用户名: 密码: 验证码:
若干分子体系的电子激发态性质和碰撞电荷转移的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对含溴物质在大气平流层中的紫外辐射解离产物—高活性溴自由基对臭氧层的负面影响的广泛关注,含溴反应体系的微观电子结构、光谱性质、跃迁属性等激发态性质及相关动力学的研究被提上科研日程,它们在基础研究及实际应用领域的重要性也被人们越来越深入的认知。碘代烷烃的光致解离产物碘原子可用作新型高能化学激光器—碘化学激光器的工作物质。碘甲烷作为最简单的碘代烷烃,对其电离解离机理的研究具有重要的实用价值和指导意义。解离通道及相应能量的研究分析为提高碘原子的量子产率提供理论支持,对激光工艺产业的进步有一定的促进作用。另外,建立合理的理论模型解释碘甲烷的解离过程,对表征同类多原子分子电解离过程具有理论意义。基于激发态绝热势能函数与激发态间耦合的碰撞电荷动力学是原子分子物理中的一个重要问题,同时在天体物理、等离子体物理等领域也有重要的指导意义。电荷转移是生命体中的重要动力学过程,低能区离子-分子碰撞电荷转移动力学的理论研究对理解生物体中的重要物理、化学反应具有重要意义。
     鉴于电子激发态性质及相关动力学过程研究的重要意义,本文中,我们选取含溴双原子体系CBrq+(q=0,1,2)、多原子体系CH_3Iq+(q=0,1,2)以及碰撞体系[Be~(2+)+H_2O]和[H++CH]为理论研究对象,对各体系的激发态性质和碰撞体系的电荷转移动力学进行了理论研究。我们的具体工作如下:
     第一部分,我们采用包含Davidson修正的多参考组态相互作用(MRCI+Q)方法分别对含溴双原子体系CBr、CBr+和CBr~(2+)进行了高精度的从头计算。计算中纳入旋-轨耦合效应,获得了CBr和CBr+的12个Λ–S电子态和考虑旋-轨耦合效应后的电子态的势能曲线以及它们的的光谱常数,讨论了Λ–S电子态的势能曲线交叉现象和预解离机理,并分析了旋-轨耦合效应对势能曲线和光谱常数的影响。对CBr+离子我们还研究了包括Franck-Condon因子和辐射寿命在内的跃迁性质。通过对CBr~(2+)离子首次理论研究获得了CBr~(2+)离子的12个Λ–S电子态的势能曲线和相应的光谱常数。所得计算结果和已有实验及理论结果吻合得很好。本理论计算结果有利于理解势能曲线的交叉和避免交叉现象及预解离的动力学过程,对复杂双原子分子体系的光谱性质、预解离动力学过程及旋-轨耦合效应的研究有一定参考价值,同时还可以为探究大气臭氧层中的化学反应机制提供一定的理论依据。
     第二部分,利用自旋-轨道-多参考组态相互作用方法和全电子基组对考虑CH_3基团的弛豫效应后CH_3I分子沿C-I解离的有效势能曲线和激发态到基态的跃迁矩函数进行了计算,并取得了与现有理论研究接近的结果。接着,本文报道了CH_3I+离子沿C-I解离的势能曲线,计算给出了前9个较低解离限对应的电子态。首次报道了解离限CH_3+(3A)/I(2P)对应电子态的信息,并考查了-CH_3基团的弛豫效应对解离势能曲线的影响。在考虑-CH_3基团的弛豫效应后,得到了9个未被报道的较高的束缚态;我们表征了束缚电子态的位置,给出了可能的解离通道,并计算了排斥态直接解离的动能释放数值。最后,我们对CH_3I~(2+)离子的解离通道进行了计算和分析。优化得到了CH_3I,CH_3I+和CH_3I~(2+)的稳定结构及解离过渡态的几何构型并给出了相应能量,计算的第一、二电离能与实验结果吻合;计算发现,CH_3I~(2+)的基态为三重态3A2。在得到的结构能量和几何构型的指导下,对CH_3I~(2+)的两体解离过程和三体解离过程进行了详细分析和讨论。计算结果表明,二体解离过程CH_3I~(2+)(1A)→CH_3++I+(1D)/HCI++H~(2+)/CI+(1+)+H3+(1A1)/CH~(2+)+HI+(2A1)和CH_3I~(2+)(3A2)→CH_3++I+(3P)为放能过程,较易实现;三体解离过程CH_3I~(2+)(1A)→CH~(2+)+H+I+(1D)/HCI++H+H+/CI+(3Σ+)+H~(2+)+H和CH_3I~(2+)(3A2)→CH~(2+)+H+I+(3P)/CI++H~(2+)H+为放能反应,是容易实现的;而CH_3I~(2+)(3A2)→CI+(3+)+H3+(1A1)和CH_3I~(2+)(3A2)→H~(2+)+H+CI+分别对应着不容易实现的二体、三体解离过程。三重和单重势能面上的解离过程表现出较大差异。
     第三部分,我们用多参考组态相互作用的方法和全量子力学分子轨道密耦合理论考察了Be~(2+)-H_2O和H+-CH碰撞电荷转移动力学,得到了电荷转移的态选择截面和总截面,并计算分析了碰撞电荷转移中的各向异性性质。计算结果表明不同碰撞体系空间构型体现出了不同的势能曲线和耦合的性质。最后我们计算了各构型在1eV/u-1000eV/u的速度区间内总散射截面和态选择截面,经过比较讨论得出了Be~(2+)离子和H_2O分子在不共面碰撞时更容易发生电荷转移过程。在碰撞能小于500eV/u时,散射截面表现出较强的各向异性性质,我们对此给出了定性的解释。类似地,我们研究了[H++CH]碰撞体系电荷转移动力学过程。我们针对体系的三种不同几何构型α=0°,α=90°,α=180°分别进行了绝热势能曲线、径向耦合矩阵元、转动耦合矩阵元及电荷转移总(态选择)散射截面等一系列计算。计算表明,转动耦合在高能区对电荷转移截面有重要贡献;与[Be~(2+)+H_2O]碰撞过程类似,低能区的电荷转移各向异性比较明显。本文中碰撞体系[Be~(2+)+H_2O]和[H++CH]电荷转移动力学的研究,对理解碰撞中电荷转移的动力学过程、各向异性对电荷转移过程的影响有一定的理论意义;同时[H++CH]碰撞电荷转移截面的相关参数为热核聚变等离子研究提供了物理和参数支持。
As the dissociation product by ultraviolet radiation, bromine-containing radicalshave large influence on the ozone sphere. The bromine-containing radicals haveattracted the extensive attention. Therefore, the electronic structures, spectrum andtransition properties of bromine-containing systems have attracted a lot of researchinterests. The importance of bromine-containing systems in application has beenperceived. As the product of photodissociation for iodine generation of methyl iodide,the excited I atom could be used as the operation material of new type high-energychemical laser. CH_3I is the simplest Iodine generation of methyl iodide, of which theionization and dissociation mechanism have significant utility practical value andguiding significance.
     The analysis of dissociation channel and energy provides the theoretical supportsfor improving the quantum yield of excited I atom and plays an important role infurther development of laser technology. Moreover, the construction of reasonablemodel that explains the dissociation of CH_3I has the important significance inexploring the related polyatomic molecules. Based on the adiabatic potential energyfunction and coupling between excited states, the collision charge dynamics is one ofthe important topics in atomic and molecular physics. Charge transfer is also theimportant dynamic processes in life sicence. The study charge transfer ofion-molecular collision has signicance in understanding the physical and chemical reaction in living bodies.
     In consideration of the important significance of property of electronic states anddynamic, we select the bromine-containing diatomic molecule CBrq+(q=0,1,2),polyatomic molecule system CH_3Iq+(q=0,1,2) and collision systems [Be~(2+)+H_2O] and[H++CH] as the theoretical research object. Our specific work is as follows:
     Part one, the multi-configuration interaction method including Davidson(+Q)was used to study the bromine-containing systems including CBr、CBr+and CBr~(2+).The spin-orbit coupling has been taken into account. The PECs of the Λ-S states and
     states were present and spectrscopic constants corresponding to the bound stateswere obtained. We also discussed the curve crossings of Λ-S states, predissociationmechanism and spin-orbit coupling effect on the potential energy curves andspectrscopic constants. For CBr+, the transition properties including Franck-Condonfactors and radiative lifetimes have been investigated as well. The potential energycurves of12Λ-S states for CBr~(2+)ion were calculated. The obtained results are ingood agreement with the experimental and theoretical results, which are conducive tounderstand the crossing of potential energy curves, avoided crossing, predissociationand provide the theoretical foundation for exploring chemical reaction in atmosphericozonosphere.
     In part two, the spin-orbit multi-reference configuration interaction method withall-electronic basis set was employed to calculate the potential energy curves in thedissociation of CH_3I and the transition moment from ground state to excited states,through which the relaxation effect of the alkyl radical was considered. Our calculatedresults were in good agreement with the previous theoretical and experimental dates.Then, the dissociation with the relaxation effect of the alkyl radical along the C-Ibond of the CH_3I+was performed. All the electronic states related to the first ninelowest dissociation limits have been investigated, and the dissociation limit CH_3+(3A)/I (2P) and nine undetected bound states were firstly reported. Position of thebound states, kinetic energy releases of the exclusive states, and the possibledissociation channels of CH_3I+were calculated and analyzed. Finally, the dissociationchannels of CH_3I~(2+)were investigated. The structures and energies corresponding to the steady structures and the transition states of CH_3I, CH_3I+and CH_3I~(2+)were presentin our work. The calculated first and second ionization energies were agreement withexperimental results, and the ground state of the CH_3I~(2+)is a triplet state3A2. On basisof the calculated structures and the energies, the two-body and three-body dissociationprocesses of the CH_3I~(2+)have been analyzed and discussed in detail. Our calculationsindicate that the two-body dissociations CH_3I~(2+)(1A)→CH_3++I+(1D)/HCI++H~(2+)/CI+(1+)+H3+(1A1)/CH~(2+)+HI+(2A1) and CH_3I~(2+)(3A2)→CH_3++I+(3P) and the three-bodydissociations CH_3I~(2+)(1A)→CH~(2+)+H+I+(1D)/HCI++H+H+/CI+(3Σ+)+H~(2+)+H, CH_3I~(2+)(3A2)→CH~(2+)+H+I+(3P)/CI++H~(2+)H+are exergonic, nevertheless, two processes CH_3I~(2+)(3A2)→CI+(3+)+H3+(1A1) and CH_3I~(2+)(3A2)→H~(2+)+H+CI+are most difficult to achieve.
     In the last part, the charge transfer in collision systems Be~(2+)-H_2O and H+-CHhave been undertaken employing the multi-reference configuration interaction (MRCI)method and quantum-mechanical molecular orbital close-coupling methods. Total andpartial charge-transfer cross sections for the collisions in the energy range of1eV/u-1000eV/u were present. The mechanism of the charge transfer process, inparticular its anisotropy, has been investigated in detail in connection withnon-adiabatic interactions around avoided crossings between states involved in thereaction. With comparison of the charge transfer process under different geometricalstructure, the charge transfer process in collisions of Be~(2+)ions with the H_2O moleculewas more likely to happen under a non-coplanar geometry. The anisotropy incharge-transfer cross sections in the1eV/u-500eV/u was analyzed. Analogously, thecharge transfer dynamics in [H++CH] collision was investigated in this work. In orderto study the anisotropy of this process, a series of calculations have been performedwith different target orientations. The potential energy curves, associated radial androtational coupling matrix elements, total and partial charge-transfer cross sectionswere calculated to analyze the mechanism of the charge transfer process. It’s foundthat the rotational coupling gives significant contributions to the charge transfer crosssections in the high energy region. The calculations on the charge transfer dynamics inBe~(2+)-H_2O and H+-CH collisions are helpful to understand the collision-induced chargetransfer reactions in different research fields and the anisotropy affect on the charge transfer process. Moreover, the atomic and molecular parameters of thecharge-transfer cross sections in [H++CH] collision could supply the physicaldistributions to thermonuclear fusion plasma research.
引文
[1] SIMONS J P, YARWOOD A J. Decomposition of hot radicals. Part1. The production ofCCl and CBr from halogen-substituted methyl radicals [J]. Trans. Faraday Soc.,1961,57:2167-2175.
    [2] HESS B A, CHANDRA1P, BUENKER R J. Recent Ci Methods for the Calculation of PairCorrelations and More-Electron Clusters in Ground-state Atoms [J]. Int. J. Quantum Chem.,1986,29:737-753.
    [3] TSUJI M, SHINOHARA K, MIZUGUCHI T, NISHIMURA Y. The a3Π0+-X1Σ+emissionsystem of CBr+[J]. Can. J. Phys.,1983,61:251-255.
    [4] TSUJI M, KUHN R, MAIER J P. A Reinvestigation On the CBr+Chemiluminescence in aHelium Afterglow [J]. Chem. Phys. Lett.,1985,119:473-476.
    [5] BURRILL S and GREIN F. MRCI studies on ground and excited states of CBr [J]. Mol.Phys.,2007,105:1891-1901.
    [6] SHI D, etal. Theoretical calculations on12Λ-S and23states of CBr+cation in thegasphase: Potential energy curves, spectroscopic parameters and spin–orbit coupling [J]. J.Quant. Spectrosc. Radiat. Transfer.2013, http://dx.doi.org/10.1016/j.jqsrt.2013.09.016i
    [7] MARMAR E S, TERRY J L. Atomic Processes in Plasmas [M]. AIP Conference Proceedings257, AIP, New York,1992.
    [8] WATANABE T, SHIMAMURA I, SHIMIZU M and ITIKAWA Y. Molecular Precesses inSpace [M], Plenum, New York,1990.
    [9] CAMMI R, HOFMANN H J, TOMASI J. Decomposition of the interaction energy betweenmetal cations and water or ammonia with inclusion of counterpoise corrections to theinteraction energy terms [J]. Theor. Chem. Acta.,1989,76:297-313.
    [10] CORONGIU G, CLEMENTI E. A theoretical study on the water structure for nucleic acidsbases and base pairs in solution at T=300K [J]. J. Chem. Phys.,1978,69:4885-4898.
    [11] JANEV R K. Atomic and Molecular Processes in SOL/Divertor Plasmas [J]. Contrib. PlasmaPhys.,1998,33:307-318.
    [12] PROBST MM, SPOHR E, HEINZINGER K. On the hydration of the beryllium ion [J].Chem. Phys. Lett.,1989,161:405-408.
    [13] HASHIMOTO K, YODA N, IWATA S. Theoretical study of hydrated Be2+ions [J]. Chem.Phys.,1987,116:193-202.
    [14] HASHIMOTO K, IWATA S. Ab initio self-consistent-field molecular orbital study on thehydration of three oxidation states of beryllium in aqueous solution [J]. J Phys. Chem.,1989,93:2165-2169.
    [15] HOFMANN H J, HOBZA P, CAMMI R, TOMASI J, ZAHRADNIK R. Decomposition ofthe interaction energy between metal cations and water or ammonia with inclusion ofcounterpoise corrections to the interaction energy terms [J]. J Mol. Struct.,1989,201:339-344.
    [16] COSSI M, PERSICO M. Charge transfer and curve crossings in the [BeH+2O]2system [J].Theor. Chem. Acta.,1991,81:157-168.
    [17] ZHAO L Z, LIU S H, ZHU D B. The study of DISP φ4charge transfer complex using XPS[J]. Chinese Science Bulletin,1983,28:1486-1486.
    [18] ROZSáLYI E, BENE E, HALáSZ G J, VIBóK á, and M. C. BACCHUSMON TABONEL.Theoretical treatment of charge transfer in collisions of C2+ions with HF: Anisotropic andvibrational effect [J]. Phys. Rev A,2010,81:062711.
    [19] PULLMAN A, BERTHOD H, and GRESH N. On the scattering of slow protons by diatomictargets [J]. Int. J. Quantum Chem. Sym.,1976,10:37-56.
    [20] ZHANG R T, MA X, ZHANG S F, ZHU X L, SUSMITHA A, MADISON D H, LI B, QIAND B, FENG W T, GUO D L, LIU H P, YAN S C, ZHANG P J, XU S, and CHEN X M.Picturing electron capture to the continuum in the transfer ionization of intermediate-energyHe2+collisions with argon [J]. Phys.Rev. A,2013,87:012701.
    [21] HALLADA M R, SEIFFERT S L, WALKER R F, VETROVEC J. Industrial Iodine Lasers:An Untapped Military Resource [J]. Proceedings of SPIE,2001,4184:567-570.
    [22] LATHEM W P, KENDRICK K R, QUILLEN B. Applications of the ChemicalOxygen-Iodine Laser [J]. Proceedings of SPIE,2000,3887:170-178.
    [23] HALLADA M R, SEIFFERT S L, WALKER R F, VETROVEC J. Chemical Oxygen-IodineLaser(COIL) for the dismantlement of Nuclear Facilities [J].Proceedings of SPIE,2000,3931:149-155.
    [24] TEI K, SUGIMOTO D, ITO D. Technical Process in industrial COIL[J]. Proceedings ofSPIE,2005,5777:281-289.
    [25] SCHULZ W G. Building a Chemical Laser Weapon [J]. Chemical and Engineering News,2004,82(51):43-44.
    [26] SHORTER J H, KOLB C E, CRILL D M. Rapid degradation of atmospheric methyl brcmidein soil [J]. Nature,1995,377:717-719.
    [27] LOVELOCK J E. Natural halocarbons in air and in the sea [J]. Nature,1975,256:193-194.
    [28] SINGH H B, SALAS L J, STILES R E. Mehtyl halides in and over the EasternPacific(40°N-32°S)[J]. Journal of Geophysical Research,1983:88(C6):3684-3690.
    [29] LOO R O, HAERRI H P, HALL G E, HOUSTON P L. Methyl rotation, vibration, andalignment from a multiphoton ionization study of the266nm photodissociation of methyliodide [J], J. Chem. Phys.,1989,90,4222-4236.
    [30] HALL G E, SEARS T J, FRYE J M. Dissociation of CD3I at248nm studied by diode laserabsorption spectroscopy [J], J. Chem. Phys.,1989,90,6234-6346
    [31] LAO K Q, PERSON M D, XAYARIBOUN P, BUTLER L J. Evolution of moleculardissociation through an electronic curve crossing: Polarized emission spectroscopy of CH3Iat266nm [J], J. Chem. Phys.,1990,92,823-831
    [32] PERSON M D, KASH P W, BUTLER L J. The influence of parent bending motion onbranching at a conical intersection in the photodissociation of CX3I (X=H,D,F)[J], J.Chem. Phys.,1991,94,2557-2583
    [33] SUZUKI T, KANAMORI H, and HIROTA E. Infrared diode laser study of the248nmphotodissociation of CH3I [J], J. Chem. Phys.,1991,94,6607-6619
    [34] ZAHEDI M, HARRISON J A, NIBLER J W.266nm CH31photodissociation: CH3spectraand population distributions by coherent Raman spectroscopy [J], J. Chem. Phys.,1994,100,4043-4055
    [35] EPPINK A T J B, PARKER D H. Energy partitioning following photodissociation of methyliodide in the A band: A velocity mapping study [J], J. Chem. Phys.,1999,110,832-844
    [36] ZHONG D, CHENG P Y, ZEWAIL A H. Bimolecular reactions observed by femtoseconddetachment to aligned transition states: Inelastic and reactive dynamics [J], J. Chem. Phys.,1996,105,7864-7867
    [37] IMRE D, KINSEY J L. SINHA A, KRENOS J. Chemical dynamics studied by emissionspectroscopy of dissociating molecules [J], J. Phys. Chem.,1984,88,3956-3964
    [38] SUNDBERG R L, IMRE D, HALE M O, KINSEY J L, COALSON R D. Emissionspectroscopy of photo dissociating molecules: a collinear model for methyl iodide andmethyl-d3iodide [J], J. Phys. Chem.,1986,90,5001-5009
    [39] JOHNSON B R, KITTRELL C, KELLY P B. KINSEY J L. Resonance Raman Spectroscopyof Dissociative Polyatomic Molecules [J], J. Phys. Chem.,1996,100,7743-7764
    [40] SHAPIRO M, BERSOHN R. Vibrational energy distribution of the CH3radical photodissociated from CH3I [J], J. Chem. Phys.,1980,73,3810-3817
    [41] GUO H. A wave-packet study on non-adiabatic transition dynamics in photo dissociation:The importance of parent bending motion [J], J. Chem. Phys.,1992,96,2731-2739
    [42] ROTH J, TSITRONE E, LOARER T, PHILIPPS V, BREZINSEK S, LOARTE A, et al.Tritium inventory in ITER plasma-facing materials and tritium removal procedures [J],Plasma Phys. Controlled Fusion.2008,50,103001
    [43] LOCHT R, DEHARENG D, HOTTOMANN K, KAZIANNIS H, JOCHIMS W,HBAUMGARTEL L B. The photo ionization dynamics of methyl iodide (CH3I): a jointphotoelectron and mass spectrometric investigation [J]. J. Phys. B: At. Mol. Opt. Phys.,2010,43:105101.
    [44]李丽,孔祥和,张树东,刘存海,孙志青,刘建苹,张良芳,乔光. CH3I分子的多光子电离解离研究[J].量子电子学报.2007,24:443-446.
    [45] GRIFFITHS W J, FRANCK M, HARRIS, PARRY D E. Electronically Excited States of theCH23l+Ion [J]. J. Chem. Soc. Faraday Trans.,1990,86(16):2801-2804.
    [46] AJITHA D, WIERZBOWSKA M, LINDH R, MALMQVIST P A. Spin–orbit ab initio studyof alkyl halide dissociation via electronic curve crossing [J]. J. Chem. Phys.,2004,121:5761-5766.
    [47] ALEKSEYEV A B, LIEBERMANN H P, BUENKER R J, YURCHENKO S N. An ab initiostudy of the CH3I photodissociation. I. Potential energy surfaces [J]. J. Chem. Phys.,2007,126:234102.
    [48] TADJEDDINE M, FLAMENT J P, TEICHTEIL C. Non-empirical spin-orbit calculation ofthe CH3I ground state [J]. Chem. Phys.,1987,118:45-55.
    [49] AMATATSU Y, YABUSHITA S, MOROKUMA K. Full nine‐dimensional ab initiopotential energy surfaces and trajectory studies of A-band photodissociation dynamics:CH3I*→CH3+I, CH3+I*, and CD3I*→CD3+I, CD3+I*[J]. J. Chem. Phys.,1996,104:9783-9794.
    [50] AJITHA D, FEDOROV D G, FINLEY J P, HIRAO K. Photodissociation of alkyl and aryliodides and effect of fluorination: Analysis of proposed mechanisms and vertical excitationsby spin-orbit ab initio study [J]. J. Chem. Phys.,2002,117:7068-7076.
    [51]朱正和.原子分子反应静力学[M].北京:科学出版社.1996,第四章.
    [52] MORSE P M. Diatomic molecules according to the wave mechanics, II vibrational levels [J].Phys. Rev.,1929,34:57-64.
    [53] PIPANO A, GILMAN R R. Uses of pair energy techniques in molecular calculations: Theammonia molecule [J]. Chem. Phys. Lett.,1970,5:285-290.
    [54] LEVINE. IN, Quantum Chemistry [M]. Allyn and Bacon, Boston,1999, Chapter13.
    [55] SADLEJ J. Semi-empirical methods of quantum chemistry [M]. Chichester: Ellis Horwood,1985.
    [56]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [57] WEMER H J, KNOWLES P J. An efficient internally contracted multiconfigurationreference configuration interaction method [J]. Chem. Phys.,1988,89(9):5803-5814.
    [58] MORSE P M. Diatomic molecules according to the wave mechanics, II vibrational levels [J].Phys. Rev.,1929,34:57-64.
    [59]赫兹堡G.分子光谱与分子结构[M].北京:科学出版社,1959,第七章.
    [60]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [61] VESZPREMI T, FEHER M. Quantum Chemistry: Fundamentals to Applications [M].Dordrecht, Kluwer Academic/Plenum, New York,1999, Chapter7.
    [62]徐光宪;黎乐民,量子化学[M].1982,科学出版社,1-3章.
    [63]唐敖庆;杨忠志;李前树,量子化学[M].1982,科学出版社,2-5章.
    [64] WERNER H J, KNOWLES P J. A second order multiconfiguration SCF procedure withoptimum convergence [J]. J. Chem. Phys.,1985,82:5053-5063.
    [65] KNOWLES P J, WERNER H J. An efficient second-order MCSCF method for longconfiguration expansions [J]. Chem. Phys. Lett.,1985,115:259-267.
    [66] WERNER H J, KNOWLES P J. An efficient internally contracted multiconfigurationreference configuration interaction method [J]. J. Chem. Phys.,1985,89:5803-5814.
    [67] KNOWLES P J, WERNER H J. An efficient method for the evaluation of couplingcoefficients in configuration interaction calculations [J]. Chem. Phys. Lett.,1988,145:514-522.
    [68] FRISCH M J, GORDON M H, POPLE J A. A direct MP2gradient method [J]. Chem.Phys.Lett.,1990,166:275-280.
    [69] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies in Configuration-interaction theory [J]. J. Chem. Phys.,1980,72:4654-4655.
    [70] PURVIS G D, BARTLETT R J. A full coupled-cluster singles and doubles model: Theinclusion of disconnected triples [J]. J. Chem. Phys.,1982,76:1910-1918.
    [71] MULLIKEN R S. Intensities in Molecular Electronic Spectra X. Calculations on Mixed-Halogen, Hydrogen Halide, and Hydroxyl Spectra [J]. J. Chem. Phys.,1940,8:382-395.
    [72] KNOWLES P J, WERNER H J. An efficient method for the evaluation of couplingcoefficients in configuration interaction calculations [J]. Chem. Phys. Lett.,1988,145:514-522.
    [73] BARTLETT R J, PURVIS G D. Many-body perturbation theory, coupled-pair many-electrontheory and the importance of quadruple excitations for the correlation problem [J]. Int. J.Quant. Chem.,1978,14:561-581.
    [74] LANGHOFF S R, DAVIDSON E R. Configuration Interaction Calculations on the NitrogenMolecule [J]. Int. J. Quantum Chem.,1974,8:61-72
    [75] KOPUT J, PETERSON K A. Ab Initio Potential Energy Surface and Vibrational-RotationalEnergy Levels of X2+CaOH [J]. J. Phys. Chem., A2002,106:9595-9599.
    [76] VAN DUIJNEVELDT F B, DUIJNEVELDT-VAN J G, DE RIJDT C M, VAN LENTHE J H.State of the Art in Counterpoise Theory [J]. Chem. Rev.,1994,94:1873-1885.
    [77] MARTIN J M L, SUNDERMANN A. Correlation consistent valence basis sets for use withthe Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr andIn–Xe [J]. J. Chem. Phys.,2001,114:3408-3420.
    [78] TRUHLAR D G. Basis-set extrapolation [J]. Chem. Phys. Lett.,1998,294:45-48.
    [79] FAST P L, SANCHEZ M L, TRUHLAR D G. Infinite basis limits in electronic structuretheory [J]. J. Chem. Phys.,1999,111:2921-2926.
    [80] SKOKOV S, PETERSON K A, BOWMAN J M. An accurate ab initio HOCl potentialenergy surface, vibrational and rotational calculations, and comparison with experiment [J].J. Chem. Phys.,1998,109:2662-2671.
    [81] MIELKE S L, GARRETT B C, PETERSON K A. A hierarchical family of global analyticBorn–Oppenheimer potential energy surfaces for the H+H2reaction ranging in qualityfrom double-zeta to the complete basis set limit [J]. J. Chem. Phys.,2002,116:4142-4161.
    [82] World Meterological Organization, Global OzoneResearch and Monitoring Project, inScientific Assessment of Ozone Depletion [R]:2002, Report47, Geneva,2003.
    [83] SALAWITCH R J. Implications for stratospheric ozone loss and climate change [J]. Nature,2006,439:275-287
    [84] QUACK B, ATLAS E, PETRICK G, STROUD V, SCHAUFFLER S, and WALLACE D WR. Oceanic bromoform sources for the tropical atmosphere [R]. Geophys. Res. Lett.,2004,31: L23S05.
    [85] HESS B A, CHANDRA P, and BUENKER R J. Ab initio MRDCI calculation of thezero-field splitting of the2Π ground state of the CBr molecule [J]. Chem. Phys. Lett.,1985,119:403-406.
    [86] WERNER H J, KNOWLES P J, LINDH R, MANBY F R, SCHUTA M, CELANI P,KORONA T, MITRUSHENKOV A, RAUHUT G, ADLER T B, et al. MOLPRO, apackage of ab initio programs;2010.
    [87] WERNER H J, KNOWLES P J. A second order multiconfiguration SCF procedure withoptimum convergence [J]. J. Chem. Phys.,1985,82:5053-5063.
    [88] KNOWLES P J, WERNER H J. An efficient second-order MCSCF method for longconfiguration expansions [J]. Chem. Phys. Lett.,1985,115:259-267.
    [89] KNOWLES P J, WERNER H J. An efficient method for the evaluation of couplingcoefficients in configuration interaction calculations [J]. Chem. Phys. Lett.,1988,145:514-522.
    [90] LAUGHOFF S R, DAVIDSON E R. Configuration interaction calculations on the nitrogenmolecule [J]. Int. J. Quantum. Chem.,1974,8:61-72.
    [91] KNOWLES P J, WERNER H J. An efficient internally contracted multiconfigurationreference configuration interaction method [J]. J. Chem. Phys.,1988,89:5803-5814.
    [92] Le Roy R. J. LEVEL7.7: A computer program for solving the radial Schr dinger equationfor bound and quasibound levels; University of Waterloo: Chemical Physics ResearchReport No.2005, CP-661.
    [93] HESS B A, CHANDRA P, and BUENKER R J, Non-radiative excitation decay of cresylviolet on TiO2: variation with dye-surface separation [J]. Chem. Phys. Lett.,1985,200:473-476.
    [94] MARSHALL P, MISRA A, and SCHWARTZ M. A computational study of the enthalpies offormation of halomethylidynes [J]. J. Chem. Phys.,1999,110:2069-2074.
    [95] KURITA E, MATSUURA H, OHNO K. Relationship between force constants and bondlengths for CX (X=C, Si, Ge, N, P, As, O, S, Se, F, Cl and Br) single and multiple bonds:formulation of Badger’s rule for universal use [J]. Spectrochim. Acta. Part A,2004,60:3013-3023.
    [96] DIXON D A, DE JONG W A, PETERSON K, and FRANCISCO J S. Heats of Formation ofCBr, CHBr, and CBr2from Ab Initio Quantum Chemistry [J]. J. Phys. Chem. A,2002,106:4725-4728.
    [97] DIXON R N, and KRoTo H W. High-Resolution Study of the Spectrum of the CBr Radical[J]. Trans. Faraday Soc.,1963,59:1484-1489.
    [98] SIMONS J P, YARWOOD A J. The production of CCl and CBr from halogen-substitutedmethyl radicals [J]. Trans. Faraday Soc.,1961,57:2167-2175.
    [99] GUTSEV G L, ZIEGLER T. Theoretical study on neutral and anionic halocarbynes andhalocarbenes [J]. J. Phys. Chem.,1991,95:7220-7228.
    [100]HASSOUNA M, WALTERS A, DEMUYNCK C, and BOGEY M. Rotational Spectrum ofCBr by Kinetic Microwave Spectroscopy of193-nm Photolysis Products of Bromoform [J].J. Mol. Spec.,2000,200:16-24.
    [101]MARR A J, SEARS T J, DAVIES P B. High-Resolution Infrared Diode Laser Spectroscopyof CBr [J]. J.Mol. Spec.,1997,184:413-433.
    [102]YAMAMOTO S, SAITO S, Fourier transform microwave spectroscopy of theCH22CP(B1) radical [J]. Astrophys. J.,1991,370: L103.
    [103]MOORE C E. Atomic energy levels. Washington DC: National Bureau of Standards;1978
    [104]HAYES T R, WETZEL R C, BAIOCCHI F A, FREUND R S. Absolute cross sections forelectron-impact ionization and dissociative ionization of the SiF free radical [J]. J. Chem.Phys.,1988,88:823-829.
    [105] PETRMICHL R H, PETERSON K A, WOODS R C. The microwave spectrum of SiF+[J].J. Chem. Phys.,1988,89:5454-5459.
    [106] AKIYAMA Y, TANAKA K, TANAKA T. Infrared diode laser spectroscopy of the SiF+ion[J]. Chem. Phys. Lett.,1989,155:15-20.
    [107] WEBER M E, ARMENTROUT P B. Energetics and dynamics in the reaction of Si+withSiF4. Thermochemistry of SiFxand SiF+x (x=1,2,3)[J]. J. Chem. Phys.,1988,88:6898-6910.
    [108] FISHER E R, KICKEL B L, ARMENTROUT P B. Collision-induced dissociation andcharge transfer reactions of SiFx+(x=1-4). Thermochemistry of SiFxand SiFx+[J]. J. Phys.Chem.,1993,97:10204-10210.
    [109] BREDOHL H, BRETON J, DUBOIS I, ESTEVA J M, HERCOT D M, REMY F. The VUVAbsorption Spectra of SiF and SiF+[J]. J. Mol. Spectrosc.,1999,195:281-283.
    [110] TSUJI M, MIZUGUCHI T, NISHIMURA Y. Vibrational analysis of the A3Π0+, B3Π1–X1Σ+0+band systems of SiCl+[J]. Can. J. Phys.1981,59:985-989.
    [111] WEBER M E, ARMENTROUT P B. Energetics and mechanisms in the reaction of silicon(Si+) with silicon tetrachloride. Thermochemistry of silicon monochloride, silicon chloride(SiCl+), and silicon chloride (SiCl2+)[J]. J. Phys. Chem.,1989,93:1596-1604.
    [112] SUMIYOSHI Y, TANAKA K, TANAKA T. Infrared diode laser spectroscopy of the SiCl+ion [J]. Chem. Phys. Lett.,1993,214:17-21.
    [113] Fan W Y, LIU Z, DAVIES P B. Infrared Laser Velocity Modulation Spectroscopy of SiCl+(X1Σ+) up to v=6[J]. J. Mol. Spectrosc.,1998,191:98-107.
    [114] HILDENBRAND D L. Dissociation energies of the molecules BCl and BCl+[J]. J. Chem.Phys.,1996,105:10507-10510.
    [115] VERMA R D. Rotational structure of a new spectrum attributed to CCl+[J]. J. Mol.Spectrosc.1961,7:145-153.
    [116] BREDOHL H, DUBOIS I, MELEN F. The emission spectrum of CCl+[J]. J. Mol.Spectrosc.,1983,98:495-507.
    [117] TSUJI M, MIZUGUCHI T, SHINOHRARA K. CCl+(A1Π-X1Σ+, a3Π+1-X1Σ) emissionsystems produced from the thermal energy reaction between He+and CCl4[J]. Can. J. Phys.,1983,61:838-843.
    [118] URKUS A A. The potential energy function for the ground state of CCl+calculated fromspectroscopic data [J]. Chem. Phys. Lett.,1988,150:416-428.
    [119] PETERSON K A, WOODS R C. An ab initio investigation of the spectroscopic propertiesof BCl, CS, CCl+, BF, CO., CF+,N2, CN, and NO+[J]. J. Chem. Phys.,1987,87:4409-4418.
    [120] PETERSON K A, WOODS R C, ROSMUS P, WERNER H J. Spectroscopic properties ofthe X1Σ+and a3Π electronic states of CF+, SiF+, and CCl+by multireference configurationinteraction [J]. J. Chem. Phys.,1990,93:1889-1894.
    [121] NISHIMURA Y, MIZUGUCHI T, TSUJI M, OBARA S, MOROKUMA K. Theoreticalstudies on low-lying electronic states of the CCl+, SiCl+, and GeCl+ions [J]. J. Chem. Phys.,1983,78(12):7260-7264.
    [122] REN T Q, DING S L, Yang C L. Ab initio study ground-state potential energy function ofSiCl+[J]. J. Mol. Struc: THEOCHEM,2005,728:159-166.
    [123] URKUS A. Ground-state potential energy function of SiCl+[J]. Spectrochimica Acta PartA,2004,60:2185-2187.
    [124] PETERSON K A, WOODS R C. Predictions of the rotational and vibrational spectra ofSiF+, PO+, and NS+by M ller–Plesset perturbation theory [J]. J. Chem. Phys.,1988,89:4929-4944.
    [125] ROBBE J M. The electronic states of silicon monofluoride: Low-lying valence states [J]. J.Mol. Spectrosc.,1985,112:223-227.
    [126] RICCA A, BAUSCHLICHER C W. Accurate values for SiF and SiF [J]. Chem. Phys. Lett.,1998,287:239-242.
    [127] KARNA S P, GREIN F. Franck-Condon factors for the ionization process SiF (X2Π)→SiF+(X1Σ+)[J]. Chem. Phys. Lett.,1988,150:171-173.
    [128] LIU K, YU L, BIAN W S. Extensive Theoretical Study on Various Low-Lying ElectronicStates of Silicon Monochloride Cation Including Spin-Orbit Coupling [J]. J. Phys. Chem. A,2009,113:1678-1685.
    [129] ZHANG X M, ZHAI H S, LIU Y F, SUN J F. Extensive ab initio calculation on low-lyingexcited states of CCl+including spin-orbit interaction [J]. J.Quant. Spectrosc.,2013,119:23-31.
    [130] TSUJI M, SHINOHARA K, MIZUGUCHI T, NISHIMURA Y. The a3Π0+-X1Σ+emissionsystem of CBr+[J]. Can. J. Phys.,1983,61:251-255.
    [131] TSUJI M, KUHN R, MAIER J P. A Reinvestigation On the CBr+Chemiluminescence in aHelium Afterglow [J]. Chem. Phys. Lett.,1985,119:473-476.
    [132] LI Z, FRANCISCO J S. High level ab initio molecular orbital study of the structures andvibrational spectra of CHBr+and CBr+[J]. J. Chem. Phys.,1998,109:134-138.
    [133] OKABE H. Photochemistry of Small Molecules [R]; Wiley-Interscience: New York,1978.
    [134] HEAVEN M C. Fluorescence decay dynamics of the halogens and interhalogens [J]. Chem.Soc. Rev.,1986,15:405-448.
    [135] BENNETT F R, MCNAB I R. The infrared spectrum of HCl2+and its isotopomers [J].Chem. Phys.Lett.,1996,251:405-412.
    [136] SVENSSON S, KARLSSON L, BALTZER P, KEANE M P, WANNBERG B.High-resolution Auger-electron spectrum of HCl and DCl [J]. Phys. Rev. A,1989,40:4369-4377.
    [137] KARLSSON L, BALTZER P, SVENSSON S, WANNBERG B. Observation of IsotopeEffects in Auger-Electron Spectra: The Predissociative2π-23Σ-State in HCI and DCI [J].Phys. Rev. Lett.,1988,60:2473-2475.
    [138] MCCONKEY A G, DAWBER G, AVALDI L, MACDONALD M A, KING G C, HALL R I.Threshold photoelectrons coincidence spectroscopy of doubly charged ions of hydrogenchloride and chlorine [J]. J. Phys. B,1994,27:271-282.
    [139] HOCHLAF M, HALL R I, PENENT F, ELAND J H D, LABLANQUIE P. Investigation ofthe CS22+dication using threshold photoelectrons coincidence spectroscopy [J]. P., Chem.Phys.,1998,234:249-254.
    [140] CARROLL P K. A New Transition in Molecular Nitrogen [J]. Can. J. Phys.,1958,36:1585-1587.
    [141] COSSART D, LAUNAY F, ROBBE J M, GANDARA G. The optical spectrum of thedoubly charged molecular nitrogen ion: Rotational analysis of the (0-0) and (1-1) bands oftheD1Σ+u-X1Σ+g transition of N22+: Comparison of observations with Ab-initiocalculation results [J]. J. mol. Spec.,1985,113:142-158.
    [142]COSSART D, LAUNAY F. The vacuum uv emission spectrum of the15N22+molecular ion[J]. J. molec. Spect.,1985,113:159-166.
    [143] COSBY P C, MOLLER R, HELM H. Photofragment spectroscopy of N22+[J]. Phys. Rev. A,1983,28:766-772.
    [144] MASTERS T E, SARRE P J. High-resolution laser photofragment spectrum of N2+2(1πu–1Σ+g)[J]. J. Chem. Soc., Faraday Trans.,1990,86:2005-2008.
    [145] SZAFLARSKI D M, MULLIN A S, YOKOYAMA K, ASHFOLD M N R, LINEBERGERW C. Characterization of Triplet States in Doubly Charged Positive Ions: Assignment of the3g-3+uElectronic Transition in N2+2[J]. J. phys. Chem.,1991,95:2122-2124.
    [146] MULLIN A S, SZAFLARSKI D M, YOKOYAMA K, GERBER G, LINEBERGER W C.Triplet state spectroscopy and photofragment dynamics of N22+[J]. J. chem. Phys.,1992,96:3636-3648.
    [147] LARSSON M, SUNDSTR M G, BROSTR M L, MANNERVIK S. Photofragmentspectroscopy of resonances in the A1ustate of N22+[J]. J. chem. Phys.,1992,97:1750-1756.
    [148] SUNDSTR M G, CARLSON M, LARSSON M, BROSTR M L. High-resolutionspectroscopy of the A1Πu X1Σg+(6,1) band in N22+[J]. Chem. Phys. Lett.,1994,218:17-20.
    [149] COSSART D, BONNEAU M, ROBBE J M, Optical emission spectrum of the NO2+dication [J]. J. mol. Spec.,1987,125:413-427.
    [150] ABUSEN R, BENNETT F R, McNAB I R, SHARP D N, SHIELL R C, WOODWARD CA. An infrared spectrum of the molecular dication (doubly positively charged molecule),D35Cl2+[J]. J. chem. Phys.,1998,108:1761-1764.
    [151] FISERA J, POLAK R. A theoretical study of the BO2+dication [J]. Chem. Phys. Lett.,2009,471:198-201.
    [152]程丽.电激励烷基碘化物产生碘激光机制研究[D].哈尔滨:哈尔滨工业大学,2007:1’115.
    [153]赵书涛,闫冰,李瑞等.C2F5I分子C-I键解离的自旋一轨道从头计算[J].高等学校化学学报,2009,30:1170-173.
    [154]李瑞闫冰赵书涛郭庆群连科研田传进潘守甫. CH3I分子的光解离的自旋-轨道从头计算[J].物理学报,2008,57(7):4130-4133.
    [155]ALEKSEYEV A B, LIEBERMANN H P, BUENKER R J, YURCHENKO S N. An ab initiostudy of the CH3I photo dissociation. II. Transition moments and vibrational state control ofthe I*quantum yields [J]. J. Chem. Phys.,2007,126:234103.
    [156] LIU H T, YANG Z, GAO Z. Ionization and dissociation of CH3I in intense laser field [J]. J.Phys. Chem.,2007,126:044316.
    [157] GOSS S P, MCGILVERY D C, MORRISON J D, SMITH D L. A laser-inducedphotodissociation study of CH3I+and CD3I+at high resolution [J]. J. Chem. Phys.,1981,75:757-762.
    [158] SCHNEIDER W, THIEL W. Anharmonic force fields from analytic second derivatives:Method and application to methyl bromide [J]. Chem. Phys. Lett.,1989,157,367-373.
    [159] CONTINETTI R E, BALKO B A, LEE Y T. Symmetric stretch excitation of CH3in the193.3nm photolysis of CH3I [J]. J. Chem. Phys.,89:3383-3384.
    [160] MINTZ D M, BAER T. Kinetic energy release distributions for the dissociation of internalenergy selected CH3I+and CD3I+ions [J]. J. Chem. Phys.,1976,65:2407-2415.
    [161] LEE M, KIMA M S. High resolution spectroscopy for the2A1state of CH+3Ibymass-analyzed threshold ionization/photodissociation [J]. J. Chem. Phys.,2007,127:124313.
    [162] SPARKS R K, SHOBOTAKE K, CARLSON L R, LEE Y T. Photofragmentation of CH3I:Vibrational distribution of the CH3fragment [J]. J. Chem. Phys.,1981,75:3838-3846.
    [163] ZHONG D, CHENG P Y, ZEWAIL A H. Bimolecular reactions observed by femtoseconddetachment to aligned transition states: Inelastic and reactive dynamics [J]. J. Chem. Phys.,1996,105:7864-7867.
    [164] IMRE D, KINSEY J L, SINHA A, KRENOS J. Photoabsorption and photoemission ofozone in the Hartley band [J]. J. Phys. Chem.,1988,89:6667-6675.
    [165] SUNDBERG R L, IMRE D, HALE M O, KINSEY J L, COALSON R D. Time-dependenttheory of Raman scattering for systems with several excited electronic states: Application toa H+3model system [J]. J. Phys. Chem.,1986,90:6903-6915
    [166] JOHNSON B R, KITTRELL C, KELLY P B, KINSEY J L. Resonance raman spectroscopyof dissociative polyatomic molecules [J]. J. Phys. Chem.,1996,100:7743-7764.
    [167] SZAFLARSKI D M, El-SAYED M A. Klnetlc Energy and Formation Mechanisms of I+and CH+3from266-nm Picosecond versus Nanosecond Laser Multiphoton Absorption [J]. J.Phys. Chem.,1988,92:2234-2239.
    [168] LEHR L, WEINKAUF R, SCHLAG E W. Separation of neutral versus cationic dissociationprocesses in an ultracompact double time-of-flight spectrometer: first results on CH3I [J].Int. J. Mass. Spectrom.,2001,206:191-199.
    [169] WALTER K, WEINKAUF R, BOESL U, SCHLAG E W. Molecular ion spectroscopy:Mass selected, resonant two photon dissociation spectra of CH+3I+and CD3I[J]. J. Chem.Phys.,1988,89:1914-1922.
    [170] SHARMA P, VATSA R. K, RAJASEKHAR B N, DAS N C, GHANTY T K,KULSHRESHTHA S K. Photoionization of CH3I mediated by the C state in the visible andultraviolet regions [J]. Rapid Commun. Mass Spectrom,2005,19:1522-1528.
    [171] ZHANG B L, WANG X Y, LOU N Q, ZHANG B, WEI J. Mass resolved MPI spectra ofmethyl iodide in the430–490nm region [J]. Spectrochim.Acta, Part A,2001,57:1759-1765.
    [172] CHUPKA W A, COLSON S D, SEAVER M S, WOODDARD A M. Photodissociationspectrum of CH3I+prepared by multiphoton ionization [J]. Chem. Phys. Lett.,1983,95:171-176.
    [173] SHAPIRO M, BERSOHN R. Vibrational energy distribution of the CH3radicalphotodissociated from CH3I [J]. J. Chem. Phys.,1980,73:3810-3817.
    [174] KARLSSON L, JADMY R, MATTSON L, CHAU F T, SIEGBAHN K. Vibrational andVibronic Structure in the Valence Electron Spectra of CH3X Molecules (X=F, Cl, Br, I, OH)[J]. Physica Scripta,1977,16:225-234.
    [175] LANDOLT-B RNSTEIN. Numerical Data and Functional Relationships in Science andTechnology, New Series[M], edited by O. Madelung Springer, Berlin,1987.
    [176] RAGLE J L, STENHOUSE I A, FROST D C, McDOWELL C A. ValenceShell IonizationPotentials of Halomethanes by Photoelectron Spectroscopy. I CH3Cl, CH3Br, CH3I.Vibrational Frequencies and Vibronic Interaction in CH3Br+and CH3Cl+[J]. J. Chem. Phys.,1970,53:178-184.
    [177] GOSS S P, MORRISON J D, SMITH D L. A laser-induced photodissociation study ofCH3I+and CD3I+at high resolution [J]. J. Chem. Phys.,1981,75:757-762.
    [178] RANDIC M, TRINAJSTIC N. A graph-theoretical approach to structure-propertyrelationships [J]. J. Chem. Edu.,1992,69(9):701-712.
    [179] GRIFFITHS W J, HARRIS F M, PARRY D E. Electronically Excited States of the CH3l2+Ion [J]. J. Chem. Soc., Faraday Trans.,1990,86(16):2801-2804.
    [180] YABUSHITA S, MOROKUMA K. Potential energy surfaces for rotational excitation ofCH3product in photodissociation of CH3I [J]. Chem. Phys. Lett.,1988,153:517-521.
    [181] KAZIANNIS S, SIOZOS P, KOSMIDIS C. Dynamic alignment of CH3I by strongpicosecond laser pulses [J]. Chem. Phys. Lett.,2005,401:115-121.
    [182] DUJARDIN G, HELLNER L, WINKOUN D, BESNARD M J. Valence and inner shellelectronic processes in dissociative double photoionization of CH3I [J]. Chem. Phys.,1986,105:291-299.
    [183] SOBOCINSKI P, RANGAMA J, LAURENT G, ADOUI L, CASSIMI A, CHESNEL J Y,DUBOIS A, HENNECART D, HUSSON X, FREMONT F. Evidence for highly energeticfragments following electron capture in O5++H2collisions at low impact velocities [J]. J.Phys. B: At. Mol. Opt. Phys.,2002,35:1353-1367.
    [184] LAURENT G. Kinematically Complete Study of Dissociative Ionization of D2by IonImpact [J]. Phys. Rev. Lett.,2006,96:173201-173204.
    [185] OLSON R E, FEELER C R. The helium trimer has no bound rotational excited states [J]. J.Phys. B: At. Mol. Opt. Phys.,2001,34:1163-1170.
    [186] MONTABONEL M C B. Theoretical treatment of electron-capture processes inion-molecule collisions: B3++H2as a test case [J]. Phys. Rev. A,1999,59:3569-3575.
    [187] BENE E, VIBOK á, HALASZ G J, MONTABONEL M C B. Ab initio moleculartreatment of charge transfer processes induced by collision of C2+ions with the OH radical:A linear approach [J]. Chem. Phys. Lett.,2008,455:159-163.
    [188] BENE E, MARTINEZ P, HALASZ G J, VIBOK á, MONTABONEL M C B. Chargetransfer in collisions of C2+carbon ions with CO and OH targets [J]. Phys. Rev. A,2009,80:012711.
    [189] MONTABONEL M C B, ABUUDA M, TERGIMAN Y S, SIENKIEWICZ J E.Theoretical treatment of charge-transfer processes induced by collision of Cq+ions withuracil [J]. Phys. Rev. A,2005,72:052706.
    [190] MONTABONEL M C B and Y. S. Tergiman. Anisotropic effect in the charge transfer of Cq+ions with uracil [J]. Phys. Rev. A,2006,74:054702.
    [191] MONTABONEL M C B, TERGIMAN Y S, TALBI D. Ab initio molecular treatment ofcharge-transfer processes induced by collision of carbon ions with5-halouracil molecules[J]. Phys. Rev. A,2009,79:012710.
    [192] DE VRISE J, HOEKSTRA R, MORGENSTERN R, SCHLATH LTER T. Charge DrivenFragmentation of Nucleobases [J]. Phys. Rev. Lett.,2003,91:053401.
    [193] FREMONT F, MARTINA D, KAMALOU O, SOBOCINSKI P, CHESNEL J Y, MCNAB IR, BENNETT F R. Proton emission following multiple electron capture in slow N7++HClcollisions [J]. Phys. Rev. A,2005,71:042706.
    [194] TRUJILLO R C, DEUMENS E, OHRN Y, QUINET O, SABIN J R, STOLTERFOHT N.Water-molecule fragmentation induced by charge exchange in slow collisions with He+andHe2+ions in the keV-energy region [J]. Phys. Rev. A,2007,75:052702.
    [195] F. ALVARADO, BARI S, HOEKSTRA R, CHLATH LTER T. Interactions of neutral andsingly charged keV atomic particles with gas-phase adenine molecules [J]. J. Chem. Phys.,2007,127:034301.
    [196] BENE E, HALASZ G J, VIBOK á, MONTABONEL M C B. Theoretical treatment ofcharge transfer in collisions of C2+ions with HF: Anisotropic and vibrational effect [J]. Phys.Rev A,2010,81:062711.
    [197] CAMMI R, HOFMANN H J, TOMASI J. Decomposition of the interaction energy betweenmetal cations and water or ammonia with inclusion of counterpoise corrections to theinteraction energy terms [J]. Theor. Chem. Acta.,1989,76:297-313.
    [198] CORONGIU G, CLEMENTI E. Study of the structure of molecular complexes. XVI.Doubly charged cations interacting with water [J]. J. Chem. Phys.,1978,69:4885-4887.
    [199] KIMURA M, LANE N F. The low-energy heavy-particle collisions–a close-couplingtreatment [J]. Adv. At. Mol. Opt. Phys.,1990,26:79-160.
    [200] ZYGELMAN B, COOPER D L, FORD M J, DALGARNO A, GERRATT J, RAIMONDIM. Charge transfer of N4+with atomic hydrogen [J]. Phys. Rev. A,1992,46:3846-3854.
    [201] WANG J G, STANCIL P C, TURNER A R, COOPER D L. Charge transfer of O3+ions withatomic hydrogen [J]. Phys. Rev. A,2003,67:012710.
    [202] ZHAO L Z, LIU S H, ZHU D B. The study of DISP φ4charge transfer complex using XPS[J]. Chinese Science Bulletin,1983,28:1486-1492.
    [203] KRSTIC P S, MACEK J H, OVCHINNIKOV S Y, SCHULTZ D R. Analysis of structuresin the cross sections for elastic scattering and spin exchange in low-energy H++H collisions[J]. Phys. Rev. A,2004,70:042711
    [204] BATES D R, MCCARROLL R. Electron Capture in Slow Collisions [J]. Proc. R. Soc.Lond. A,1958,245:175-183.
    [205] WINTER T G, HATTON G J. Plane-wave-factor, molecular-state treatment of electrontransfer in collisions of He+ions with H atoms [J]. Phys. Rev. A,1980,21:793-807
    [206] BENE E, HALASZ G J, VIBOK á. Ab initio treatment of charge exchange in H++CHcollisions [J]. J Quant. Chem.,2011,111,487-492.
    [207]FREDERICK R B, ANDREW D J C, GEORGE C K, ROBERT J L and IAIN R M.Interpreting vibrationally resolved spectra of molecular dications (doubly positively chargedmolecules): HCl2+[J]. MOLECULAR PHYSICS,1999,97:35-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700