用户名: 密码: 验证码:
多变量模糊逻辑控制系统的设计及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工业过程中,很多系统是多入多出系统,例如多连杆机器人和探针扫描显微镜的探针运动等。此外,分布参数系统的状态和控制既与时间有关,又与空间有关,也叫时空耦合系统,例如扫描探针显微镜的微悬臂和催化反应棒等。分布参数系统本质上是无穷维系统,对于这类系统的控制,通常运用一些有限维近似建模方法,将分布参数系统就转换为多入多出系统,同时带来较大的建模误差。此外,这些系统中通常都含有未知非线性和扰动等不确定性因素,因而建立系统的精确数学模型非常困难,这样传统的PID控制器等用于控制这些系统很难达到理想的效果。近年来发展起来的智能控制方法,比如模糊控制器就能减少对数学模型的依赖。然而直接运用多个模糊逻辑控制器来控制这些子系统需要根据专家的经验设计多个隶属函数和多个规则库,这样的设计方法相对比较复杂。针对以上问题,本文的主要工作集中在以下几个方面:
     (1)建立了多变量模糊逻辑控制系统
     针对所有的子系统仅采用一个隶属函数,通过比例因子来调整其它子系统的隶属函数,并且引入模糊矩阵理论来设计多变量模糊逻辑控制系统。该控制系统的设计不需要按照专家的经验根据每个子系统来设计隶属函数,同时,该设计方法也只采用一个规则库。在设计上可以看成是传统的模糊逻辑控制系统扩展成为多变量模糊逻辑控制系统,并且设计方法比较简单。
     (2)设计了多变量模糊逻辑控制器,并推导出解析模型
     引用一个推理机制来推导出多变量模糊逻辑控制器的解析模型,建立了多变量模糊逻辑控制和传统PID控制参数之间的关系,从而PID控制器的参数整定方法可用来设计多变量模糊逻辑控制器的比例因子(参数),此外解析模型可以用来研究控制系统的稳定性。
     (3)提出了多变量模糊逻辑控制器基于PID的参数整定方法
     针对稳定系统采用内模控制的参数设计方法来整定参数。针对不稳定系统,采用增益裕度和相位裕度来整定参数。针对多入多出系统,先将系统解耦,转化为多个单入单出系统,多变量模糊逻辑控制器用于控制解耦后的系统,PID控制器的参数用于设计多变量模糊逻辑控制器的参数。针对分布参数系统,本文先将其时空变量分离,运用Galerkin方法得到分布参数系统的有限维近似模型,然后根据近似模型设计多变量模糊逻辑控制器,再根据空间基函数合成时空控制器来控制分布参数系统,该方法考虑了系统足够的空间信息。通过仿真表明这些设计方法都是非常有效的。
     (4)研究了多变量模糊逻辑控制器的智能参数调节方法
     运用神经网络来辨识多入多出系统中的未知量,采用梯度下降来自适应调节多变量模糊逻辑控制器的比例因子,通过仿真可以看到该方法行之有效。针对分布参数系统,运用粒子群优化算法设计了多变量模糊逻辑控制器的参数,取得了理想的控制效果。此外,根据多变量模糊逻辑控制器的数学模型,将其应用于分布参数系统控制的稳定性进行了分析,给出了多变量模糊逻辑控制器控制分布参数系统的稳定条件。
     (5)扫描探针显微镜的探针在空间运动是一个多入多出系统,运用多变量模糊逻辑控制器对探针运动进行控制,取得了比传统PID控制器更好的控制效果,从而验证了多变量模糊逻辑控制器设计的有效性。
In practical industrial processes, there are many multi-inputs multi-outputs (MIMO) systems, such as multi-link robot and probe movement of scanning probe microscopy (SPM), etc. Morever, states and controls of many distributed parameter systems (DPS) are related with time and space. These systems are called or spatio-temporal systems, such as micro-cantilever in SPM and catalytic reaction rod, etc. DPS are inherent infinite-dimensional, and they are usually converted to MIMO systems with some low-order approximation modeling methods in convenient for controlling them, and will deduce large modeling error. Those systems have uncertainties, such as unknown nonlinearities, disturbances etc., therefore, it is difficult to get their precise models. Traditional controllers, such as PID, cannot get a sound performance. In contract, intelligent methods which are developing these years, such as fuzzy control, can reduce dependence on the mathematical model. However, it needs to design many membership functions (MF) and rule bases on expert experience when many fuzzy logic controllers are used to control them. This design method is complex relatively. In order to solve those problems, the major work of the paper focuses on the following aspects:
     (1) Multi-variable fuzzy logic system is built.
     On account of only one MF being adopted for all subsystems, MFs for other subsystems are adjusted by scaling factors. A multi-variable fuzzy logic control system is designed following the fuzzy matrix theory. At the same time, the control system adopts only one traditional rule base, and there is no need to design MFs for all subsystems according to expert experience. The control system can be considered as an extension of traditional fuzzy system, and the design method is very simple.
     (2) A multi-variable fuzzy logic controller is designed, and a mathematical model is deduced.
     Mathematical model of the multi-variable fuzzy logic controller (FLC) is deduced following an inference engine. Relationships between multi-variable FLC and PID controller are built. Therefore, scaling factors (parameters) of multi-variable FLC can be tuned through tuning method of PID controller, and the design method is simple.
     (3) Tuning method of multi-variable FLC is proposed based on PID controller.
     Tuning based on internal mode control is proposed for stable processes. Phase margin and gain margin tuning method is proposed for unstable processes. For MIMO systems, parameters of PID are used to design parameters of multi-variable FLC thorough decoupling. For DPS, a finite-dimensional approximate model is obtained through time/space variable separation and Galerkin method. The approximate model is used to design multi-variable FLC,and a spatio-temporal controller is synthesized by spatial basis and multi-variable FLC. Enough spatial information is considered in this method and the design method is effective through simulating.
     (4) Intelligent tuning methods of multi-variable FLC are researched.
     Scaling factors of multi-variable FLC are adaptively adjusted by gradient descent, and neural network is used to identify unknown variables. The simulations show the usefulness of it. Particle swarm optimization is used to tuning parameters of multi-variable FLC for DPS, and a sound performance is obtained from simulations. Stability of multi-variable FLC controlled DPS is analyzed through the mathematical model. The stability conditions are also given for the controlled system.
     (5) Probe movement of SPM in nano-manipulation platform is considered as a DPS. Multi-variable FLC is used to control the movement. Performance of multi-variable FLC is better than PID controller in experiment. Therefore, the design of multi-variable FLC are effective.
引文
[1]Ray W. H. Advanced process control[M]. New York:McGraw-Hill Companies, 1981.
    [2]戴永彬,杨卫东,王少福,et al.多变量预测解耦控制综述[J].电气自动化,2009,30(6):1-3.
    [3]Christofides P. D. and Daoutidis P. Nonlinear control of diffusion-convection-reaction processes [J]. Computers and chemical engineering,1996,20: S1071-S1076.
    [4]Zheng D. and Hoo K. A. Low-order model identification for implementable control solutions of distributed parameter systems[J]. Computers and Chemical Engineering, 2002,26(7-8):1049-1076.
    [5]Li H. X., Qi C. and Yu Y. A spatio-temporal Volterra modeling approach for a class of distributed industrial processes [J]. Journal of Process Control,2009,19 (7): 1126-1142.
    [6]Deng H., Li H. X. and Chen G. Spectral-approximation-based intelligent modeling for distributed thermal processes [J]. IEEE Transactions on Control Systems Technology,2005,13 (5):686-700.
    [7]Zheng D., Hoo K. A. and Piovoso M. J. Finite dimensional modeling and control of distributed parameter systems. in 2002 American Control Conference,2002, pp. 4377-4382.
    [8]Li M. and Christofides P. D. Optimal control of diffusion-convection-reaction processes using reduced-order models [J]. Computers and chemical engineering, 2008,32 (9):2123-2135.
    [9]Park H. M., Yoon T. Y. and Kim O. Y. Optimal control of rapid thermal processing systems by empirical reduction of modes [J]. Industrial & Engineering Chemistry Research,1999,38 (10):3964-3975.
    [10]Hanczyc E. M. and Palazoglu A. Sliding mode control of nonlinear distributed parameter chemical processes [J]. Industrial & Engineering Chemistry Research, 1995,34 (2):557-566.
    [11]Gauthier J. P. and Xu C. Z. H--control of a distributed parameter system with non-minimum phase[J]. International Journal of Control,1991,53 (1):45-79.
    [12]Christofides P. D. Control of nonlinear distributed process systems:Recent developments and challenges[J]. AIChE Journal,2001,47 (3):514-518.
    [13]Buthovskiy A. G. Green's Functions and Transfer Functions Handbook[J]. JOHN WILEY & SONS, INC., ONE WILEY DR., SOMERSET, N. J.,1982.
    [14]Christofides P. D. Robust control of parabolic PDE systems[J]. Chemical Engineering Science,1998,53 (16):2949-2965.
    [15]Mahadevan N. and Hoo K. A. Wavelet-based model reduction of distributed parameter systems[J]. Chemical Engineering Science,2000,55 (19):4271-4290.
    [16]Baker J. and Christofides P. D. Output feedback control of parabolic PDE systems with nonlinear spatial differential operators[J]. Ind. Eng. Chem. Res,1999,38 (11): 4372-4380.
    [17]Park H. M. and Cho D. H. The use of the Karhunen-Loeve decomposition for the modeling of distributed parameter systems [J]. Chemical Engineering Science,1996, 51 (1):81-98.
    [18]Christofides P. D. and Baker J. Robust output feedback control of quasi-linear parabolic PDE systems[J]. Sys. & Contr. Lett.,1999,36:307-316.
    [19]Baker J. and Christofides P. D. Output feedback control of parabolic PDE systems with nonlinear spatial differential operators[J]. Industrial & Engineering Chemistry Research,1999,38 (11):4372-4380.
    [20]Mudi R. K. and Pal N. R. A self-tuning fuzzy PI controller[J]. Fuzzy sets and systems,2000,115 (2):327-338.
    [21]Harinath E. and Mann G. K. I. Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems[J]. IEEE Transaction on Systems, Man, and Cybernetics-Part B:Cybernetics,2008,38 (3):667-674.
    [22]Mann G. K. I., Hu B. G. and Gosine R. G. Two-level tuning of fuzzy PID controllers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2001,31 (2):263-269.
    [23]Lin J. and Lewis F. L. (2002, Fuzzy controller for flexible-link robot arm by reduced-order techniques [J].147(3),177-187.
    [24]Malki H. A., Misir D., Feigenspan D., et al. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads[J]. IEEE Transactions on Control Systems Technology,1997,5 (3):371-378.
    [25]Li H. X., Zhang X. X. and Li S. Y. A three-dimensional fuzzy control methodology for a class of distributed parameter systems[J]. IEEE Transactions on Fuzzy Systems, 2007,15 (3):470-481.
    [26]Li S. and Zhang X. Fuzzy logic controller with interval-valued inference for distributed parameter system[J]. Int. J. Innov. Comput., Inf. Control,2006,2 (6): 1197-1206.
    [27]Wu H. N. and Li H. X. Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2007,37 (5):1422-1430.
    [28]Wu H. N. and Li H. X. Adaptive neural control design for nonlinear distributed parameter systems with persistent bounded disturbances[J]. IEEE Transactions on Neural Networks,2009,20 (10):1630-1644.
    [29]Zadeh L. A. Fuzzy sets[J]. Information and control,1965,8 (3):338-353.
    [30]Zadeh L. A. Fuzzy algorithm[J]. Information and control,1968,12 (2):94-102.
    [31]Zadeh L. A. Similarity relations and fuzzy orderings[J]. Information sciences,1971, 3 (2):177-200.
    [32]Zadeh L. A. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Transactions on Systems, Man and Cybernetics,1973, (1):28-44.
    [33]Zadeh L. A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information sciences,1975,8 (3):199-249.
    [34]Babuska R. Fuzzy modeling for control[M] vol.12:Kluwer Academic Pub,1998.
    [35]Bellman R. E. and Zadeh L. A. Decision-making in a fuzzy environment[J]. Management science,1970,17 (4):B-141-B-164.
    [36]Bezdek J. C., Krisnapuram R. and Pal N. R. Fuzzy models and algorithms for pattern recognition and image processing[M] vol.4:Springer-Verlag New York Inc, 2005.
    [37]Bonissone P. P., Badami V., Chiang K. H., et al. Industrial applications of fuzzy logic at General Electric[J]. Proceedings of the IEEE,1995,83 (3):450-465.
    [38]Dutta S. Fuzzy logic applications:Technological and strategic issues[J]. IEEE Transactions on Engineering Management,1993,40 (3):237-254.
    [39]Kosko B. and Burgess J. C. Neural networks and fuzzy systems[J]. The Journal of the Acoustical Society of America,1998,103:3131.
    [40]Lee C. C. Fuzzy logic in control systems:fuzzy logic controller. I[J]. IEEE Transactions on Systems, Man and Cybernetics,1990,20 (2):404-418.
    [41]Mendel J. M. Fuzzy logic systems for engineering:a tutorial[J]. Proceedings of the IEEE,1995,83 (3):345-377.
    [42]Pedrycz W. Fuzzy control and fuzzy systems[M]:John Wiley & Sons, Inc.,1993.
    [43]Seker H., Odetayo M. O., Petrovic D., et al. A fuzzy logic based-method for prognostic decision making in breast and prostate cancers[J]. IEEE Transactions on Information Technology in Biomedicine,2003,7 (2):114-122.
    [44]Sugeno M. Industrial applications of fuzzy control[M]:North-Holland,1985.
    [45]Sugeno M. and Yasukawa T. A fuzzy-logic-based approach to qualitative modeling[J]. IEEE Transactions on Fuzzy Systems,1993,1 (1):7.
    [46]Teodorescu H. N., Kandel A. and Jain L. C. Fuzzy and neuro-fuzzy systems in medicine[M]:CRC,1998.
    [47]Uragami M., Mizumoto M. and Tanaka K. Fuzzy robot controls[J]. Cybernetics and System,1976,6 (1-2):39-64.
    [48]Yu L. and Zhang Y. Q. Evolutionary fuzzy neural networks for hybrid financial prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2005,35 (2):244-249.
    [49]Zeng X. J. and Singh M. G. Approximation theory of fuzzy systems-MIMO case[J]. IEEE Transactions on Fuzzy Systems,1995,3 (2):219-235.
    [50]Mamdani E. H. and Assilian S. Application of fuzzy algorithms for control of simple dynamic plant[J]. Proc. Inst. Elect. Eng,1974,121 (12):1585-1588.
    [51]Mamdani E. H. and Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller[J]. International Journal of Man-Machine Studies,1975,7 (1):1-13.
    [52]Lee C. C. Fuzzy logic in control systems:fuzzy logic controller. [J]. IEEE Transactions on Systems, Man and Cybernetics,1990,20 (2):404-418.
    [53]Batur C. and Kasparian V. Model based fuzzy control[J]. Mathematical and Computer Modelling,1991,15 (12):3-14.
    [54]Passino K. M. and Yurkovich S. Fuzzy control[M]:Citeseer,1998.
    [55]De Silva C. W. Intelligent control:fuzzy logic applications[M]:CRC,1995.
    [56]Fang C. H., Liu Y. S., Kau S. W., et al. A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems,2006,14 (3):386-397.
    [57]French M. and Rogers E. Input/output stability theory for direct neuro-fuzzy controllers[J]. IEEE Transactions on Fuzzy Systems,1998,6 (3):331-345.
    [58]Chen B. S., Tsai C. L. and Chen D. S. Robust H∞ and mixed H2/H∞ filters for equalization designs of nonlinear communication systems:fuzzy interpolation approach[J]. IEEE Transactions on Fuzzy Systems,2003,11 (3):384-398.
    [59]Bai Y., Zhuang H. and Roth Z. S. Fuzzy logic control to suppress noises and coupling effects in a laser tracking system [J]. IEEE Transactions on Control Systems Technology,2005,13 (1):113-121.
    [60]Hagras H. A. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots[J]. IEEE Transactions on Fuzzy Systems,2004,12 (4):524-539.
    [61]Chiu S., Chand S., Moore D., et al. Fuzzy logic for control of roll and moment for a flexible wing aircraft[J]. IEEE Transactions on Control Systems Magazine,1991,11 (4):42-48.
    [62]Haruki T. and Kikuchi K. Video camera system using fuzzy logic[J]. IEEE Transactions on Consumer Electronics,1992,38 (3):624-634.
    [63]Chen C. L., Feng G., Sun D., et al. H_infty Output Feedback Control of Discrete-Time Fuzzy Systems With Application to Chaos Control [J]. IEEE Transactions on Fuzzy Systems,2005,13 (4):531-543.
    [64]Munasinghe S. R., Kim M. S. and Lee J. J. Adaptive neurofuzzy controller to regulate UTSG water level in nuclear power plants [J]. IEEE Transactions on Nuclear Science,2005,52 (1):421-429.
    [65]Kickert W. J. M. and Mamdani E. H. Analysis of a fuzzy logic controller[J]. Fuzzy Sets and Systems,1978,1 (1):29-44.
    [66]Kang H. Stability and control of fuzzy dynamic systems via cell-state transitions in fuzzy hypercubes[J]. IEEE Transactions on Fuzzy Systems,1993,1 (4):267-279.
    [67]Melin C. and Vidolov B. Passive two-rule-based fuzzy logic controllers:Analysis and application to stabilization.1994, pp.947-951 vol.2.
    [68]Furutani E., Saeki M. and Araki M. Shifted Popov criterion and stability analysis of fuzzy control systems.1992, pp.2790-2795 vol.3.
    [69]Ray K. S. and Majumder D. D. Application of circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controller [J]. IEEE Trans. syst. Man Cyber.,1984,14(2):345-349.
    [70]Espada A. and Barreiro A. Robust stability of fuzzy control systems based on conicity conditions [J]. Automatica,1999,35 (4):643-654.
    [71]Hwang G. C. and Lin S. C. A stability approach to fuzzy control design for nonlinear systems[J]. Fuzzy Sets and Systems,1992,48 (3):279-287.
    [72]Calcev G., Gorez R. and De Neyer M. Passivity approach to fuzzy control systems[J]. Automatica,1998,34 (3):339-344.
    [73]King P. J. and Mamdani E. H. The application of fuzzy control systems to industrial processes[J]. Automatica,1977,13 (3):235-242.
    [74]Xiao J., Xiao J. Z., Xi N., et al. Fuzzy controller for wall-climbing microrobots[J]. IEEE Transactions on Fuzzy Systems,2004,12 (4):466-480.
    [75]Pappis C. P. and Mamdani E. H. A Fuzzy Logic Controller for a Trafic Junction[J]. IEEE Transactions on Systems, Man and Cybernetics,1977,7 (10):707-717.
    [76]Kornblum R. J. and Tribus M. The use of Bayesian inference in the design of an endpoint control system for the basic oxygen steel furnace[J]. IEEE Transactions on Systems Science and Cybernetics,1970,6 (4):339-348.
    [77]Umbers I. G. and King P. J. An analysis of human decision-making in cement kiln control and the implications for automation[J]. International Journal of Man-Machine Studies,1980,12 (1):11-23.
    [78]Sugeno M. and Nishida M. Fuzzy control of model car[J]. Fuzzy Sets and Systems, 1985,16(2):103-113.
    [79]Tong R. M., Beck M. B. and Latten A. Fuzzy control of the activated sludge wastewater treatment process[J]. Automatica,1980,16(6):695-701.
    [80]Guillemin P. Fuzzy logic applied to motor control[J]. IEEE Transactions on Industry Applications,1996,32 (1):51-56.
    [81]Kandel A., Manor O., Klein Y., et al. ATM traffic management and congestion control using fuzzy logic[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,1999,29 (3):474-480.
    [82]Horiuchi J. I. and Kishimoto M. Application of fuzzy control to industrial bioprocesses in Japan[J], Fuzzy Sets and Systems,2002,128 (1):117-124.
    [83]Bingul Z., Cook G. E. and Strauss A. M. Application of fuzzy logic to spatial thermal control in fusion welding[J]. IEEE Transactions on Industry Applications, 2000,36(6):1523-1530.
    [84]Wu C. J. and Sung A. H. The application of fuzzy logic to JPEG[J]. IEEE Transactions on Consumer Electronics,1994,40 (4):976-984.
    [85]Kandasamy W. B. V., Smarandache F. and Ilanthenral K. Elementary fuzzy matrix theory and fuzzy models for social scientists[M]. Los Angeles:American Research Press,2007.
    [86]Cheng M., Sun Q. and Zhou E. New self-tuning fuzzy PI control of a novel doubly salient permanent-magnet motor drive[J]. IEEE Transactions on Industrial Electronics,2006,53 (3):814-821.
    [87]Hu B., Mann G. K. I. and Gosine R. G. New methodology for analytical and optimal design of fuzzy PID controllers [J]. IEEE Transactions on Fuzzy Systems,1999,7 (5):521-539.
    [88]Li H. X. and Gatland H. B. Conventional fuzzy control and its enhancement[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1996, 26 (5):791-797.
    [89]Li H. X., Gatland H. B. and Green A. W. Fuzzy variable structure control[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1997,27 (2): 306-312.
    [90]Zhao Z. Y., Tomizuka M. and Isaka S. Fuzzy gain scheduling of PID controllers [J]. IEEE Transactions on Systems, Man, and Cybernetics,1993,23 (5):1392-1398.
    [91]Yeil E. and Gzelkaya M. Self tuning fuzzy PID type load and frequency controller [J]. Energy Conversion and Management,2004,45 (3):377-390.
    [92]Woo Z. W., Chung H. Y. and Lin J. J. A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy sets and systems,2000,115 (2):321-326.
    [93]Hu B. G., Mann G. K. I. and Gosine R. G. Theoretic and genetic design of a three-rule fuzzy PI controller.1997, pp.489-496.
    [94]Duan X. G., Li H. X. and Deng H. Effective Tuning Method for Fuzzy PID with Internal Model Control[J]. Industrial and Engineering Chemistry Research 2008,47 (21):8317-8323.
    [95]Wang L. X. and Mendel J. M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J]. IEEE Transactions on Neural Networks,1992, 3 (5):807-814.
    [96]Goodwin G. C. and Sin K. S. Adaptive filtering prediction and control[J].1984.
    [97]Krstic M., Kanellakopoulos I. and Kokotovic P. Nonlinear and adaptive control design[M] vol.222:Wiley New York,1995.
    [98]Wang L. X. Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems,1993,1 (2):146-155.
    [99]Andersen H. C., Lotfi A. and Tsoi A. C. A new approach to adaptive fuzzy control: the controller output error method[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1997,27 (4):686-691.
    [100]Boukezzoula R., Galichet S. and Foulloy L. Observer-based fuzzy adaptive control for a class of nonlinear systems:Real-time implementation for a robot wrist[J]. IEEE Transactions on Control Systems Technology,2004,12 (3):340-351.
    [101]Campos J. and Lewis F. L. Deadzone compensation in discrete time using adaptive fuzzy logic[J]. IEEE Transactions on Fuzzy Systems,1999,7 (6):697-707.
    [102]Fischle K. and Schroder D. An improved stable adaptive fuzzy control method[J]. IEEE Transactions on Fuzzy Systems,1999,7 (1):27-40.
    [103]Chang Y. C. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches [J]. IEEE Transactions on Fuzzy Systems,2001,9 (2): 278-292.
    [104]Liu B. D., Chen C. Y. and Tsao J. Y. Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2001,31 (1):32-53.
    [105]Da F. and Song W. Fuzzy neural networks for direct adaptive control[J]. IEEE Transactions on Industrial Electronics,2003,50 (3):507-513.
    [106]Farag W. A., Quintana V. H. and Lambert-Torres G. A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems[J]. IEEE Transactions on Neural Networks,1998,9 (5):756-767.
    [107]Jang J. S. R. ANFIS:Adaptive-network-based fuzzy inference system[J]. IEEE Transactions on Systems, Man and Cybernetics,1993,23 (3):665-685.
    [108]Mitra S. and Hayashi Y. Neuro-fuzzy rule generation:survey in soft computing framework[J]. IEEE Transactions on Neural Networks,2000,11 (3):748-768.
    [109]Zinober A. S. I. Variable structure and Lyapunov control[M]:Springer-Verlag New York, Inc.,1994.
    [110]Duan X. G., Li H. X. and Deng H. Robustness of fuzzy PID controller due to its inherent saturation[J]. Journal of Process Control,2012,22 (2):470-476.
    [111]Chen C. L. and Chang M. H. Optimal design of fuzzy sliding-mode control:a comparative study[J]. Fuzzy Sets and Systems,1998,93 (1):37-48.
    [112]Ha Q. P., Nguyen Q. H., Rye D., et al. Fuzzy sliding-mode controllers with applications [J]. IEEE Transactions on Industrial Electronics,2001,48 (1):38-46.
    [113]Feng G., Cao S. G., Rees N. W., et al. Design of fuzzy control systems with guaranteed stability[J]. Fuzzy Sets and Systems,1997,85 (1):1-10.
    [114]Ying H. Fuzzy Control and Modeling:Analytical foundations and applications[M]. Piscataway:Wiley-IEEE Press,2000.
    [115]Chen J. Y. Rule regulation of fuzzy sliding mode controller design:Direct adaptive approach[J]. Fuzzy Sets and Systems,2001,120 (1):159-168.
    [116]Xie W. and Theodoropoulos C. An off-line model reduction-based technique for on-line linear MPC applications for nonlinear large-scale distributed systems [J]. Computer Aided Chemical Engineering,2010,28:409-414.
    [117]Cao S. G., Rees N. W. and Feng G. Analysis and design of fuzzy control systems using dynamic fuzzy global models[J]. Fuzzy Sets and Systems,1995,75 (1):47-62.
    [118]Johansen T. A., Shorten R. and Murray-Smith R. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Systems,2000,8 (3):297-313.
    [119]Sugeno M. On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[J]. IEEE Transactions on Fuzzy Systems,1999,7 (2):201-224.
    [120]Feng G. and Ma J. Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2001,48 (11):1337-1344.
    [121]Li H. X. and Tong S. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems[J]. IEEE Transactions on Fuzzy Systems,2003,11(1):24-34.
    [122]Chen B., Liu X. and Tong S. Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems [J]. IEEE Transactions on Fuzzy Systems,2007,15 (2): 287-300.
    [123]Shaocheng T., Jiantao T. and Tao W. Fuzzy adaptive control of multivariable nonlinear systems[J]. Fuzzy Sets and Systems,2000,111 (2):153-167.
    [124]Hagras H. Type-2 FLCs:A new generation of fuzzy controllers [J]. Computational Intelligence Magazine, IEEE,2007,2 (1):30-43.
    [125]Karnik N. N., Mendel J. M. and Liang Q. Type-2 fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems,2002,7 (6):643-658.
    [126]Mizumoto M. and Tanaka K. Some properties of fuzzy sets of type 2[J]. Information and control,1976,31 (4):312-340.
    [127]Wu D. and Tan W. W. A type-2 fuzzy logic controller for the liquid-level process. 2005, pp.953-958.
    [128]Garcia M. R., Vilas C., Santos L.O., et al. A robust multi-model predictive controller for distributed parameter systems[J]. Journal of Process Control,2012,22 (1):60-71.
    [129]Mendel J. M. Uncertain rule-based fuzzy logic systems:introduction and new directions[M]:Prentice Hall PRT, Upper Saddle, N.J.,2001.
    [130]Li H. X. A comparative design and tuning for conventional fuzzy control[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1997,27 (5): 884-889.
    [131]Hang C. C., Astrom K. J. and Ho W. K. Refinements of the Ziegler-Nichols tuning formula.1991, pp.111-118.
    [132]Ho W. K., Gan O. P., Tay E. B., et al. Performance and gain and phase margins of well-known PID tuning formulas[J]. IEEE Transactions on Control Systems Technology,1996,4 (4):473-477.
    [133]Jeon G. J. and Lee I. Neural network indirect adaptive control with fast learning algorithm[J]. Neurocomputing,1996,13(2-4):185-199.
    [134]Rivera D. E., Morari M. and Skogestad S. Internal model control.4. PID controller design[J]. Industrial & engineering chemistry process design and development,1986, 25 (1):252-265.
    [135]Wang F. S., Juang W. S. and Chan C. T. Optimal tuning of PID controllers for single and cascade control loops[J]. Chemical Engineering Communications,1995, 132(1):15-34.
    [136]Zhuang M. and Atherton D. P. Automatic tuning of optimum PID controllers.1993, pp.216-224.
    [137]Astrom K. J. PID controllers:theory, design and tuning[J]. Instrument Society of America,1995.
    [138]O'Dwyer A. Handbook of PI and PID controller tuning rules[M]:Imperial College Press,2009.
    [139]Shamsuzzoha M. and Lee M. Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delay [J]. Chemical Engineering Science,2008,63 (10):2717-2731.
    [140]Padma Sree R., Srinivas M. N. and Chidambaram M. A simple method of tuning PID controllers for stable and unstable FOPTD systems [J]. Computers and chemical engineering,2004,28 (11):2201-2218.
    [141]Xiang C., Wang Q. G., Lu X., et al. Stabilization of second-order unstable delay processes by simple controllers[J]. Journal of Process Control,2007,17 (8): 675-682.
    [142]Wang Y. G. and Cai W. J. Advanced Proportional-Integral-Derivative Tuning for Integrating and Unstable Processes with Gain and Phase Margin Specifications[J]. Industrial & Engineering Chemistry Research,2002,41 (12):2910-2914.
    [143]Ho W. and Xu W. PID tuning for unstable processes based on gain and phase-margin specifications.2002, pp.392-396.
    [144]Lee C. H. and Teng C. C. Tuning of PID controllers for unstable processes based on gain and phase margin specifications:a fuzzy neural approach[J]. Fuzzy Sets and Systems,2002,128 (1):95-106.
    [145]Ho W. K. and Xu W. PID tuning for unstable processes based on gain and phase-margin specifications.1998, pp.392-396.
    [146]Tan W., Marquez H. J. and Chen T. IMC design for unstable processes with time delays[J]. Journal of Process Control,2003,13 (3):203-213.
    [147]Yang X. P., Wang Q. G., Hang C. C., et al. IMC-based control system design for unstable processes [J]. Industrial & Engineering Chemistry Research,2002,41 (17): 4288-4294.
    [148]Visioli A. Optimal tuning of PID controllers for integral and unstable processes. 2002, pp.180-184.
    [149]Tan W., Yuan Y. and Niu Y. Tuning of PID controller for unstable process.1999, pp.121-124.
    [150]Shamsuzzoha M. and Lee M. Design of Robust PID Controllers for Unstable Processes.2007, pp.3324-3329.
    [151]Mudi R. K. and Pal N. R. A robust self-tuning scheme for PI-and PD-type fuzzy controllers [J]. IEEE Transactions on Fuzzy Systems,2002,7 (1):2-16.
    [152]Xu J. X., Pok Y. M., Liu C., et al. Tuning and analysis of a fuzzy PI controller based on gain and phase margins [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2002,28 (5):685-691.
    [153]Li H. X. and Van Den Bosch P. P. J. A robust disturbance-based control and its application[J]. International Journal of Control,1993,58 (3):537-554.
    [154]李楠楠.锻造操作手模拟实验台动力学建模与模糊滑模控制,硕士学位论文,中南大学,2008.
    [155]Deng H., Jiang M. and Huang C. Q. New spatial basis functions for the model reduction of nonlinear distributed parameter systems[J]. Journal of Process Control, 2012,22 (2):404-411.
    [156]Antoniades C. and Christofides P. D. Integrated optimal actuator/sensor placement and robust control of uncertain transport-reaction processes[J]. Computers and chemical engineering,2002,26 (2):187-203.
    [157]Soyguder S. and Alli H. Fuzzy adaptive control for the actuators position control and modeling of an expert system[J]. Expert Systems with Applications,2010,37 (3):2072-2080.
    [158]Chang W. D., Hwang R. C. and Hsieh J. G. A multivariable on-line adaptive PID controller using auto-tuning neurons[J]. Engineering Applications of Artificial Intelligence,2003,16 (1):57-63.
    [159]Wang Q. G., Zou B., Lee T. H., et al. Auto-tuning of multivariable PID controllers from decentralized relay feedback [J]. Automatica,1997,33 (3):319-330.
    [160]Pomerleau A., Desbiens A. and Hodouin D. Development and evaluation of an auto-tuning and adaptive PID controller [J]. Automatica,1996,32 (1):71-82.
    [161]刘金琨.先进PID控制MATLAB仿真[M]:电子工业出版社,2004.
    [162]Shi Y. and Eberhart R. A modified particle swarm optimizer. in IEEE World Congress on Computational Intelligence,1998, pp.69-73.
    [163]Zhang J. R., Zhang J., Lok T. M., et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation,2007,185 (2):1026-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700