,849 (2004).
    [70]D. V. Efremov, J. V. den Brirk, and D. I. Khomskii, Nature Mater.3,853 (2004).
    [71]A. M. Lopes, J. P. Araujo, V. S. Amaral, J. G. Correia, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett.100,155702 (2008).
    [72]Ch. Joss, L. Wu, T. Beetz, R. F. Kile, M. Beleggia, M. A. Schofield, S. Schramm, J. Hoffmann, and Y. Zhu, Proc. Natl. Acad. Sci. U.S.A.104,13597 (2007).
    [73]Y. Miyamoto and M. Shindo, J. Phys. Soc. Jpn.62,1423 (1993).
    [74]C. T. Rado and J. M. Ferrari, Phys. Rev. B 15,290 (1977).
    [75]The Verwey Transition Special Issue, Phil. Mag.42,835 (1980).
    [76]J. P. Wright, J. P. Attfield, and P. G. Radeallo, Phys. Rev. Lett.87,266401 (2001).
    [77]M. E. Fisher and W. Selke, Phys. Rev. Lett.44,1502 (1980).
    [78]L. C. Chapon, P. G. Radaelli, G. R. Blake, S. Park, and S.-W. Cheong, Phys. Rev. Lett.96, 097601 (2006).
    [79]Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S.-W. Cheong, Phys. Rev. Lett.100, 047601 (2008).
    [80]Y. J. Jo, E. S. Choi, H. T. Yi, W. Ratcliff II, Y. J. Choi, V. Kiryukhin, S.-W. Cheong, and L. Balicas, Phys. Rev. B 79,012407 (2009).
    [81]N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature 429,392 (2004).
    [82]G. R. Blake, L. C. Chapon, P. G. Radaelli, S. Park, N. Hur, S.-W. Cheong, and J. Rodriguez-Carvajal, Phys. Rev. B 71,214402 (2005).
    [83]C. J. Wang, G. C. Guo, and L. X. He, Phys. Rev. Lett.99,177201 (2007).
    [84]C. J. Wang, G. C. Guo, and L. X. He, Phys. Rev. B 77,134113 (2008).
    [85]J.-H. Kim, S.-H. Lee, S. I. Park, M. Kenzelmann, A. B. Harris, J. Schefer, J.-H. Chung, C. F. Majkrzak, M. Takeda, S. Wakimoto, S. Y. Park, S.-W. Cheong, M. Matsuda, H. Kimura, Y. Noda, and K. Kakurai, Phys. Rev. B 78,245115 (2008).
    [86]J. J. Betouras, G. Giovannetti, and J. van den Brink, Phys. Rev. Lett.98,257602 (2007).
    [87]I. E. Dzyaloshinskii, Sov. Phys. JETP 5,1259 (1957).
    [88]T. Moriya, Phys. Rev.120,91 (1960).
    [89]I. A. Sergienko and E. Dagotto, Phys. Rev. B 73,094434 (2006).
    [90]H. Katasura, N. Nagaosa, and A.V. Balatsky, Phys. Rev. Lett.95,057205 (2005).
    [91]J. Hu, Phys. Rev. Lett.100,077202 (2008).
    [92]S. Park, Y. J. Choi, C. L. Zhang, and S.-W. Cheong, Phys. Rev. Lett.98,057601 (2007).
    [93]T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett. 92,177201 (2004).
    [94]M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Ya. Shapiro, and L. A. Demianets, Phys. Rev. Lett.98,267205 (2007).
    [95]L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, L. N. Demianets, and A. Ya. Shapiro, Phys. Rev. B 67,094434 (2003).
    [96]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426,55 (2003).
    [97]S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78,155121 (2008).
    [98]T. Arima, A. Tokunaga, T. Goto, H. Kimura, Y. Noda, and Y. Tokura, Phys. Rev. Lett.96, 097202 (2006).
    [99]Y. Yamosoki, H. Sagayama, T. Goto, M. Matsuura, K. Hirota, T. Arima, and Y. Tokura, Phys. Rev. Lett.98,147204 (2007).
    [100]T. Goto, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett.92,257201 (2004).
    [101]Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett.96, 207204 (2006).
    [102]Ⅰ. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett.97,227204 (2006).
    [103]S. Picozzi, K. Yamauchi, B. Sanyal, Ⅰ. A. Sergienko, and E. Dagotto, Phys. Rev. Lett.99,227201 (2007).
    [104]B. Lorenz, Y. Q. Wang, and C.-W. Chu, Phys. Rev. B 76,104405 (2007).
    [105]N. Aliouane, D. N. Argyriou, J. Strempfer, Ⅰ. Zegkinoglou, S. Landsgesell, and M. v. Zimmermann, Phys. Rev. B 73,020102 (2006).
    [106]M. Kubota, T. Arima, Y. Kaneko, J. P. He, X. Z. Zhu, and Y. Tokura, Phys. Rev. Lett.92,137401 (2004).
    [107]J. H. Jung, M. Matsubara, T. Arima, J. P. He, Y. Kaneko, and Y. Tokura, Phys. Rev. Lett. 93, 037403 (2004).
    [108]Ⅰ. Kornev, M. Bichurin, J.-P. Rivera, S. Gentil, H. Schmid, A. G. M. Jansen, and P. Wyder, Phys. Rev. B 62,12247 (2000).
    [109]C. J. Fennie, Phys. Rev. Lett.100, 167203 (2008).
    [110]C. Ederer and N. A. Spaldin, Phys. Rev. B 74, 020401 (2006).
    [111]Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, Phys. Rev. Lett.101,097205 (2008).
    [112]D. Ⅰ. Bile and D. J. Singh, Phys. Rev. Lett.96,147602 (2006).
    [113]J. Pernandez-Rossier, Phys. Rev. B 77,075430 (2008).
    [114]J. Dho and M. G. Blamire, Appl. Phys. Lett.87,252504 (2005).
    [115]X. Marti, F. Sanchez, D. Hrabovsky, L. Fabrega, A. Ruyter, J. Fontcuberta, V. Laukhin, and V. Skumryev, Appl. Phys. Lett.89,032510 (2006).
    [116]R. Ramesh and N. A. Spaldin, Nature Mater.6,21 (2007).
    [117]J. Nogues and Ⅰ. K. Schuller, J. Magn. Magn. Mater.192,203 (1999).
    [118]A. P. Malozemoff, Phys. Rev. B 35,3679 (1987).
    [119]H. Bea, M. Bibes, F. Ott, B. Dupe, X.-H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthelemy, Phys. Rev. Lett.100,017204 (2008).
    [120]V. Lankhim, V. Skuimryev, X. Marti, D. Hrabovsky, F. Sanchev, M. V. Garcia-Guenca, C. Fer-rater, M. Varela, U. Liiders, J. F. Bobo, and J. Foutiuberta, Phys. Rev. Lett.97,227201 (2006).
    [121]M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert, Nature Mater.6,296 (2007).
    [122]J. F. Scott, Nature Mater.6,256 (2007).
    [123]N. Sai, J. Lee, C. J. Fennie, and A. A. Demkov, Appl. Phys. Lett.91,202901 (2007).
    [124]S. Ju, T.-Y. Cai, G.-Y. Guo, and Z.-Y. Li, Phys. Rev. B 75,064419 (2007).
    [125]R. A. Shelby, D. R. Smith, and S. Schultz, Science 292,77 (2001).
    [126]D. W. Ward, E. Statz, K. J. Webb and K. A. Nelson, Preprint cond-mat/0401046 (2004).
    [1]L. Neel, Ann. Phys.4,249 (1949).
    [2]Y. Y. Li, Phys. Rev.101,1450 (1956).
    [3]Ⅰ. E. Dzyaloshinskii, Sov. Phys. JETP 5,1259 (1957).
    [4]Ⅰ. Dzyaloshinsky, J. Phys. Chem. Solids 4,241 (1958).
    [5]P. W. Anderson, Phys. Rev.115,2 (1959).
    [6]T. Moriya, Phys. Rev. Lett.4,228 (1960).
    [7]T. Moriya, Phys. Rev.120,91 (1960).
    [8]D. Treves, J. Appl. Phys.36,1033 (1965).
    [9]R. L. White, J. Appl. Phys.40,1061 (1969).
    [10]N. A. Benedek and C. J. Fennie, Phys. Rev. Lett.106,107204 (2011).
    [11]A. B. Harris, Phys. Rev. B 84,064116 (2011).
    [1]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299,1719 (2003).
    [2]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426,55 (2003).
    [3]N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) 429,392 (2004).
    [4]G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, and A. P. Ramirez, Phys. Rev. Lett.95,087205 (2005).
    [5]T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett.94,137201 (2005).
    [6]H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett.95,057205 (2005).
    [7]I. A. Sergienko and E. Dagotto, Phys. Rev. B 73,094434 (2006).
    [8]D. Ⅰ. Khomskii, J. Magn. Magn. Mater.306,1 (2006).
    [9]S.-W. Cheong and M. Mostovoy, Nat. Mater.6,13 (2007).
    [10]A. M. Kadomtseva, A. K. Zvezdin, Y. F. Popov, A. P. Pyatakov, and G. P. Vorob'ev, JETP Lett. 79,571 (2004).
    [11]R. Wongmaneerung, X. Tan, R. W. McCallum, S. Ananta, and R. Yimnirun, Appl. Phys. Lett.90, 242905 (2007).
    [12]B. B. van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater.3,164 (2004).
    [13]N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Nature (London) 436,1136 (2005).
    [14]D. V. Efremov, J. van den Brink, and D. I. Khomskii, Nat. Mater.3,853 (2004).
    [15]Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett.96, 207204 (2006).
    [16]N. A. Benedek and C. J. Fennie, Phys. Rev. Lett.106,107204 (2011).
    [17]A. B. Harris, Phys. Rev. B 84, 064116 (2011).
    [18]S. N. Ruddlesden and P. Popper, Acta Crystallogr.11,54 (1958).
    [19]I. D. Fawcett, J. E. Sunstrom IV, M. Greenblatt, M. Croft, and K. V. Ramanujachary, Chem. Mater.10,3643 (1998).
    [20]L. A. Bendersky, M. Greenblatt, and R. Chen, J. Solid State Chem.174,418 (2003).
    [21]E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and Ph. Ghosez, Nature (London) 452,732 (2008).
    [22]I. Dzyaloshinsky, J. Phys. Chem. Solids 4,241 (1958).
    [23]T. Moriya, Phys. Rev.120,91 (1960).
    [24]M. V. Lobanov, M. Greenblatt, E. N. Caspi, J. D. Jorgensen, D. V. Sheptyakov, B. H. Toby, C. E. Botez, and P. W. Stephens, J. Phys.:Condens. Matter 16,5339 (2004).
    [25]W.-H. Jung, J. Mater. Sci. Lett.19,2037 (2000).
    [26]郭硕鸿,电动力学(第二版),13页,高等教育出版社(1997)
    [27]W. Zhu, L. Pi, S. Tan, and Y. Zhang, Appl. Phys. Lett.100,052407 (2012).
    [28]A. H. Bobeck, R. F. Fischer, A. J. Perneski, J. P. Remeika, and L. G. Van Uitert, IEEE Trans. Magn.5,544 (1969).
    [1]T. S. Chin, J. Magn. Magn. Mater.209,75 (2000).
    [2]C. Jiang, M. Venkatesan, K. Gallagher, and J. M. D. Coey, J. Magn. Magn. Mater.236,49 (2001).
    [3]F. Vial, F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga, and K. T. Park, J. Magn. Magn. Mater. 242-245,1329 (2002).
    [4]A. Bombik, B. Lesniewska, J. Mayer, A. Oles, A. W. Pacyna, and J. Przewoznik, J. Magn. Magn. Mater.168,139 (1997).
    [5]R. L. White, J. Appl. Phys.40,1061 (1969).
    [6]T. Yamaguchi, J. Phys. Chem. Solids 35,479 (1974).
    [7]I. Dzialoshinsky, J. Phys. Chem. Solids 4,241 (1958).
    [8]T. Moriya, Phys. Rev.120,91 (1960).
    [9]V. Goldschmidt, Geochemistry, Oxford University Press (1958).
    [10]R. D. Shannon, Acta Crystallogr. A 32,751 (1976).
    [11]D. Treves, J. Appl. Phys.36,1033 (1965).
    [12]A. Bombik, H. Bohm, J. Kusz, and A. W. Pacyna, J. Magn. Magn. Mater.234,443 (2001).
    [13]J. Kusz, S. Juszczyk, and J. Warczwski, J. Appl. Crystallogr.21,898 (1988).
    [14]F. Sayetat, P. Fertey, and M. Kessler, J. Appl. Crystallogr.31,121 (1998).
    [15]S. Venugopalan and M. M. Becker, J. Chem. Phys.93,6 (1990).
    [16]S. Geller and E. A. Wood, Acta Crystallogr.9,563 (1956).
    [17]J. R. Chen, W. L. Wang, J. B. Li, and G. H. Rao, J. Alloys Compd.459,66 (2008).
    [18]M. Takahashi, H. Takano, and S. Murayama, Physica B 329-333,745 (2003).
    [19]Y. Liang, N. Di, and Z. Cheng, Phys. Rev. B 72,134416 (2005).
    [20]S. Mukherjee and R. Ranganathan, Phys. Rev. B 54,9267 (1996).
    [21]P. S. Anil Kumar, P. A. Joy, and S. K. Date, J. Phys.:Condens. Matter 10, L487 (1998).
    [22]W. Luo and F. Wang, Appl. Phys. Lett.90,162515 (2007).
    [23]M. T. Fernandez-Diaz, Phys. Rev. Lett.82,189 (1999).
    [24]R. S. Freitas and L. Ghivelder, Phys. Rev. B 64,144404 (2001).
    [25]K. Wang, Y. Wang, L. Wang, S. Dong, D. Li, Z. Zhang, H. Yu, Q. Li, and J. Liu, Phys. Rev. B 73, 134411 (2006).
    [26]A. H. Bobeck, Bell Sys. Tech. J.46,1901 (1967).
    [27]A. H. Bobeck, R. F. Fischer, A. J. Perneski, J. P. Remeika and L. G. Van Uitert, IEEE Trans. Mag. Mag-5,544 (1969).
    [28]W. H. Meiklejohn and C. P. Bean, Phys. Rev.102,1413 (1956).
    [29]J. Nogues and I. K. Schuller, J. Magn. Magn. Mater.192,203 (1999), and references therein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700