用户名: 密码: 验证码:
精密指向机构非线性动力学建模与测控问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
指向机构是一种回转型机电运动控制装置,在侦察、预警、制导、火控和通信等武器装备中得到大量应用。装备技术的飞速发展,对指向机构提出了越来越高的精度要求和轻量化要求。摩擦、质量不平衡、模态等因素已成为影响轻量化指向机构精度提高的关键因素,对这些因素的定量化分析建模,精确测量和补偿控制已经成为精密指向机构设计面临的关键问题。本文以提高指向机构控制精度为目标,围绕摩擦、质量不平衡、模态等影响因素,重点在非线性与模态参数时变性建模、关键参数辨识、鲁棒抗扰控制等方面开展工作,提出了较为完善、实用的指向机构非线性时变系统建模与测控方法。
     论文的研究工作包含以下几个部分:
     1.为了掌握摩擦、质量不平衡、模态等因素对指向机构控制性能的影响,进行了非线性动力学建模研究。依据两轴指向机构的动力学方程组,分析了机构的控制原理,基本掌握了摩擦、质量不平衡和模态影响控制性能的机理。以实现指向机构的精密测控为目的,对摩擦、模态的建模进行了深入研究。通过对轴承、动密封这两个关键运动副摩擦机理的研究,得到了摩擦力矩的模型描述。应用有限元方法,得到了指向机构的线性定常模态模型。
     2.为了在机构制造装配阶段对摩擦、质量不平衡等非线性因素进行有效的工艺质量控制,针对指向机构制造装配过程对定量化性能检测的需要,研究了惯量、不平衡质量、摩擦等关键非线性动力学参数的精确测量和辨识方法。建立了指向机构的状态扩展离散动力学模型,分析比较了瞬时转速信号估计的三种数值微分算法,在此基础上,考虑工程实现中的机构运动的约束条件,综合应用最小二乘方法、非线性状态观测与控制方法提出了一种指向机构关键非线性模型参数的无偏辨识方法,经过实验验证,采用所研究的方法可以有效提高惯量、阻尼、摩擦和质量不平衡非线性动力学参数的测量和辨识精度。
     3.在指向机构轻量化的要求下,结构模态特性对动态精度的影响已不容忽视,为此,研究了负载变化条件下模态参数变化模型的建模与辨识方法。分析了负载惯量变化对结构模态参数的影响机理,应用参数变化模型建模技术建立了指向机构的线性化模态参数变化模型。综合应用非线性最小二乘优化和主成分分析理论,提出了一种线性化模态参数变化模型的辨识方法。为轻量化、高动态、高精度指向机构的结构建模与分析提供了一种新的思路。
     4.从控制的角度,摩擦、质量不平衡及模态变化都会以扰动的形式影响指向机构的控制精度。论文采用扰动观测技术对扰动特性进行了研究,分析和比较了DOB扰动观测器、状态扩展Kalman滤波器和时滞扰动观测器三种扰动观测技术的设计要点和性能特点:在设计方面,DOB扰动观测器的鲁棒稳定性可以应用非结构化不确定模型进行有效分析,与另外两种观测策略相比,其鲁棒性设计更加简单易行;在性能方面,状态扩展Kalman滤波器在干扰抑制能力、动态性和无偏性等方面的综合性能优于另外两种扰动观测器策略,但其鲁棒性设计方法尚不完善,有待进一步研究。以上比较分析为指向机构非线性控制方案的确定提供参考。
     5.针对模型参数不确定性以及摩擦、质量不平衡等非线性扰动对控制精度的影响,研究了指向机构的非线性控制方法。建立了指向机构的参数化不确定模型。分析了摩擦力矩信号瞬时频率特性,定义了摩擦信号的瞬时功率大小度量以及伺服系统对信号瞬时功率的增益,用于估计摩擦引起的伺服轴尖峰跟踪误差,分析评价伺服回路的抗扰性能。基于以上系统分析方法,综合运用奇异值控制技术和DOB扰动观测技术,提出了一种双回路鲁棒跟踪伺服控制策略。通过改进奇异值控制器设计方法,使奇异值位置伺服回路包含两个积分器,能够有效抑制稳态跟踪误差;通过推导双回路综合的鲁棒稳定条件,得到了DOB回路的设计方法,能够有效提高双回路伺服控制的鲁棒稳定性。所提出的控制器设计方法为实现指向机构非线性伺服控制提供了一种较为有效的方案。
The precise pointing mechanism is a kind of mechatronic rotary motion controldevice, which has been widely applied in aspects including the reconnaissance,prewarning, guidance, fire control, communication, and other equipments. With therapid development of the equipment technology, the precision and lightweightrequirements on the pointing mechanism are higher and higher. The factors includingthe friction, mass unbalance, and modal are essential to the improvements of theprecision of the lightweight pointing mechanism; and, how to perform modeling to suchfactors, achieve the key parameters testing, and control arising positioning errors havebecome key issues in the research on the design technology. In the paper, the authortakes the enhancement of the pointing mechanism control precision as the objective andfocuses on the variability modeling, key parameter identification, and robustanti-disturbance control in case of nonlinearity and modality specific to the influentialfactors including the friction, mass unbalance, and modal, and puts forward the perfectand practical variability modeling, measurement and control methods in case ofnonlinear pointing mechanism.
     The study work of the paper includes following parts:
     1. In order to master the impact of the factors including the friction, massunbalance, and modality on the control performance of the pointing mechanism, thenonlinearity dynamics modeling is studied and researched. In addition, based on thedynamics equation set of the two-axis pointing mechanism, its control principles areanalyzed, thus comprehending the mechanism of the friction, mass unbalance, andmodality impacting the control performance. In order to achieve precise measurementand control of the pointing mechanism, further study is performed to the friction andmodality modeling. By means of study on key kinematic pair friction mechanismsincluding the bearing and motive seal, the friction moment model description isobtained. Also, through research on the finite element method, the constant parametermodel of the modality is also obtained.
     2. in order to perform effective process quality control to the friction, massunbalance, and other nonlinear factors during the mechanism fabrication andassembling stage, the exact identification methods for the inertia, unbalance mass,friction, and other key nonlinear dynamics parameters are studied and researched basedon the demands of the fabrication and assembling performance detection of the pointingmechanism. In addition, the state expansion and discrete dynamics model is establishedfor the pointing mechanism and three kinds of numerical differentiation algorithms for the instantaneous speed signal estimation are also analyzed and compared; on such basis,one unbiased identification method for the key nonlinearity model parameter of thepointing mechanism is proposed by means of the method of least squares and thenonlinear state observation and control methods and taking the mechanism restrictionsin the project into consideration. In a word, the applied research method can effectivelyimprove the identification precision of the inertia, damp, friction, mass unbalance, andnonlinear dynamics parameter.
     3. Requested by the lightweight demand of the pointing mechanism, the impact ofthe structure modality characteristics on the precision can’t be ignored. On this account,the author studies and researches the modeling and identification method for themodality parameter variation model under changeable loads. In addition, the author alsoanalyzes the influential mechanism of the load inertia changes on the structure modalityparameter; furthermore, he applies the parameter variation model modeling technologyto establish the linear modality parameter variation model for the pointing mechanism.Also, applying the nonlinear least square optimization technology and the principalcomponent analysis technology, the author raises a kind of identification method for thelinear modality parameter variation model. In a word, the author offers a new thoughtfor the structure modeling and analysis of the high precision lightweight pointingmechanism.
     4. From the control view, the changes of the friction, mass unbalance, and modalitywill impact the control precision of the pointing mechanism in form of disturbance. Theauthor performs studies and researches to the disturbance characteristics by means ofthe disturbance observation technology; summarizes and analyzes the design essentialsof three disturbance observation technologies including the DOB disturbance observer,state expansion Kalman filter, and time delay disturbance observer as well as analyzestheir own advantages and disadvantages from four aspects of the instantaneity,disturbance annihilation performance, noise annihilation performance, and steadyconvergence of the observation results. In a word, the author forms three schemes forthe disturbance compensation control of the pointing mechanism as well as offer ideasfor the subsequent design research on the nonlinear controller of the mechanism.
     5. Considering the impact of the model parameter uncertainty and the transientcharacteristics of the friction moment on the control precision, the author studies andresearches a kind of robust and precise servo control design method for the pointingmechanism. In addition, the parameterization uncertainty model is also established forthe pointing mechanism. Moreover, the author also analyzes the instantaneousfrequency characteristics of the friction moment signal; defines the measure of theinstantaneous power of the friction signal and the gains of the servo system to the instantaneous power of the signal, so as to estimate the peak tracing error of the servoaxis arising from the friction and analyze the anti-interference performance of the servocircuit. Based on the above systematical analysis methods as well as applying thesingular value control technology and DOB disturbance observation technology, theauthor proposes a kind of dual-circuit robust tracking servo control strategy. With theimproved singular value controller design method, the singular value position servocircuit includes two integrators; thus, the steady tracking error can be effectivelyannihilated. Furthermore, the author also deduces the comprehensive robust steadyconditions for the dual-circuit as well as gives the DOB circuit design method on suchbasis. In a word, all the proposed control strategies can effectively improve the servoprecision of the pointing mechanism and the circuit robustness.
引文
[1]张正.鲁棒控制在稳瞄系统中的应用[D].西安:中国兵器工业第205研究所硕士论文,2007.5
    [2]张伟,陈宇中,胡永明.遥控武器站的自抗扰控制[J].国防科技大学学报,2011,33(1):44-46.
    [3] Rue A K. Stabilization of Precision Electrooptical Pointing and TrackingSystems[J]. IEEE Transactions on Aerospace and Electronic Systems,1969,AES-5(1):805-819.
    [4] Rue A K. Correction to “Stabilization of Precision Electrooptical Pointing andTracking Systems”[J]. IEEE Transactions on Aerospace and Electronic Systems,1970, AES-6(1):855-857.
    [5] Ulich B L. Overview of Acquisition and Tracking and Pointing SystemTechnologies[J]. SPIE,887:40-63.
    [6] Rue A K. Precision Stabilization Systems[J]. IEEE Transactions on Aerospaceand Electronic Systems.1974, AES-10(1):34-42.
    [7] Kennedy P J, Kennedy R L. Direct Versus Indirect Line of Sight (LOS)Stabilization[J]. IEEE Transaction on Control Systems Technology,2003,11(1):3-15.
    [8] Ekstrand B. Equations of motion for a two-axes gimbal system[J]. IEEETransaction on Aerospace and Electronic Systems,2001,37(3):1083-1091.
    [9]周瑞青.弹载捷联式天线平台的稳定技术研究及其角跟踪系统设计[D].北京:北京航空航天大学博士学位论文.2004,8.
    [10] McKerlev C W. A Model for a Two Degree of Freedom Coupled Seeker withMass Imbalance[J]. IEEE Transaction on control systems technology.1996:84-87.
    [11] Lin C L, Hsiao Y H. Adaptive Feedforward Control for Disturbance TorqueRejection in Seeker Stabilizing Loop[J]. IEEE Transaction on control systemstechnology,2001,9(1):108-121.
    [12]朱华征.成像导引头伺服机构若干基本问题研究[D].长沙:国防科技大学机电工程与自动化学院,2012:65-68
    [13]张盈华,王中南.红外凝视成像导引头随动系统误差分析[J].红外与激光工程,2006,35(1):.
    [14] Olsson H, str m K J. Friction Generated Limit Cycles[J]. IEEE Transactionson Control Systems Technology,2001,9(4):629~636.
    [15]王中华.运动控制中的几种摩擦补偿策略研究[D].南京:东南大学,2002,3.
    [16]姜玉宪.伺服系统低速跳动问题[J].自动化学报,1982,8(2):136~144.
    [17]吴南星,孙庆鸿,冯景华.机床进给伺服系统非线性摩擦特性及控制补偿研究[J].东南大学学报(自然科学版).2004,06:
    [18]王旭永,付永领.三轴仿真转台用电液马达伺服系统的低速运动分析[J].宇航学报.1996,17(2):85~90.
    [19] Cheock K C, Hu H and Loh N K. Modeling and Identification of a Class ofServomechanism Systems with Stick-Slip Friction[J]. Journal of RoboticsResearch.1991,10(3):189~199.
    [20] Armstrong, Dupont B P and de Wit C C.A Survey of Models,Analysis Tools andCompensation Methods for the Control of Machines with Friction[J].Automatica.1994,30(7):1083~1138.
    [21]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D],长沙:国防科技大学光电工程学院,2005,10:23-34.
    [22]庞新良.机载光电稳定平台数字控制关键技术研究[D].长沙:国防科技大学机电工程与自动化学院,2007,10:31-45.
    [23]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].长沙:国防科技大学机电工程与自动化学院,2007,12:39-42.
    [24] Stockum L A, Carroll G R. Precision Stabilized Platform for ShipboardElectro-optical Systems[A]. SPIE,493:414-425.
    [25]王卿,王佳民.惯性平台内、外框架结构系统的动力响应分析[J].振动与冲击,2005,24(4):122-126.
    [26]王卿,王佳民.惯性平台框架类结构件的试验模态分析[J].宇航学报,2005,26(6):753-757.
    [27]付继波,马静,姚建军.弹性支撑惯导系统振动耦合问题研究[J].强度与环境,2005.32(2):46-51.
    [28]姚建军,付继波.捷联惯导系统振动耦合特性研究[C].首届全国航空航天领域中的力学问题学术研讨会论文集,成都,2004.
    [29] Packard A. Gain Scheduling via Linear Fractional Transformations [J]. SystemControl Letters,1994,22:79-92.
    [30] Apkarian P, Gahinet P A. Convex Characterization of Gain-scheduledControllers [J]. IEEE Transaction Automatic Control,1995,40(5):853-864.
    [31] Apkarian P, Gahinet P A and Becker G, Self-scheduled Control of LinearParameter-varying Systems: a Design Example [J]. Automatica,1995,31(9):1251-1261.
    [32] Becker G, Packard A, Philbrick D, and Balas G, Control ofParametrically-dependent Linear Systems; a Single Quadratic LyapunovApproach[C], Proceedings of American Control Conference, San Francisco,CA,1993:2795-2799.
    [33] Wu F, Yang X, Packard A and Becker G, Induced L2-norm Control for LPVSystem with Bounded Parameter Variations Rates[C], Proceedings of AmericanControl Conference. Seattle, WA,1995:2379-2383.
    [34] Apkarian P, Adams R J. Advanced Gain-scheduling Techniques for UncertainSystems[J], IEEE Transactions on Control Systems Technology,1998,6(1):21-32.
    [35] Wu F, Grigoriadis K M,LPV Systems with Parameter-varying TimeDelays:Analysis and Control [J], Automatica,2001,37:221-229.
    [36] Mahmoud M S. New Results on “Linear Parameter-varying Time-delay Systems[J], Journal of the Franklin Institute,2004,341:675-703.
    [37]李文强.LPV系统鲁棒变增益控制研究及其应用[D].长沙:国防科技大学机电工程与自动化学院,2009,4.
    [38] Shamma J, Cloutier J. Gain-Scheduled Missile Autopilot Design Using LinearParameter Varying Transformations[J]. Journal of Guidance, Control, andDynamies,1993,16(2):256-263.
    [39] Pellanda P, Apkarian P, Tuan H. Missile Autopilot Design via a Multi-ChannelLFT/LPV Control Method[J]. International Journal of Robust Nonlinear Control,2002,12(1):1-20.
    [40] Apkarian P, Biannic J. Gain-Scheduled Control of a Missile via Linear MatrixInequalities[C]. USA: Lake Buena Vista,the33rd Conference on Decision andControl,1994:3312-3317.
    [41] Carter L, Shamma L. Gain-Scheduled Bank-to-Turn Autopilot Design UsingLinear Parameter Varying Transformations[J]. Journal of Guidance, Control andDynamics,1996,19(5):1056-1063.
    [42] Wu F, Packard A, Gary B. Systematic Gain-Scheduling Control Design: AMissile Autopilot Example[J]. Asian Journal of Control,2002,4(3):341-347.
    [43] Mehrabian A, Roshnian J. Design of Gain-Scheduled Autopilot for aHighly-Agile Missile[C]. System and Control in Aerospace and Astronautics,2006:144-149.
    [44] Jianaiao Y, Li L, Hongxia Z. Robust Gain-Scheduled Controller Design for AirDefense Missile[C]. China: Harbin, the25th Chinese Control Conference,2006:714-718.
    [45] Busehek H. Self-Scheduled Missile Autopilot Using Parameter Varying RobustControl[C]. USA: Boston, AIAA Guidance, Navigation, and Control Conferenceand Exhibit,1998.
    [46] Shin J, Gregory I. Robust Gain-Scheduled Fault Tolerant Control for a TransportAircraft[C]. Singapore, IEEE International Conference On Control Application,2007:1209-1214.
    [47] Papageorgiou G, Glover K. Taking Robust LPV Control into Flight on theVAAC Harrier[C]. Australia: Sydney, the39th IEEE Conference on Decision andControl,2000.
    [48] Ganguli S, Marcos A, Gary B. Reconfigurable LPV Control Design for Boeing747-100/200Longitudinal Axis[C]. USA: Anchorage, the American ControlConference,2002.
    [49] Biannic J, Apkarian P, Garrard W. Parameter Varying Control of a HighPerformance Aircraft[J]. Journal of Guidance, Control and Dynamics,1997,20(2):225-231.
    [50] Gary J, Fialho I, Packard A. On the Design of LPV Controllers for the F-14Aircraft Lateral-Directional Axis during Powered Approach[C]. USA: NewMexico, the American Control Conference,1997.
    [51] Gary J, Mueller J, Barker J. Application of Gain-Scheduled Multivariable ControlTechniques to the F/A-18System Research Aircraft[C]. USA: Portland, AIAAGuidance, Navigation and Control Conference and Exhibit,1999.
    [52] Fialho I, Gary J. Gain-Scheduled Lateral Control of the F-14Aircraft DuringPowered Approach Landing[J]. Journal of Guidance, Control and Dynamics,2000,23(3):450-458.
    [53] Mueller J, Gary J. Implementation and Testing of LPV Controllers for the NASAF/A-18Systems Research Aircraft[C]. USA: Denver, AIAA Guidance,Navigation and Control Conference,2000.
    [54] Lee L, Spillman M. Robust, Reduced-Order, Linear Parameter Varying FlightControl For an F-16[C]. USA: New Orleans, AIAA Guidance, Navigation, andControl Conference,1997.
    [55] Reberga L, Henrion D. LPV Modeling of a Turbofan Engine[C]. Czech Republic:Prague, the16th IFAC World Congress,2005.
    [56] Lescher F, Zhao J Y, Borne P. Robust Gain Scheduling Controller for PitchRegulated Variable Speed Wind Turbine[J]. Studies Informatics and Control,2005,14(4):299-316.
    [57] Gregory W, Gary J, Garrard W. Application of Parameter Dependent RobustControl Synthesis to Turbofan Engines[J]. Journal of Guidance, Control andDynamics,1999,22(6):833-838.
    [58] Gary J. Linear Parameter-Varying Control and its Application to a TurbofanEngine[J]. International Journal of Robust Nonlinear Control,2002,12(9):763-769.
    [59] Sparks G. Linear Parameter Varying Control for a Tailless Aircraft[C]. USA:New Orleans, AIAA Guidance, Navigation, and Control Conference,1997.
    [60] Jadbabaie A, Hauser J. Control of a Thrust-Vectored Flying Wing: a Receding
    [61] Horizon-LPV Approach[J]. International Journal of Robust Nonlinear Control,2002,12(9):869-896.
    [62] Fialho I, Balas G. Adaptive Vehicle Suspension Design Using LPV Methods[C].USA: Florida, the37th IEEE Conference on Decision and Control,1998.
    [63] Fialho I, Gary J. Road Adaptive Active Suspension Design Using LinearParameter-Varying Gain-Scheduling[J]. IEEE Control System,2002,10(1):43-54.
    [64] Trangbak K. Linear Parameter Varying Control of Induction Motors[D]. Sweden:Aalborg University,2001.
    [65]王涛,肖建,李冀昆.基于变增益控制理论的感应电机转子磁链观测[J].电力系统及其自动化学报,2006,18(1):71-73.
    [66] Lu B, Choi H, Buckner G. LPV Control Design and Experiment Implementationfor a Magnetic Bearing System[C]. USA: Minneapolis, American ControlConference,2006:4570-4575.
    [67] Wu F. Switching LPV Control Design for Magnetic Bearing Systems[C]. Mexico:Mexico city, IEEE International Conference on Control Application,2001.
    [68]虞中伟,陈辉堂.机器人多胞变增益输出反馈控制[J].控制理论与应用,2003,20(6):925-932,937.
    [69] Fitzpatrick K. Application of Linear parameter-Varying Control for AerospaceSystems[D]. USA: University of Florida,2003.
    [70] Gao R, Ohtsubo K, Kajiwara H. LPV Design for a Space Vehicle AttitudeControl Benchmark Problem[C]. Japan: Fukui, SICE Annual Conference,2003.
    [71] Zerar M, Cazaurang F, A Zolghadri. LPV Modeling of Atmospheric Re-entryDemonstrator for Guidance Re-entry Problem[C]. Spain: Seville, the44th IEEEConference on Decision and Control,2005.
    [72] Hughes H. Optimal Control for Spacecraft Large Angle Maneuvers usingLinear Varying Parameter Control Techniques[D]. USA: North Carolina StateUniversity,2006.
    [73] Voorsluijs G, Mulder J. Parameter-Dependent Robust Control for a RotorcraftUAV[C]. USA: San Francisco, AIAA Guidance, Navigation and ControlConference and Exhibit,2005.
    [74] Voorsluijs G, Bennani S, Scherer C. Linear and Parameter Dependent RobustControl Techniques Applied to a Helicopter UAV[C]. Island: Rhode, AIAAGuidance, Navigation and Control Conference and Exhibit,2004.
    [75] Oca S, Puig V, Witczak M. Fault-tolerant Control of a Two-degree of FreedomHelicopter using LPV Techniques[C]. France: Ajaccio,16th MediterraneanConference on Control and Automation,2008:1204-1209.
    [76] Natesan K. Design of Flight Controllers based on Simplified LPV Model of aUAV[C]. USA: San Diego, the45th IEEE Conference on Decision and Control,2006.
    [77] Dettori M, Scherer C. LPV Design for a CD player: an experimental Evaluationof Performance[C]. USA: Orlando, the40th IEEE Conference on Decision andControl,2001.
    [78] Tipsuwan Y. Gain Scheduling for Networked Control System[D]. USA: NorthCarolina State University,2003.
    [79] Qin W, Wang Q. Modeling and Control Design for Performance Management ofWeb Service Via an LPV Approach[J]. IEEE Control System,2007,15(2):259-275.
    [80] Turki K, Boubaker O. Gain Scheduling Control of a Nonlinear Bioprocess: AMultiple Model Approach[J]. AIML Journal,2005,5(3):79-85.
    [81] Shin J, Wu N, Belcastro C. Linear parameter Varying Control for ActuatorFailure[R]. ICASE, Hampton, Virginia,2002.
    [82] Weng Z, Patton R, Cui P. Integrated Design of Robust Controller and FaultEstimator for Linear Parameter Varying Systems[C]. Korea: Seoul, the17thWorld Congress IFAC,2008.
    [83] Barker J, Gary J. Gain-Scheduled Linear Fractional Control for Active FlutterSuppression[J]. Journal of Guidance, Control and Dynamics,1999,22(4):507-512.
    [84] Papageorgiou G, Hyde R. Analyzing the Stability of NDI-based FlightControllers with LPV Methods[C]. Canada: Montreal, AIAA Guidance,Navigation and Control Conference and Exhibit,2001.
    [85] Oosterom M, Bergsten P, Babuska R. Fuzzy Gain-Scheduled Flight ControlLaw Design[C]. USA: Monterey, AIAA Guidance, Navigation and ControlConference and Exhibit,2002.
    [86]邵晓巍. LPV时滞系统的准Min-Max鲁棒模型预测控制[J].武汉理工大学学报(交通科学与工程版),2006,30(3):373-376.
    [87] Salcedo J. GPC-LPV: a Predictive LPV Controller Based on BMIs[C]. Spain:Seville, the44th IEEE Conference on Decision and Control,2005.
    [88]崔平.LPV系统的鲁棒故障估计与主动容错控制[D].上海:上海交通大学电子信息与电气工程学院自动化系,2008,10.
    [89]邹锐.基于LPV系统的增益调度与故障检测[D].无锡:江南大学,2008,3.
    [90]张智永.光电稳定伺服机构的关键测控问题研究[D].长沙:国防科技大学机电工程与自动化学院,2006,10.
    [91]胡浩军,马佳光,王强,吴琼燕.快速控制反射镜系统中的传递函数辨识[J].光电工程,2005,32(7):1-3.
    [92]范世珣.动力调谐陀螺仪数字控制技术研究[D].长沙:国防科技大学机电工程与自动化学院,2006,12.
    [93] Chen Y Y, Huang P Y, Yen J Y. Frequency-Domain Identification Algorithmsfor Servo Systems with Friction[J]. IEEE Transactions on Control SystemsTechnology,2001,10(5):654-665.
    [94] Qian Xin, Wang Youyi. System Identify of Servomechanisms with NonlinearFriction[C]. Proceedings of the8th International Power Engineering Conference,2007:276-281.
    [95]丁峰,萧德云.多变量系统状态空间模型的递阶辨识[J].控制与决策,2005,20(8):848-853.
    [96]赵霞,姚郁,方强.递阶辨识方法在转台伺服系统调试中的应用研究.2002,19(2):229-234.
    [97] Ding F, Chen T W. Hierarchical least squares ideniifieation method formultivariable system[J]. IEEE Transactionson Automatic Control,2005,50(3):397-402.
    [98] Ding F, Chen T W. Iterative least squares solutions of coupled Sylvester matrixequations[J]. System&Contrl Letters,2005,54(2):95-107.
    [99]赵霞,姚郁,方强.递阶辨识方法在转台伺服系统调试中的应用研究[J].控制理论与应用,2002,19(2):229-234.
    [100]王强,陈科,傅承毓.基于闭环特性的音圈电机驱动快速反射镜控制[J].光电工程,2005,32(2):9-11.
    [101]李建军,盛洁波,王翠,桂卫华.异步电机定转子参数的辨识方法研究[J].电工技术学报,2006,21(l):70-74.
    [102] Ding F, Chen T W. Hierarchical Identification of lifted state-space models forGeneral Dual-rate system[C]. IEEE Transactions on circuits and systems-I:Regular Papers.2005,52(6):1179-1187.
    [103] Ding F, Chen T W. Identification of Hammerstein nonlinear ARMAX systems[J].Automatica,200541:1479-1489.
    [104] Ding F, Chen T W, Xiao D. State-Space Modeling and Identification of GeneralDual-Rate Stochastic systems[J]. ACIA Automatica sinica,2004,30(5):652-663.
    [105]杨利芳,于开平,庞世伟,邹经湘.用于线性时变结构系统辨识的子空间方法比较研究[J].振动与冲击,2007,26(3):8-12.
    [106]庞世伟,于开平,邹经湘.用于线性时变系统辨识的固定长度平移窗投影估计递推子空间方法[J].机械工程学报,2005,41(10):117-122.
    [107]庞世伟,于开平,邹经湘.用于时变系统辨识的自由响应递推子空间方法[J].振动工程学报,2005,18(2):233-237.
    [108]李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479.
    [109]刘维亭,张冰,马继先.舰船多相永磁同步电动机推进控制系统辨识与仿真研究[J].中国电机工程学报,2005,25(l):157-161.
    [110]徐东杰,贺仁睦,高海龙.基于迭代PRONY算法的传递函数辨识[J].中国电机工程学报,2004,24(6):40-43.
    [111]倪博溢,萧德云.Matlab环境下的系统辨识仿真工具箱[J].系统仿真学报.2006,18(6):1493-1496.
    [112]王军,彭宏,肖建.尺度核支持向量回归的非线性系统辨识[J].系统仿真学报,2006,18(9):2429-2432.
    [113]张莉,席裕庚.基于支持向量机的可分离非线性动态系统辨识[J].自动化学报,2005,31(6):965-969.
    [114]梁军利,杨树元,张远航.一种新的基于核函数的非线性系统辨识方法[J].系统工程与电子技术,2005,27(11):1575-1579.
    [115]荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208.
    [116]张伟,吴智铭,杨根科.混沌时间序列的遗传演化建模[J].电子学报,2005,33(4):748-751.
    [117]李志龙,郝伟,韩捷,褚福磊,吴昭同.基于非线性时序模型盲辨识的因子隐Markov模型识别方法[J].机械工程学报,2007,43(1):191-195.
    [118]张洪,陈天麒.一类时延混沌系统的自适应同步[J].系统工程与电子技术,2005,27(4):708-710.
    [119]柯晶,姜静,乔谊正.应用混合进化策略辨识Wiener-Hammerstein模型[J].系统工程与电子技术,2006,28(7):1055-1058.
    [120]林卫星,张惠娣,刘士荣,钱积新.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):75-79.
    [121]向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论与应用,2007,24(1):143-147.
    [122]刘亚秋,马广富,石忠.NARX网络在自适应逆控制动态系统辨识中的应用[J].哈尔滨工业大学学报,2005,37(2):173-176.
    [123]漆为民,程远楚,姬巧玲,蔡维由.PID型Elman网络及在动态系统辨识中的应用研究[J].控制与决策.2005,20(10):1197-1200.
    [124]江善和,张杰.基于Chebyshev基函数模糊神经网络的快速辨识方法[J].系统仿真学报,2006,18(3):590-593.
    [125]林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用[J].中国电机工程学报,2006,26(9):14-19.
    [126]侯志祥,申群太,李河清.基于自适应神经模糊推理系统的非线性系统辨识[J].系统工程与电子技术,2005,27(1):105-110.
    [127]杨伟斌,吴光强,秦大同,鞠丽娟,吴小清,丘绪云.人工神经网络的各参数对系统辨识精度的影响分析及各参数的确定方法[J].机械工程学报,2006,42(7):217-221.
    [128]韩敏,韩冰.一种通用学习网络自适应算法及其在预测控制中的应用[J].控制理论与应用,2006,23(6):900-906.
    [129]任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43.
    [130]李鹤,姚红良,闻邦椿,应怀樵.基于小波变换方法的高层建筑模态参数辨识[J].振动与冲击,2005,24(5):96-98.
    [131]刘琳,沈颂华,刘强.小波网络在直接转矩控制系统低速运行中的应用[J].北京航空航天大学学报,2006,32(9):1067-1071.
    [132]郑军,颜文俊,诸静.基于样条逼近和小波分解的Hammerstein模型辨识[J].系统仿真学报,2005,17(5):1063-1067.
    [133] Pintelon R, Schoukens J. System Identification: A Frequency DomainApproach[M]. New York: IEEE Press,2001.
    [134] Brillinger D R. Time Series: Data Analysis and Theory, Classics in AppliedMathematics[M]. SIAM, Philadelphia,2001.
    [135] Ljung L. Some Results of Identifying Linear Systems Using FrequencyDomain[C].32nd Conference on Decision and Control, San Antonio,1993.
    [136] Davidson R, Mackinnon J G. Estimation and Inference in Econometrics[M]. NewYork: Oxford University Press,1993.
    [137] Jennrich R I. Asymptotic Properties of Nonlinear Least Squares Estimators[J].Annals of Mathematical Statistics,1969,40(2):633-643.
    [138]向红标,裘祖荣,李醒飞,谭文斌,朱嘉,陈诚,张晨阳.精密实验平台的非线性摩擦建模与补偿[J].光学精密工程,2010,18(5):1119-1127.
    [139]刘强,扈宏杰,刘金琨,尔联洁.基于遗传算法的伺服系统摩擦参数辨识研究[J].系统工程与电子学报,2003,25(1):77-80.
    [140]王中华,王兴松,王群,徐卫良.新型摩擦模型的参数辨识及补偿实验研究[J].制造业自动化,2001,23(6):30-42.
    [141]孙洪鑫,王修勇,陈政清.基于改进遗传算法的LuGre模型参数辨识[J].武汉理工大学学报,2009,31(23):113-117.
    [142] Marton L. Robust-Adaptive Control of Nonlinear Singlevariable MechatronicSystems and Robots[D]. Budapest: Budapest University of Technology andEconomics,2006,1:43-78.
    [143] Gomonwattanapanich O. Identification and Compensation of Friction inMechanical Systems with Stochastic Inputs[D]. Arlington: The University ofTexas at Arlington,2003,5:25-49.
    [144] Kermani M R, Patel R V, Moallem M. Friction Identification and Compensationin Robotic Manipulators[J]. IEEE Transactions on Instrumentation andMeasurement,2007,56(6):2346-2353.
    [145]刘海荣,刘金琨.Lugre摩擦模型的模糊神经网络辨识仿真研究[J].计算机仿真,2007,24(1):80-82.
    [146]刘红,高伟.基于遗传算法的摩擦模型参数辨识[J].科学技术与工程,2007,7(15):3737-3740.
    [147]姚宏伟,梅晓榕,庄显义.应用自适应模糊神经网络进行摩擦补偿的研究[J].高技术通讯,2000,12:44-47.
    [148]焦竹青,屈百达,徐保国.遗传算法在直流伺服系统摩擦补偿中的应用[J].西安交通大学学报,2007,41(8):944-948.
    [149]吴子英,刘宏昭,刘丽兰,李鹏飞,原大宁.运动副摩擦参数的识别方法研究[J].应用力学学报,2006,24(1):115-120.
    [150]王璇,张娟梅,周阳.含有Stribeck摩擦的高精度伺服系统相关分析辨识[J].光电工程,2010,37(12):143-146.
    [151] Rizos D D, Fassois S D. Presliding Friction Identification Based upon theMaxwell Slip Model Structure[J]. Chaos,2004,14(2):431-445.
    [152] Rizos D D, Fassois S D. Friction Identification Based upon the LuGre andMaxwell Slip Models[J]. IEEE Transactions on Control Systems Technology,2009,17(1):153-160.
    [153] Parlitz U, Hornstein A, Engster D, etal. Identification of Pre-sliding FrictionDynamics[J]. Chaos,2004,14(2):420-430.
    [154] Worden K, Wong C X, Parlitz U. Identification of Pre-Sliding and SlidingFriction Dynamics: Grey Box and Black Box Models[J]. Mechanical Systemsand Signal Processing,2007,21:514-534.
    [155] Erkorkmaz K, Altintas Y. High Speed CNC System Design. Part II: Modelingand Identification of Feed Drives[J]. International Journal of Machine Tools&Manufacture,2001,41:1487-1509.
    [156] Canudas de Wit C, Olsson H, Astrom K J, etal. A New Model for Control ofSystems with Friction [J]. Control and Signal Processing,1995,40(3):1120-1145.
    [157] Canudas de Wit C, Olsson H, Astrom K J, etal. Dynamic Friction Models andControl Design[J]. Proceedings of the American Control Conference, SanFrancisco,1993:1920-1926.
    [158] Xu L, Yao Bin. Adaptive robust precision motion control of linear motorswithnegligible electrical dynamics: Theory and experiments [J]. IEEE/ASMETransactions on Mechatronics,2001,6(4):444-452.
    [159] Lu Lu, Yao Bin, Wang Qingfeng, Chen Zheng. Adaptive robust control of linearmotors with dynamic friction compensation using modified LuGre model [J].Automatica,2009,45:2890-2896.
    [160] Makkar C, Hu G, Sawyer W G, Dixon W E. Lyapunov-based tracking control inthe presence of uncertain nonlinear parameterizable friction [J]. IEEETransactions on Automatic Control,2007,52(10):1994–1998.
    [161] Hasanien H M, Muyeen S M, Tamura J. Speed control of permanent magnetexcitation transverse flux linear motor by using adaptive neuro-fuzzy controller[J]. Energy Conversion and Management,2010,51:2672-2768.
    [162] Naso D, Cupertino F, Turchiano B. Precise position control of tubular linearmotors with neural networks and composite learning [J]. Control EngineeringPractice,2010,18:515-522.
    [163] Lin C L,Hsiao Y H. Adaptive Feedforward Control for Disturbance TorqueRejection in Seeker Stabilizing Loop[J]. IEEE Transactions on Control SystemsTechnology,2001,9(1):108-121.
    [164] Lee T H, Tan K K, Lee M W. A Variable Structure-Augmented AdaptiveController for a Gyro-Mirror Line-of-Sight Stabilization Platform[J].Mechatronics,1998,8:47-64.
    [165] Ji W, Li Q,Xu B, etal. Adaptive Fuzzy PID Composite Control withHysteresis-Band Switching for Line of Sight Stabilization Servo System[J].Aerospace Science and Technology,2011,15:25-32.
    [166] Krishna Moorty J A R, Sule V R. Control Law for Line-of-Sight Stabilizationfor Mobile Land Vehicles[J]. Optical Engineering,2002,41(11):2935-2944.
    [167] Siew B C, Chen B M, Lee T H. Design and Implementation of a RobustController for a Free Gyro-Stabilized Mirror System[J]. Journal of DynamicSystems, Measurement, and Control Transactions of ASME,1999,121:550-556.
    [168] Lee H P. Control Design for a Seeker Scan Loop System[J]. KSMEInternational Journal,1998,12(3):347-357.
    [169] Lee H P, Schmidt D K. Robust Two-Degree-of-Freedom Control of a SeekerScan Loop System[J]. Control Theory Application,2002,149(2):149-156.
    [170] Kim S B, Kim S H, Kwak Y K. Robust Control for a Two-Axis Gimbaled SensorSystem with Multivariable Feedback Systems[J]. Control Theory andApplications.2009,4(4):539-551.
    [171] Hong S, Cho K D, Park C H, etal. Trajectory Generation and Robust Controlfor Inertially Stabilized System[C]. IEEE/ASME International Conference onAdvanced Intelligent Mechatronics. Budapest,2011, July3-7.
    [172] Lee W G, Kim I S, Keh J E, etal. Dynamic Characteristic Analysis andLMl-based Controller Design for a Line of Sight Stabilization System[J].KSME Internatinal Journal,2002,16(10):1187-1200.
    [173]周瑞青,刘新华,史守峡等.捷联导引头稳定与跟踪技术[M].北京:国防工业出版社,2010.8:138-154.
    [174]张文博.导引头伺服机构工作特性与先进测控方法研究[D].长沙:国防科技大学机电工程与自动化学院,2009,12.
    [175] Azadi Yazdi E, Nagamune R. Multiple robust H-infinity controller design usingthe nonsmooth optimization method [J]. International Journal of Robust andNonlinear Control,2010,20(11):1197-1312
    [176] Gu D W, Petkov P Hr, Konstantinov M M. Robust Control Design withMATLAB [M]. Lodon: Springer Press,2005.
    [177] Doyle J, Francis B and Tannenbaum A. Feedback Control Theory [M]. NewYork: McMillam,1992.
    [178] Pritschow G, Eppler C, Lehner W D, etal. The Key for Advanced DynamicDrives[J], Cirp Annals-Manufacturing Technology,2003,52(1),289-292.
    [179] Erkorkmaz K, Altintas Y. High Speed CNC System Design. Part III: High SpeedTracking and Contouring Control of Feed Drives[J], International Journal ofMachine Tools&Manufacture,2001,41(11),1637-1658.
    [180] Jaritz A, Spong M W. An Experimental Comparison of Robust ControlAlgorithms On a Direct Drive Manipulator[J]. IEEE Transactions on ControlSystems Technology,1996,4(6):627-640.
    [181] Liu G, Goldenberg A A, Zhang Y. Precise Slow Motion Control of aDirect-Drive Robot Arm With Velocity Estimation and Friction Compensation,Mechatronics,2004,14(7),821-834.
    [182] Umeno T, Hori Y. Robust Speed Control of Dc Servomotors Using Modern2Degrees-of-Freedom Controller-Design[J], IEEE Transactions on IndustrialElectronics,1991,38(5):363-368.
    [183] Lee H S, Tomizuka M. Robust Motion Controller Design for High-AccuracyPositioning Systems[J], IEEE Transactions on Industrial Electronics,1996,43(1):48-55.
    [184] Kwon S J, Chung W K. A Discrete-Time Design and Analysis of PerturbationObserver for Motion Control Applications[J]. IEEE Transactions on ControlSystems Technology,2003,11(3):399-407.
    [185] Van Brussel H, Chen C H, Swevers J. Accurate Motion Controller Design Basedon an Extended Pole Placement Method and a Disturbance Observer[J]. Annalsof CIRP,1994,43(1):367-372.
    [186] Komada S, Machii N, Hori T. Control of Redundant Manipulators ConsideringOrder of Disturbance Observer[J], IEEE Transactions on Industrial Electronics,2000,47(2):413-420.
    [187] Waldmann J. Line-of-Sight Rate Estimation and Linearizing Control of anImaging Seeker in a Tactical Missile Guided by Proportional Navigation. IEEETransaction on Control Systems Technology,2002,10(4):556-567.
    [188] McKerlev C W. A Model for a Two Degree of Freedom Coupled Seeker withMass Imbalance[J]. IEEE.1996:84-87.
    [189]周瑞青,吕善伟,刘新华.捷联式天线稳定平台动力学建模与仿真分析[J].北京航空航天大学学报,2005,31(9):953-957.
    [190]刘廷柱,杨海兴,朱本华.理论力学(第二版)[M].北京:高等教育出版社,2001.
    [191]沃琳R H.密封件与密封手册[M].北京:国防工业出版社,1981.
    [192] Armstrong H B, Dupont P, Canudas De Wit A, Survey of Models, Analysis Toolsand Compensation Methods for the Control of Machines with Friction[J],Automatica,1994,30(7):1083–1138.
    [193]马东玺.光电搜跟系统模式切换特性及控制研究[D].长沙:国防科技大学机电工程与自动化学院,2011,12.
    [194] Astrom K J, Wittenmark B. Computer-Controlled Systems: Theory and Design,3rd ed., Englewood Cliffs: Prentice-Hall,1997.
    [195] Benkhoris M F, Alt-Ahmed M. Discrete Speed Estimation from a PositionEncoder for Motor Drives[C]. IEE Conference Publication on Power Electronicsand Variable Speed Dreives,1996,9:283-287.
    [196]温熙森,陈循,徐永成等.机械系统建模与动态分析[M].北京:科学出版社,2004,8.
    [197] Kalman R E, A New Approach to Linear Filtering and Prediction Problems,Journal of Basic Engineering,1960,82:35–44.
    [198] Fan Shixun, Nagamune R, Altintas Y, etal. Comparison Study on DisturbanceEstimation Techniques in Precise Slow Motion Control[C]. Proceedings of SPIE,2010,7544:331-336.
    [199] Ogata K, Discrete-Time Control Systems[M]. Englewood Cliffs: Prentice-Hall,1987.
    [200] Hess D P, Soom A. Friction at a Lubricated Line Contact Operating at OscillatingSliding Velocities[J]. Journal of Tribology,1990,112(1):147-153.
    [201] Nagamune R., Choi J. Parameter Reduction in Estimated Model Sets for RobustControl[J]. Journal of Dynamic Systems, Measurement, and Control.2010,132:021002-1-021002-10.
    [202]马昌凤.最优化方法及其Matlab程序设计[M].北京:科学出版社,2010:91-95.
    [203]田玉刚,王新洲,花向红.非线性最小二乘估计的遗传算法[J].测绘工程,2004,13(4):6-8.
    [204]田玉刚.非线性最小二乘估计的遗传算法研究[D].武汉:武汉大学,2003,4.
    [205] Zhou Kemin, Doyle J C, Glover K. Robust and Optimal Control[M]. EnglewoodCliffs: Prentice Hall,1998:240.
    [206] Smith L I. A Tutorial on Principal Components Analysis[EB/OL]. http://www.cs.motana.edu/~harkin/courses/cs530.2002:12~20.
    [207]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].南京:东南大学,2006.
    [208] Marton L, Lantos B. Control of Mechanical Systems with Stribeck Friction andBacklash[J]. System&Control Letters,2009,58:141-147.
    [209] Yen Ping-Lang. A Two-loop Robust Controller for Compensation of the VariantFriction Force in an Over-Constrained Parallel Kinematic Machine[J].International Journal of Machine Tools&Manufacture,2008,48:1354-1365.
    [210] Choi C, Tsao T C. Control of Linear Motor Machine Tool Feed Drives for EndMilling: Robust MIMO Approach [J]. Mechatronics,2005,15:1207-1224.
    [211] Shen B H, Tsai M C. Robust Dynamic Stiffness Design of Linear ServomotorDrives [J]. Control Engineering Practice,2006,14:1325-1336.
    [212] Van den Braembussche P, Swevers J, Van Brussel H. Design and ExperimentalValidation of Robust Controllers for Machine Tool Drives with Linear Motor[J].Mechatronics,2001,11:545-562.
    [213]俞立.鲁棒控制——新型矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [214] Gahinet P, Nemirovski A, Laub A J, etal. LMI Control Toolbox-for Use withMatlab[M]. The MATH Works Inc.,1995.
    [215] Gene F. Franklin, J. David Powell, Michael Workman. Digital Control ofDynamic Systems (Third edition)[M].北京:清华大学出版社,2001.
    [216]陈娟.伺服系统低速特性与抖动补偿研究[D].中科院长春光机所,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700