用户名: 密码: 验证码:
利用玻姆力学方案研究高次谐波产生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强激光与原子、分子相互作用可以产生高次谐波,高次谐波是获得便携式软X射线光源和产生阿秒脉冲的重要手段。目前理论上对高次谐波的研究是通过数值求解含时薛定谔方程实现的,但其存在较难提取物理信息等问题。本论文利用玻姆力学方案,研究高次谐波的产生机制,谐波的发射效率等问题。具体研究包括如下四个方面:
     首先,利用玻姆轨迹研究了原子高次谐波的产生机制。研究发现可以用足够数量玻姆轨迹相干获得与数值求解含时薛定谔方程得到的谐波发射谱定量一致的结果。将玻姆轨迹方法研究谐波由定性层次提高到定量层次。通过对玻姆轨迹动力学行为的分析,清晰地给出了高次谐波产生的机制,即电子的电离,电离后的电子在激光场中运动以及与离子核重散射发射高能光子。
     第二,根据玻姆轨迹得到的高次谐波产生机制,从经典角度系统地分析了在电离电子与核复合过程中影响复合光发射效率的因素。研究发现复合光发射效率即强度是由玻姆粒子库仑加速度的振荡幅值决定的。随着回碰玻姆粒子动能的减小、离子势阱的加深以及束缚态和连续态布居乘积的增加,复合时核区范围内玻姆粒子库仑加速度振幅普遍增大,导致其发光强度升高。
     第三,采用两条玻姆轨迹,研究了分子高次谐波发射的动力学干涉过程。表明了双原子分子谐波谱的主要特征仅用分别位于两个核区处的两条玻姆轨迹就可以很好的重现。这两条轨迹能够接收和储存来自其他全部重碰轨迹的碰撞信息,并且对于来自两个核的谐波间的相长与相消的干涉行为,可以通过这两条轨迹直观的表现出来。
     最后,利用基于玻姆力学理论的含时量子蒙特卡罗方法研究了两电子原子谐波发射过程。该方案的模拟结果与数值求解含时薛定谔方程定性一致,而且计算效率得到大幅度提高。根据计算得到的玻姆粒子系综的动力学演化行为,分析了原子在强激光作用下的激发、电离、重散射等非线性过程。分析了电子间关联效应对谐波产生的影响。
In classical quantum mechanics, the probability interpretation of wave function isconsistent with the experimental results, which inspires people to explore themicrocosmic universe confidently by using the quantum theory. Bohmian mechanicsis an another explanation of quantum mechanics which was first proposed by deBroglie and further developed by David Bohm. The calculation results obtained fromBohmian mechanics are exactly the same as that of the classical quantum mechanics,and the Bohmian scheme does not require people to abandon the concept of classicalorbits and its interpretation of physical problems are closer to the classical mechanics,for which it was widely used.
     Trajectories of Bohmian particles represents the possible trajectories of theelectrons, and the density of trajectories is proportional to the probability density ofthe electron at that point. The motions of Bohmian particles are guided by the wavefunction and they follow the Newton-Bohm equation which has a more term thanNewton’s equation, i.e. quantum force. When the electron moves close to the nuclearzone, the quantum force play a major role, quantum effects become significantly, andthe monition of electron follows the Newton-Bohm equation; When the electronmoves far away from the nuclear zone, the quantum force decays rapidly and themotion of the electron only determined by the classic force, i.e. the motion of electronfollows Newton’s law.
     Using these features of Bohmian particles, this dissertation adopts the Bohmianmechanics scheme to investigate a typical phenomenon in the strong field physics—high harmonic generation(HHG). There have been many theoretical methods for HHG,however, they all share imperfections: Accurate results can be obtained bynumerically solving the time-dependent schrodinger equation (TDSE), but physicalpicture is not clearly revealed and it is of great difficulty to deal with many-electron system. Classical trajectory method has advantage in fast calculation speed andpresenting the clear physical picture, however, the quantum effect is not involvedmaking it impossible to obtain accurate harmonic spectrum. In order to solve theabove problems, we use Bohmian trajectories scheme to investigate the HHG process.The specific research work mainly includes the following four parts:
     First, we investigat the HHG process of atoms in an intense laser field. In thebeginning, we get the steady state wave function by numerically solving the TDSE,and then the initial position of Bohmian particles can be obtained according to theprobability density of steady state wave function. Based on these initial positions andcombined with the time-depentent wave function, we can obtained trajectories,acceleration, energy and other classic information of Bohmian particles at anymoment. The time-dependent dipole moment can be obtained through thesetrajectories, therefore the HHG spectrum can be calculated. It is found that the HHGspectra calculated from Bohmian trajectories are consistent with that by numericallysolving the TDSE, and the more the Bohmian particles, the closer to each other theresults will be. By analyzing the dynamical behaviors of the typical Bohmian particles,we find the Bohmian particle is fist ionized in the laser field, accelerated in the laserelectric field, then returns to the parent ion after the laser electric field reverses, andfinally oscillates in high frequency in the nuclear zone after it recombines with theparent ion, intuitively presenting the HHG process. In addition, we arrive at theconclusion that the coherence of Bohmian particles plays a major role in harmonicemission.
     Secondly, based on the Bohmian mechanics scheme, we study the factors thatinfluence the efficiency of light emission by the recombination of ionized electronswith its parent ion.It is found that the intensity and frequency of light emission areproportional to the amplitude and oscillation frequency of the Coulomb acceleration,respectively.When the kinetic energy of the recombined electron (that of the incidentBohmian particle) is larger, the amplitude of Coulomb acceleration of all Bohmianparticles is generally reduced, and the oscillation frequency of Coulomb particlesgenerally increases.When the potential well of the nucleus is deeper, the amplitude ofCoulomb acceleration of Bohmian particles in the vicinity of the nuclear zonebecomes larger, as a result, the intensity of the light emission is larger. When theproduct of the population of the continuum-state wave packet and that of theground-state wave packet is larger, the amplitude of Coulomb acceleration of Bohmian particles generally increases, making intensity of the light emission larger.
     Thirdly, we study HHG of diatomic molecules in the strong laser pulse byBohmian mechanical scheme.We chose a Bohmian particle from each center of thetwo nuclear zone, analyze their independent light-emission behavior of these twoparticles and find that the minimum value structure dose not appear on their ownharmonic spectra, which is inconsistent with the overall harmonic spectrum ofmolecule by the TDSE, indicating that the light-emission behavior can not bedescribed accurately by only one Bohmian trajectory. Whereas, a clear minimumvalue structure can be clear seen on the harmonic spectrum generated by the twotrajectories together, which is identical to that calculated by numerical solving TDSE.Through the detail analysis of the position and acceleration of the two Bohmiantrajectories, we find the accelerations of the two Bohmian particles oscillate in phasein some time zone, while they are out of phase at other time zone. And the in-phasezone corresponds to the high intensity, while the out-of-phase zone corresponds to thelow intensity which is corresponding to the minimum in harmonic spectra. Only suchtwo Bohmian trajectories can be used to reproduce structure of the harmonic spectrumof the molecule qualitatively, due to the fact both the Bohmian particles locate in thevicinity of the two nuclear zone, therefore they can receive and store the wholeinformation from all of the other recolliding trajectories.
     Finally, we investigate HHG of two-electron atoms by time-dependent quantumMonte Carlo method which based on Bohmian mechanics. We first obtain the atomicground state wave function in the field free case by numerically solving aone-dimensional schrodinger equation of two electrons, then sample from theprobability density function by the rejection method, and obtain the initial positions ofthe Bohmian particles which is identical to the density distribution of ground stateelectron. Then we use the time-dependent wave function of two electron to calculatethe velocity and position of Bohmian particles, and in this calculation, the correlationeffect of two electrons is included. Through this algorithm, the harmonic emissionspectrum we get is more accurate and efficient than that obtained by solving thetime-dependent Hartree-fock method. On this basis, we also analyze the dynamicalprocess of HHG of multi-electron. By comparing the results obtained by accuratelysolving the TDSE and TDHF, we found that the correlation effect between theelectrons will reduce the intensity of the harmonic.
引文
[1] KRAUSE J L, SCHAFER K J AND KULANDER K C.High-Order HarmonicGeneration from Atom and Ions in the High Intensity Regime.Phys [J]. Rev.Lett.,1992,68:3535.
    [2] PROTOPAPAS M, KEITEL C H AND KNIGHT P L.Atomic physics withsuper-high intensity lasers [J].Rep. Prog. Phys.,1997,60:389.
    [3] BURNETT K, REED V C, and KNIGHT P L.Atoms in ultra-intense laser fields[J]. J. Phys. B,1993,26:561.
    [4] RAAM U AND NIMROD M.Classical harmonic generation in rare gases [J].Phys.Rev. A,2010,81:063405.
    [5] LEWENSTEIN M, BALCOU P, IVANOV M Y, et al.Theory of high harmonicgeneration by low frequency laser fields [J].Phy. Rev. A,1994,49:2117.
    [6] CORKUM P B. Plasma perspective on strong-field multiphoto ionization [J]. Phys.Rev. Lett.,1994,71:1994.
    [7] LAI X Y, CAI Q Y AND ZHAN M S.Above-threshold ionization photoelectronspectrum from quantum trajectory [J].European Physics Journal D,2009,53:393-396.
    [8] LAI X Y, CAI Q Y AND ZHAN M S.From a quantum to a classical description ofintense laser-field physics with bohmian trajectories [J].New J. Phys.,2009,11:113035.
    [9] BOTHERON P AND PONS B.Self-consistent bohemian description of strongfield-driven electron dynamics [J]. Phys. Rev. A,2010,82:021404(R).
    [10] CAI Q Y, ZhAN M S AND LAI X Y.Bohmian mechanics to high-order harmonicgeneration [J].Chin. Phys. B,2010,19:020302.
    [11] TAKEMOTO N AND BECKER A.Visualization and interpretation of attosecondelectron dynamics in laser-driven hydrogen molecular ion using bohmiantrajectories [J]. J. Chem. Phys.,2011,134:074309.
    [12] SONG Y, GUO F M, LI S Y, CHEN J G, ZENG S L AND YANG YJ.Investigation of the generation of high-order harmonics through bohemiantrajectories [J].Phys. Rev. A,2012,86:033424.
    [13] WEI S S, LI S Y, GUO F M, Yang Y J AND WANG B B. Dynamic stabilizationof ionization for an atom irradiated by high-frequency laser pulses studied withthe bohemian trajectory scheme [J]. Phys. Rev. A,2013,87:063418.
    [14]周炳琨,高以智,陈倜嵘,陈家骅.激光原理.国防工业出版社,2004年,第四版,1页。
    [15] MAINFRAY G, MANUS C. Multiphoton ionization of atoms[J].Rep.Prog.Phys.,1991,54:1333-1372.
    [16] FRANKEN P A, HILL A E, PETERS C W, WEINREICH G. Generation ofoptical harmonics [J]. Phys. Rev. Lett.,1961,7:118-120.
    [17]孟绍贤.超强激光场物理学.物理学进展.1999,19:236-269
    [18] Perry M D,Mourou G. Terawatt to petawatt subpicosecond lasers. Sciences [J].1994,264:917-924.
    [19] Umstadter D, Barty C, Perry M D, Mourou G. Tabletop ultrahigh intensity lasers:dawn of nonlinear relativistic optics [J].Optics&Photonics News,1998,9:40-45.
    [20] YAMANE K, ZHANG Z. G, OKA K, et al. Optical pulse compression to3.4fsin the monocycle region by feedback phase compensation [J]. Optics Letters,2003,28:2258-2260.
    [21] BOHMAN S, SUDA A, KAKU M, et al. Generation of5fs,0.5TW pulses82focusable to relativistic intensities at1kHz [J]. Opt. Express,2008,16:10684-10689.
    [22] AGOSTINI P, DIMAURO L F. The physics of attosecond light pulses [J]. Rep.Prog. Phys.,2004,67:813–855.
    [23] Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K. Free-free transitionsfollowing six-photon ionization of Xenon atoms. Phys. Rev. Lett.,1979,42,1127-1130.
    [24] SHORE B W, KNIGHT P L. Enhancement of high optical harmonics byexcess-photon ionization [J]. J. Phys. B,1987,20:413-423.
    [25] CONNERADE I P, KEITEL C H. High-harmonic generation in a static magneticfield [J]. Phys. Rev. A,1996,53:2748-2751.
    [26] PAULUS G G. Multiphotonionisation mit intensiven, ultrakurzen Laserpulsen.
    [M]. Munchen: Utz,1996.
    [27] KRUIT P, READ F H. Magnetic field paralleliser for2π electron-spectrometerand electron-image magnifier [J]. J. Phys. E: Sci. Instrum,1983,16:313.
    [28] KRUIT P, KIMMAN J, MULLER H G, et al. Electron spectra from multiphotonionization of xenon at1064,532, and355nm [J]. Physical Review A,1983,28(1):248-255.
    [29] REISS H R. Effect of an intense electromagnetic field on a weakly bound system[J]. Physical Review A,1980,22:1786-1813.
    [30] REISS H R. Spectrum of atomic electrons ionized by an intense field [J]. J. Phys.B,1987,20(3): L79-L83.
    [31] YERGEAU F, PETITE G. AND AGOSTINI P.Above-threshold ionizationwithout space charge [J]. J. Phys. B,1986,19: L663-L669.
    [32] FREEMAN R R, BUCKSBAUM P H, MILCHBERG H, et al. Above-thresholdionization with subpicosecond laser pulses [J]. Physical Review Letters,1987,59(10):1092-1095.
    [33] BUCKSBAUM P H, SCHUMACHER D W, BASHKANSKY M.10-10Highintensity Kapitza-dirac effect [J].Physical Review Letters,1988,61(10):1182-1185.
    [34] NANDOR M J, WALKER M A, VAN WOERKOM L D. Angular distributions ofhigh-intensity ATI and the onset of the plateau [J]. J. Phys. B,1998,31(19):4617-4629.
    [35] BLAGA C I, CATOIRE F, COLOSIMO P, PAULUS G G, MULLER H G,AGOSTINI P, DIMAURO L F. Strong-field photoionization revisited [J]. Nature,2009,5:335-338.
    [36] KAMTA G L, BANDRAUK A D. Imaging electron molecular orbitals viaionization by intense femtosecond pulses [J]. Physical Review A,2006,74:033415.
    [37] MECKEL M, COMTOIS D, ZEIDLER D, STAUDTE A, PAVICIC D,BANDULET H C, PEPIN H, KIEFFER J C, DORNER R, VILLENEUVE D M,CORKUM P B. Laser-Induced Electron Tunneling and Diffraction[J]. Science2008320:1478-1482.
    [38] VAN DER ZWAN E V, LEIN M. Molecular imaging using high-order harmonicgeneration and above-threshold ionization[J]. Physical Review Letters,2012,108:043004.
    [39] BLAGA CI, XU J, DICHIARA AD, SISTRUNK E, ZHANG K, AGOSTINI P,MILLER TA, DIMAURO L F, LIN C D. Imaging ultrafast molecular dynamicswith laser-induced electron diffraction [J]. Nature,2012,483:194-197.
    [40] QUAN W, LIN Z, WU M, KANG H, LIU H, LIU X, CHEN J, LIU J, HE X T,CHEN S G, XIONG H, GUO L, XU H, FU Y, CHENG Y, XU Z Z. Classicalaspects in above-threshold ionization with a midinfrared strong laser field [J].Physical Review Letters,2009,103(9):093001.
    [41] LIU C P, MAKAJIMA T, SAKKA T, OHGAKI H. Above-threshold ionizationand high-order harmonic generation by mid-infrared and far-infrared laserpulses[J]. Physical Review A,2008,77:043411.
    [42] PHILIPP V DEMEKHIN AND LORENZ S. CEDERBAUM. DynamicInterference of Photoelectrons Produced by High-Frequency Laser Pulses [J].Physical Review Letters,2012,108:253001.
    [43] PHILIPP V DEMEKHIN,DAVID HOCHSTUHL, LORENZ S CEDERBAUM.Photoionization of hydrogen atoms by coherent intense high-frequency shortlaser pulses: Direct propagation of electron wave packets on large spatial grids[J]. Physical Review A,2013,88:023422.
    [44] PHILIPP V DEMEKHIN AND LORENZ S. CEDERBAUM. Ac stark effect inthe electronic continuum and its impact on the photoionization of atoms bycoherent intense short high-frequency laser pulses [J]. Physical Review A,2013,88:043414.
    [45] YU CHUAN, FU NING, ZHANG GUIZHONG, YAO JIANQUAN. DynamicStark effect on XUV-laser-generated photoelectron spectra: Numericalexperiment on atomic hydrogen[J]. Physical Review A,2013,87:043405.
    [46] YU CHUAN, FU NING, HU TIAN, ZHANG GUIZHONG, YAO JIANQUAN.Dynamic Stark effect and interference photoelectron spectra of H2+[J]. PhysicalReview A,2013,88:043408.
    [47] L’HUILLIER A, LOMPRé L A, MAINFRAY G AND MANUS C. Multiplycharged ions induced by multiphoton absorption in rare gases at0.53um[J].Phys. Rev. A,1983,27:2503.
    [48] ALEKSAKHIN I S, ZAPESOCHNYI I P AND SURAN V V.Double multiphotonionization of strontium atom [J]. JETP Lett.,1977,26:14-16.
    [49] FITTINGHOFF D N, BOLTON P R, CHANG B AND KULANDER K C.Observation of nonsequential double ionization of helium with optical tunneling[J]. Phys. Rev. Lett.,1992,69:2642.
    [50] KONDO K, SAGISAKA A, TAMIDA T, NABEKAWA Y AND WATANABES.Wavelength dependence of nonsequential double ionization in He [J].Phys.Rev. A,1993,48: R2531.
    [51] WALKER B, SHEEHY B, DIMAURO L F, AGOSTINI P, SCHAFER K J ANDKULANDER K C. Precision measurement of strong field double ionization ofhelium [J].Phys. Rev. Lett.,1994,73:1227.
    [52] CORKUM P B.Plasma perspective on strong field multiphoton ionization [J].Phys. Rev. Lett.,1993,71:1994.
    [53] KULANDER K C.Time-dependent hartree-fock theory of multiphoton ionization:helium [J]. Phys. Rev. A,1987,36:2726.
    [54] DAHLEN N E AND LEEUWEN R V.Double ionization of a two-electron systemin the time-dependent extended hartree-fock approximation [J].Phys. Rev.A,2001,64:023405.
    [55] NGUYEN N A AND BANDRAUK A D. Electron correlation of one-dimensionalH2in intense laser fields: time-dependent extended hartree-fock andtime-dependent density-functional-theory approaches [J]. Phys. Rev. A,2006,73:032708.
    [56] RUNGE E AND GROSS E K U.Density-functional theory for time-dependentsystems Phys. Rev. Lett.,1984,52:997-1000.
    [57] CARRERA J J AND CHU SH I.Ab initio time-dependent density–functional-theory study of the frequency comb structure, coherence, and dephasing ofmultielectron systems in the vuv-xuv regimes via high-order harmonicgeneration [J]. Phys. Rev. A,2009,79:063410.
    [58] HO P J, PANFILI R, HAAN S L AND EBERLY J H.Nonsequential doubleionization as a completely classical photoelectric effect [J].Phys. Rev.Lett.,2005,94:093002.
    [59] CHRISTOV I P. Correlated non-perturbative electron dynamics with quantumtrajectories[J]. Optics Express,2006,14:6906.
    [60] CHRISTOV I P. Quantum trajectory perspective of atom-field interaction inattosecond time scale [J]. Appl. Phys. B,2006,85:503.
    [61] CHRISTOV I P. Molecular dynamics with time dependent quantum monte carlo.J. Chem. Phys.,2008,129:214107.
    [62] MCPHERSON A, GIBSON G, JARA H, JOHANN U, LUK T S, MCINTYRE IA, BOYER K,RHODES C K.Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases [J].J. Opt. Soc. Am. B,1987,4:595.
    [63] FERRAY M, L’HUILLIER A., LI X F, LOMPRE L A, MAINFRAY G. ANDMANUS C. Multiple-harmonic conversion of1064nm radiation in raregases [J], J. Phys. B,1988,21:31-35.
    [64] FABRE F F, PETITE G, AGOSTINI P AND CLEMENT M. Multiphotonabove-threshold ionization of xenon at0.53and1.06um, J. Phys. B,1982,15,1353-1369.
    [65] PETITE G., FABER F, AGOSTINI P, CRANCE M AND AYMAR M.Nonresonant multiphoton ionization of cesium in strong fields: Angulardistributions and above-threshold ionization [J]. Phys. Rev. A,1984,29:1677-2689.
    [66] AGOSTINI P, BREGER P, L’HUILLERR A., MULLER H G. AND G. PETITE.Giant stark shifts in multiphoton ionization [J],Phys. Rev. Lett.,1989,63:2208-2211.
    [67] ROTTKE H, WOLFF B, BRICKWEDDE M, FELDMANN D, et al.Multiphoton ionization of atomic hydrogen in intense subpicosecond laser pulses,Phys. Rev. Lett.,1990,64:404-407.
    [68] FREEMAN R. R. AND BUCKSBAUM P H.Investigations of above-thresholdionization using xubpicosecond laser pulses [J]. J. Phys. B,1991,24:325-347.
    [69] KELDYSH L V. Ionization in the field of a strong electromagnetic wave,Sov.Phys. JETP,1965,20:1307-1314.
    [70] PARKER J S, DOHERTY B J S, Taylor K T, et al. High-energy Cutoff in theSpectrum of strong-field Nonsequential double ionization [J]. Phys.Rev.Lett.,2006,96:053001.
    [71] QU W, HU S, XU Z. Classical simulation for one-dimensional H2interactingwith intense ultrashort laser pulses [J]. Phys.Rev.A,1998,57:4528-4532.
    [72] DUAN Y, LIU W K, YUAN J M. Classical dynamics of ionization, dissociation,and harmonic generation of a hydrogen molecular ion in intense laser fields: Acollinear model[J]. Phys.Rev.A,2000,61:053403.
    [73] GUO J, LIU X S. Lithium ionization by an intense laser field using classicalensemble simulation [J]. Phys.Rev.A,2008,78:013401.
    [74] PANFILI R, HAAN S L, EBERLY J H.Coincident fragment detection in strongfield photoionization and dissociation of H2[J]. Phys.Rev.Lett.,2002,89:013001.
    [75] HAAN S L, BREEN L, KARIM A, et al. Variable time lag and backward ejectionin full-dimensional analysis of strong-field double ionization [J]. Phys.Rev.Lett.,2006,97:103008.
    [76] AMMOSOV M V, DELONE N B, KRAINOV V P. Tunnel ionization ofcomplex atoms and of atomic ions in an alternating electromagnetic field [J].Sov. Phys. JETP,1986,64:1191-1194.
    [77] GIBSON E A, PAUL A, WAGNER NICK, Tobey R, GAUDIOSI D, BACKUSS, CHRISTOV I P, AQUILA A., GULLIKSON E M, ATTWOOD D T,MURNANE M M, KAPTEYN H C.Coherent soft x-ray generation in the waterwindow with quasi-phase matching [J]. Science,2003,302:95-98.
    [78] PIAZZA A DI, MüLLER C., HATSAGORTSAN K. Z. AND KEITEL C H, Rev.Mod.Phys.,2012,84:1177.
    [79] MOUROU G AND TAJIMA T.Large-scale laser facilities may also provide theultimate source of ultrashort laser pulses [J]. Science,2011,331:41-42.
    [80] KRAUSZ F AND IVANOV M. Attosecond physics [J].Rev. Mod. Phys.,2009,81:163.
    [81] CHANG ZENGHU.Single attosecond pulse and xuv supercontinuum in thehigh-order harmonic plateau [J]. Phys. Rev. A,2004,70:043802.
    [82] SHON N H, SUDA A, MIDORIKAWA K. Attosecond pulse generation in He gaswith few-cycle KrF driver pulses [J], Japanese Journal Of Applied Physics,1999,38:6298-6301.
    [83] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cyclenonlinear optics [J]. Science,2008,320:1614-1617.
    [84] TARANUKHIN V D, High-order harmonic generation by atoms in a two-colorlaser field: Phase control of recombination radiation spectrum and duration [J],Journal of Experimental and Theoretical Physics,2004,98:678-686.
    [85] YOSHITOMI D, KOBAYASHI Y, TAKADA H, et al.100-attosecond timingjitter between two-color mode-locked lasers by active-passive hybrid sy nc hronization [J], Optics Letters,2005,30:1048-1410.
    [86] ZENG Z Z, CHENG Y, SONG X H, et al. Generation of an extreme ultravioletsuperconuum in a two-color laser fields [J]. Phys. Rev. Lett.,2007,98:203901.
    [87] PFEIFER T, GALLMANN L, ABEL M J, et al. Single attosecond pulsegeneration in the multicycle-driver regime by adding a weak second-harmonicfield [J]. Opt. Lett.,2006,31:975-977.
    [88] CORKUM P B, BURNETT N H, AND IVANOV M Y. Subfemtosecond pulses[J], Optics Letters,1994,19:1870-1982.
    [89] SANSONE G, BENEDETTI E, CALEGARI F, et al. Isolated single-cycleattosecond pulses [J]. Science,2006,314:443-446.
    [90] WANG HE. From Few-Cycle Femtosecond Pulse To Single AttosecondPulsecontrolling And Tracking Electron Dynamics With AttosecondPrecision,[D]. Kansas: Kansas State University,2005.
    [91] CHANG Z H. Chirp of the single attosecond pulse generated by a polarizationgating [J]. Phys. Rev. A,2005,71:023813.
    [92] CHANG Z H. Controlling attosecond pulse generation with a double opticalgating [J]. Phys. Rev. A,2007,76:051403.
    [93] MASHIKO H, GILBERTSON S, LI C, et al. Double optical gating of high orderharmonic generation with carrier-envelope phase stabilized laser [J]. Phys. Rev.Lett.,2008,100:103906.
    [94] ZHANG Q B, LU P X, LAN P F, et al. Multi-cycle laser-driven broadbandsupercontinuum with a modulated polarization gating [J]. Optics Express,2008,16:9795-9803.
    [95] ZHAI Z, CHEN J, YAN Z C, FU P M AND WANG B B. Direct probing ofelectronic density distribution of a rydberg state by high-order harmonicgeneration in a few-cycle laser pulse [J]. Phys. Rev. A,2010,82:043422.
    [96] SALI`ERES P, MAQUET A, HAESSLER S, CAILLAT J, et al.Imaging orbitalswith attosecond and angstrom resolutions:toward attochemistry?.Rep. Prog.Phys.,2012,75:062401.
    [97] HAESSLER S, CAILLAT J AND SALIERES P.Self-probing of molecules withhigh harmonic generation [J].J. Phys. B,2011,44:203001.
    [98] NIIKURA H, W RNER H J, VILLENEUVE D M AND CORKUM P B.Packetusing shaped recollision trajectories[J].Phys.Rev.Lett.,2011,107:093004.
    [99] BURNETT N H, BALDIS H A, RICHARDSON M C, ENRIGHT G D.Harmonicgeneration in CO2laser target interaction [J].Appl. Phys. Lett.,1977,31:172–174.
    [100] L'HUILLIER A,SCHAFER K J AND KULANDER K C.Theoretical aspects ofintense field harmonic generation [J]. Journal of Physics B Atomic Molecularand Optical Physics,1991,24:3315.
    [101] L’HUILLIER A AND BALCOU PH.High-order harmonic generation in raregases with a1-ps1053-nm laser [J]. Phys. Rev. Lett.,1993,70:774–777.
    [102] MACKLIN J J,KMETEC J D AND GORDON C L, III. High-order harmonicgeneration using intense femtosecond pulses [J]. Phys. Rev. Lett.,1993,70:766–769.
    [103] BUDIL K S,SALIERES P AND ANNE L'HUILLIER,DITMIRE T ANDPERRY M D.Influence of ellipticity on harmonic generation [J]. Phys. Rev.A,1993,48: R3437.
    [104] WATANABE S,KONDO K,NABEKAWA Y,SAGISAKA A ANDKOBAYASHI Y.Two-color phase control in tunneling ionization and harmonicgeneration by a strong laser field and its third harmonic [J]. Phys. Rev.Lett.,1994,73:2692–2695.
    [105] SAKAI H, MIYAZAKI K. High-order harmonic generation in nitrogenmolecules with subpicosecond visible dye-laser pulses [J]. Applied PhysicsB,1995,61:493-498.
    [106] MIYAZAKI K. High-order harmonic generation with high-intensityfemtosecond laser pulses [J]. J. Nonlinear Optic. Phys. Mat.,1995,04:567.
    [107] BALCOU PH,SALIèRES P,BUDIL K S,DITMIRE T, PERRY M D,L'HUILLIER A.High-order harmonic generation in rare gases: a new source inphotoionization spectroscopy [J]. Zeitschrift für Physik D Atoms, Moleculesand Clusters,1995,34:107-110.
    [108] PEATROSS J, VORONOV S AND PROKOPOVICH I.Selective zoning ofhigh harmonic emission using counter-propagating light [J].OpticsExpress,1997,1:114-125.
    [109] PRESTON S G, SANPERA A,ZEPF M, BLYTH W J, SMITH C G, etal.High-order harmonics of248.6-nm KrF laser from helium and neon ions [J].Phys. Rev. A,1996,53: R31–R34.
    [110] ZHOU J, RUNDQUIST A, CHANG Z, et al.Enhanced high-harmonicgeneration with ultrashort25fs pulses [J].Ultrafast Phenomena X SpringerSeries in Chemical Physics,1996,62:120-121.
    [111] CHANG ZENGHU, RUNDQUIST ANDY, WANG HAIWEN, MURNANEMARGARET M., AND KAPTEYN HENRY C. Generation of coherent soft xrays at2.7nm using high harmonics [J]. Phys. Rev. Lett.1997,79:2967–2970.
    [112] MARJORIBANKS R S, ZHAO L., BUDNIK F W, KULCSFIR G., VITCU A,HIGAKI H., WAGNER R., MAKSIMCHUK A, UMSTADTER, LE BLANC SP AND DOWNER M C.Laser-plasma harmonics with high-contrast pulsesand designed prepulses [J].Superstrong Fields in Plasma: First InternationalConference (1998).
    [113] SERES J, YAKOVLEV V S, SERES E, STRELI CH, WOBRAUSCHEK P.SPIELMANN CH. AND KRAUSZ F. Coherent superposition of laser-drivensoft-X-ray harmonics from successive sources [J].Nature Physics,2007,3:878–883.
    [114] ISHIKAWA K L,TAKAHASHI E J, AND MIDORIKAW K.Wavelengthdependence of high-order harmonic generation with independently controlledionization and ponderomotive energy. Phys. Rev. A,2009,80:011807.
    [115] TANG SONGSONG, ZHENG LI, AND CHEN XIANFENG.Approach toextreme ultraviolet supercontinuum in a two-color laser field [J].OpticsCommunications,2010,283:155–159.
    [116] POPMINTCHEV T, CHEN M C, POPMINTCHEV D, et al.Mid-infraredfemtosecond lasers bright coherent ultrahigh harmonics in the keV X-rayregime from mid-infrared femtosecond lasers [J].Science,2012,336:1287.
    [117] LE A-T, TONG X M AND LIN C D. Alignment dependence of high-orderharmonic generation from CO2[J].Journal of Modern Optics,2007,54:967-980.
    [118] WINTERFELDT C, SPIELMANN C, GERBER G. Colloquium: optimalcontrol of high-harmonic generation[J].Rev.Mod.Phys.,2008,80:117-140.
    [119] de Broglie L, Recherches sur la th′eorie des quantas, PhDthesis,University of Paris (1924);
    [120] Bohm D. A Suggested Interpretation of the Quantum Theory in Termsof“Hidden” Variables I, Physical Review,1952,85:166.
    [121] Bohm D. A Suggested Interpretation of the Quantum Theory in Termsof“Hidden” Variables II, Physical Review,1952,85:180.
    [122] WYATT R E, Quantum Dynamics with Trajectories: Introduction to QuantumHydrodynamics [M],(Springer,2005).
    [123] HOLLAND P R, The Quantum Theory of Motion: An Account of the deBroglie–Bohm Causal Interpretation of Quantum Mechanics [M],(CambridgeUniversity Press, Cambridge,1993).
    [124] de Broglie L, La m′ecanique ondulatorie et la structure atomique de laati`ere et du rayonnement, Journal de Physique et du Radium,1927,8:225.
    [125] Dewdney,C.&Hiley,B.J.(1982).Found.Phys.,12,27-48.
    [126] PIC′ON A, BENSENY A, et al.Transferring orbital and spin angular momentaof light to atoms [J].New Journal of Physics,2010,12:083053.
    [127] CHRISTOV I P.Time dependent quantum Monte Carlo: preparation of theground state [J].New J. Phys.,2007,9:70.
    [128] CHRISTOV I P.Time dependent quantum Monte Carlo and the stochasticquantization [J]. J. Chem. Phys.,2007,127,134110.
    [129] CHRISTOV I P. Dynamic correlations with time-dependent quantum montecarlo [J]. J. Chem. Phys.,2008,128,244106.
    [130] CHRISTOV I P. Polynomial-time-scaling quantum dynamics with time–dependent quantum monte carlo [J].J. Phys. Chem. A,2009,113:6016.
    [131] CHRISTOV I P.Correlated electron dynamics with time-dependent quantummonte carlo: three-dimensional helium [J]. J. Chem. Phys.,2011,135:044120.
    [132] CHRISTOV I P.Exploring quantum non-locality with de broglie-bohm tra jectories [J]. J. Chem. Phys.,2012,136:034116.
    [133] Christov I P.Electron-pair densities with time-dependent quantum monte carlo[J]. Journal of Atomic and Molecular Physics,2013,424570.
    [134] ORIOLS X.Quantum-trajectory approach to time-dependent transport inmesoscopic system with electron-electron interactions [J]. Phys. Rev. Letter.,2007,98:066803.
    [135] NIKOLI′C H. QFT as Pilot-Wave Theory of Particle Creation and Destruction[J].International Journal of Modern Physics A,2010,25:1477.
    [136] NIKOLI′C H. Bohmian particle trajectories in relativistic bosonic quantum fieldtheory [J].Foundations of Physics Letters,2004,17:363.
    [137] NIKOLI′C H. Bohmian particle trajectories in relativistic fermionic quantumfield theory [J]. Foundations of Physics Letters,2005,18:123.
    [138] NIKOLI′C H. Relativistic quantum mechanics and the bohmian interpretation.[J], Foundations of Physics Letters,2005,18:549.
    [139] NIKOLI′C H. Relativistic bohmian interpretation of quantum mechanics,AIPConference Proceedings,2006,844:272.
    [140] WANG Z S, DARLING G. R, HOLLOWAY S.Dissociation dynamics from a debroglie-bohm perspective [J]. J. Chem. Phys.,2001,115:22.
    [141] WU J, AUGSTEIN B B AND FIGUEIRA C,et al.Local dynamics inhigh-order-harmonic generation using bohemian trajectories [J]. Phys. Rev.A,2013,88:023415.
    [142] FLECK J A, MORRIS J R, FEIT M D.Time-dependent propagationof high energy laser beams through the atomosphere [J]. Appl. Phys.,1976,10:129-160.
    [143] FEIT M D, FLECK J A, STEIGER A, Solution of the Schr dingerEquation by Spectral Method [J]. J.Comp. Phys.,1998,47:412-433.
    [144] HERMANN M R, FLECK J A, et al.Split-operator spectral method forsolving the time-dependent schr dinger equation in sphericalcoordinates [J].Phys. Rev. A,1988,38:6000.
    [145] CHEN J G, ZENG S L and YANG Y J.Generation of isolated sub-50-as pulsesby quantum path control in the multicycle regime [J].Phys. Rev. A,2010,82:043401.
    [146] CHEN J G, YANG Y J, ZENG S L AND LIANG H Q.Generation of intenseisolated sub-40-as pulses from a coherent superposition state by quantum pathcontrol in the multicycle regime [J].Phys. Rev. A,2011,83:023401.
    [147]陈基根,杨玉军,俞旭萍,何龙君,徐圆圆.双色激光脉冲辐照叠加态生成强38阿秒孤立脉冲平[J].物理学报,2011,60:053206.
    [148]陈基根,杨玉军,陈漾.附加谐波脉冲生成强的39阿秒孤立脉冲[J].物理学报,2011,60(3):33202-033202.
    [149] STRICKLAND D,MOUROU G.Compression of amplified chirped optical pulse[J].Opt.Commun,1985,55:447-449.
    [150] DUBIETIS A, JONUSAUSKAS G, AND PISKARSKAS A. Powerfulfemtosecond pulse generation by chirped and stretched pulse parametricamplification in BBO crystal [J]. Opt. Commun,1992,88:437-440.
    [151] LEIN M, HAY N, VELOTTA R, MARANGOS J P AND KNIGHT P L.Role ofthe intramolecular phase in high-harmonic generation [J]. Phys.Rev.Lett.,200288:183903.
    [152] WU Y, ZHANG J T, YE H L AND XU Z Z.Intensity-dependentinterference effect in high-order harmonic generation from alignedH2+molecules [J]. Phys. Rev. A,2011,83:023417.
    [153] HAN Y C AND MASEN L B.Internuclear-distance dependence of therole of excited states in high-order-harmonic generation ofH2+.[J].Phys. Rev. A87,043404(2013).
    [154] LOZHKAREV V V, FREIDMAN G I, GINZBURG N, et al.200TW45fs laserbased on optical parametric chirped pulse amplification [J]. Opt. Express,2006,14:446-454.
    [155] PERRY M D, PENNINGTON D, STUART B C, et al. Petawatt laser pulses[J].Opt. Lett.,1999,24:160-162.
    [156] DRESCHER M, HENTSCHEL M, UIBERACKER M et al. Steering attosecondelectron wave packets with light [J]. Science,2002,297:1144-1148.
    [157] Kulander K C.Multiphoton ionization of hydrogen:A time-dependent theory [J].Phys. Rev. A,1987,35:445-447.
    [158] Zeng S L, Zou S Y, Yan J.Generalized pseudospectral method for solving thetime-dependent schrodinger equation involving the coulomb potential [J]. Chin.Phys. Lett.,2009,26:053202.
    [159] Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A.An MCTDHF approachto multielectron dynamics in laser fields [J].Laser Physics,2003,13:1064-1068.
    [160] Runge E, Gross E K U.Density-functional theory for time-dependent systems.Phys. Rev. Lett.,1984,52:997-1000.
    [161] Marques M A L, Gross E K U.Time-dependent density functional theory [J].Rev. Phys. Chem.,2004,55:427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700