用户名: 密码: 验证码:
基于声达时间差的移动机器人声源目标定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着移动机器人应用领域的日益扩大,其所面对的工作环境也愈来愈复杂。面对呈现多种信息的各种不确定和非结构化的环境,单一的视觉感知方式必然降低机器人对环境的适应性,进而影响其智能决策水平。作为机器人处理声音信息的器官,从仿人角度出发而构建的机器人听觉系统,已成为机器人领域的重要研究对象。其利用声音传播的物理特性,可以与机器人视觉系统相配合,弥补其视角有限、依赖光照及无法穿过非透光障碍物等局限性。本文针对目标定位这一环境感知领域的基本问题,通过将移动机器人技术与声源定位技术进行有机结合,旨在实现噪声条件下基于声达时间差的移动机器人声源目标定位。本文围绕这一研究目标主要完成了以下四方面研究工作:
     (1)在研究基于麦克风阵列的声源定位方法的基础上,以实现在三维空间内准确定位有声目标为目的,考虑系统实时性,开发制作了正四面体麦克风阵列,并通过数据采集器将其所采集的声音信息传递给机器人,设计实现了完整的机器人听觉系统。
     (2)针对在实际工作条件下存在大量复杂噪声的问题,以提高抗噪声和抗混响性能为目标,研究了广义互相关和自适应滤波两种基本声达时间差估计方法。并通过仿真实验对代表性方法进行性能分析,总结了各算法的适用场合和优缺点,进而对广义互相关与自适应滤波相结合的声达时间差估计方法进行了研究。
     (3)根据正四面体阵列结构和声音球面波传播模型,建立精确的几何定位计算模型,在此基础上推导出基于远场假设的声源定位计算模型。通过仿真性能分析,提出了一种结合机器人主动运动的全范围声源定位方法。同时,利用神经网络的非线性拟合能力和并行计算的特点,提出了一种基于BP神经网络的声源定位计算模型。
     (4)针对传感器观测的不确定性和突发性强干扰导致的大量野值存在的问题,考虑移动机器人与声源目标产生相对运动的情况,提出了一种基于新息抗野值的二次卡尔曼滤波方法。该方法可根据机器人的运动状态,通过调整观测噪声协方差的估计量,提高了机器人在进行连续目标定位时的声源定位系统可靠性。
Along with the increasing expansion of application fields, mobile robots are facingincreasingly complex work environments. In all uncertain and unstructured environments whicha variety of information presented, mobile robots only rely on visual means to obtain information,is bound to reduce the environmental adaptability of the mobile robot, and thus limit their levelof intelligent decision. As the robot’s organ for processing sound information, the robot auditorysystem which is built from the idea of humanoid, has become an important research object inrobotics field. By using the physical characteristics of sound propagation, robot auditory systemcan be compatible with the visual system to compensate for its limitations, such as theperspective is limited, dependent on light and can’t pass through the non-translucent obstacles.Through researching target localization which is a basic problem in the field of environmentalperception, this thesis aims to realize mobile robot’s sound source localization based on timedelay of arrival in noise conditions by organically combining mobile robot technology withsound source localization technology. So, the following four research works have been done inthis thesis.
     (1) Based on the study of sound source localization method which is using microphonearray, in order to achieve accurate positioning for the sound target in3D space, and consideringthe system’s real-time, a tetrahedral microphone array is developed and produced, and then itsobtained sound information pass to mobile robot through data acquisition system, so a completerobot auditory system has been realized.
     (2) To solve the problem that there are many noises under actual working conditions, andimprove the performance of anti-noise and reverberation, two basic estimation methods for time delay of arrival, generalized cross correlation estimation and adaptive filtering, are studied. Andthe paper analyzs the performance of typical methods through simulation experiments,summarizs the application occasions, the advantages and disadvantages of the typical algorithms.Then the time delay of arrival estimation method based on the combination of generalized crosscorrelation and adaptive filter is studied.
     (3) According to the tetrahedral microphone array structure and sound propagation sphericalwave model, precise geometric localization calculation model has been established. On this basis,the far-field sound source localization calculation model can be derived. After performancesimulation analysis, a full-ranged sound source orientation method combined with robot’s activemovement has been presented. And by using neural network’s capability of nonlinear curvefitting and parallel computing, a sound source orientation calculation model based on BP neuralnetwork has been also presented.
     (4) To solve the problem which a large number of outliers exist caused by sensorobservation uncertainty and sudden strong interference, considering the relative motion betweenmobile robot and sound source, an anti-outliers double Kalman filtering method based oninnovation has been presented. Experimental results show that this method can improve system’sreliability by adjusting measurement noise covariance during continuous sound source targetlocalization and tracking.
引文
[1]蔡自兴.智能控制及移动机器人研究进展[J].中南大学学报(自然科学版),2005,(5):108-113
    [2]李磊,叶涛,谭民,等.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480
    [3]容茂成,祖丽楠,杨鹏.移动机器人听觉定位技术研究[J].机器人技术与应用,2008(4):44-46
    [4]李从清,孙立新,戴士杰,等.机器人听觉定位跟踪声源的研究与进展[J].燕山大学学报,2009,33(3):199-205
    [5]李晓飞,刘宏.机器人听觉声源定位研究综述[J].智能系统学报,2012,7(1):1-11
    [6] R E Irie. Robust sound localization: an application of an auditory perception system for a humanoidrobot:[Dissertation]. Cambridge, USA: Department of Electrical Engineering and Computer Science, MIT,1995
    [7] H Okuno, T Gogata, K Komatani. Computational auditory scene analysis and its application to robotaudition[J]. Informatics Research for Development of Knowledge Society Infrastructure,2007,29:69-76
    [8] R F Lyon. A computational model of binaural localization and separation[C]//IEEE InternationalConference on Acoustics, Speech, and Signal Processing. Boston, USA,1983:1148-1151
    [9] V R Algazu, R O Duda, R P Morrison, et al. Structural composition and decomposition of HRTFs
    [C]//IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New York, USA,2001:103-106
    [10] A A Handzel, P S Krishnaprasad. Biomimetic sound-source localization[J]. IEEE Journal on Sensors,2002,2(6):607-616
    [11] K Nakadai, H G Okuno, H Kitano. Epipolar geometry based sound localization and extraction forhumanoid audition[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui,USA,2001:1395-1401
    [12] K Nakadai, K Hidai, H Mizoguchi, et al. Real-time auditory and visual multiple-object tracking forhumanoids[C]//Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence.Seattle, USA,2001:1425-1436
    [13] K Nakadai, D Matsuura, H G Okuno et al. Applying scattering theory to robot audition system: robustsound source localization and extraction[C]//IEEE/RSJ International Conference on Intelligent Robotsand Systems. Las Vegas, USA,2003:1147-1152
    [14] G Shafer. A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press,1976
    [15] M Kumon, T Shimoda, R Kohzawa. Audio servo for robotic systems with pinnae[C]//IEEE/RSJInternational Conference on Intelligent Robots and Systems. Alberta, Canada,2005:1881-1886
    [16] T Shimoda, T Nakashima, M Kumon, et al. Spectral cues for robust sound localization withpinnae[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China,2006:386-391
    [17] J Hornstein, M Lopes, J Santos-victor, et al. Sound localization for humanoid robots-building audio-motormaps based on the HRTF[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Beijing, China,2006:1170-1176
    [18] F Keyrouz, W Maier, K Diepold. A novel humanoid binaural3D sound localization and separationalgorithm[C]//IEEE-RAS International Conference on Humanoid Robot. Genova, Italy,2006:296-301
    [19] T Rodemann, G Ince, F Joublin, et al. Using binaural and spectral cues for azimuth and elevationlocalization[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France,2008:2185-2190
    [20] T Rodemann. A study on distance estimation in binaural sound localization[C]//IEEE/RSJ InternationalConference on Intelligent Robots and Systems. Taipei, China,2010:425-430
    [21] U H Kim, T Mizumoto, T Ogata, et al. Improvement of speaker localization by considering multipathinterference of sound wave for binaural robot audition[C]//IEEE/RSJ International Conference onIntelligent Robots and Systems. San Francisco, USA,2011:2910-2915
    [22] A Skaf. Optimal positioning of a binaural sensor on a humanoid head for sound sourcelocalization[C]//IEEE-RAS International Conference on Humanoid Robot. Bled, Slovenia,2011:165-170
    [23] W R Hahn. Optimum signal processing for passive sonar range and bearing estimation[J]. Journal ofAcoustical Society of America,1975,58(1):201-207
    [24] G C Carter. Variance bounds for passively locating an acoustic source with a symmetric line array[J].Journal of Acoustical Society of America,1977,62(4):922-926
    [25] L.L.Ramos, S.Holm, S.Gudyangen, et al. Delay-and-sum beamforming for direction of arrival estimationapplied to gunshot acoustics[C]//Proceedings of SPIE Defense, Security, and Sensing. Florida, USA,2011
    [26] M Kajala. Filter-and-sum beamformer with adjustable filter characteristics[C]//IEEE InternationalConference on Acoustics, Speech, and Signal Processing. Salt Lake City, Utah,2001:2917-2920
    [27]林静然.基于麦克风阵列的说话人跟踪及语音分离实现技术的研究:[博士学位论文].成都:电子科技大学,2005
    [28]吴俣.基于麦克风阵列的声源定位技术研究:[博士学位论文].成都:电子科技大学,2008
    [29]曹玮玮.基于麦克风阵列的声源定位与语音增强方法研究:[博士学位论文].北京:清华大学,2008
    [30]胡郢.麦克风阵列声源定位和语音增强技术研究:[博士学位论文].哈尔滨:哈尔滨工程大学,2008
    [31] T Matsui, H Asoh, J Fry, et al. Integrated natural spoken dialogue system of Jijo-2mobile robot for officeservices[C]//Proceedings of the Sixteenth National Conference on Artificial Intelligence and the EleventhInnovative Applications of Artificial Intelligence Conference Innovative Applications of ArtificialIntelligence. Menlo Park, USA,1999:621-627
    [32] J-M Valin, F Michaud, B Hadjou. Localization of simultaneous moving sound sources for mobile robotusing a frequency-domain steered beamformer approach[C]//IEEE International Conference on Roboticsand Automation. New Orleans, USA,2004:1033-1038
    [33] A Badali, J-M Valin, F Michaud. Evaluating real-time audio localization algorithms for artificial auditionin robotics[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA,2009:2033-2038
    [34] Y Tamai, S Kagami, Y Amemiya, et al. Circular microphone array for robot’s audition[C]//IEEEInternational Conference on Sensors. Vienna, Austria,2004:565-570
    [35] Y Tamai, Y Sasaki, S Kagami. Three ring microphone array for3D sound localization and separation formobile robot audition[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Edmonton, Canada,2005:4172-4177
    [36] Y Sasaki, S Kagami, H Mizoguchi. Multiple sound source mapping for a mobile robot by self-motiontriangulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China,2006:380-385
    [37] Y Sasaki, S Kagami, H Mizoguchi. Main-lobe canceling method for multiple sound sources localizationon mobile robot[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich,Switzerland,2007:1-6
    [38] S Kagami, S Thompson, Y Sasaki, et al.2D sound source mapping from mobile robot using beamformingand particle filtering[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing.Taipei, China,2009:3689-3692
    [39] R O Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions onAntennas and Propagation,1986,34(33):276-280
    [40] H Wang, M Kaveh. Coherent signal subspace processing for the detection and estimation of angles ofarrival of multiple wide-band sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1985,33(4):823-831
    [41]居太亮.基于麦克风阵列的声源定位算法研究:[博士学位论文].成都:电子科技大学,2006
    [42] F Asano, H Asoh, T Matsui. Sound source localization and signal separation for office robot “Jijo-2”[C]//IEEE International Conference on multisensory fusion and integration for intelligent systems. Taipei,China,1999:243-248
    [43] K Nakadai, H Nakajima, K Yamada, et al. Sound source tracking with directivity pattern estimation usinga64ch microphone array[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Edmonton, Canada,2005:1690-1696.
    [44] K Nakadai, H Nakajima, M Murase, et al. Robust tracking of multiple sound sources by spatial integrationof room and robot microphone arrays[C]//IEEE International Conference on Acoustics, Speech, andSignal Processing. Toulouse, France,2006:929-932
    [45] S Argentieir. Broadband variations of the MUSIC high-resolution method for sound source localization inrobotics [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA,2007:2009-2014
    [46] K Nakamura, K Nakadai, F Asano, et al. Intelligent sound source localization for dynamic environments
    [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA,2009:664-669
    [47] K Nakamura, K Nakadai, F Asano, et al. Intelligent sound source localization and its application tomultimodal human tracking[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.San Francisco, USA,2011:143-148
    [48] C T Ishi, O Chatot, H Ishiguro, et al. Evaluation of a MUSIC-based real-time sound localization ofmultiple sound sources in real noisy environments[C]//IEEE/RSJ International Conference on IntelligentRobots and Systems. St. Louis, USA,2009:2027-2032
    [49] C H Knapp, G C Carter. The generalized correlation method for estimation of time delay[J]. IEEETransactions on Acoustics, Speech, and Signal Processing,1976,24(4):320-327
    [50] M Omologo, P Svaizer. Acoustic source location in noisy and reverberant environment using CSPanalysis[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, USA,1996:921-924
    [51] J Benesty. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization[J].Journal of Acoustical Society of America,2000,107(1):384-391
    [52] T G Dvorkind, S Gannot. Time difference of arrival estimation of speech source in a noisy andreverberant environment[J]. IEEE Transactions on Signal Processing,2005,85(1):177-204
    [53] J Huang, T Supaongprapa, I Terakura, et al. Mobile robot and sound localization[C]//IEEE/RSJInternational Conference on Intelligent Robots and System. Grenoble, France,1997:683-689
    [54] J Huang, K Kume, A Saji, et al. Robotic spatial sound localization and its3-D sound humaninterface[C]//First International Symposium on Cyber Worlds (CW2002). Tokyo, Japan,2002:191-197
    [55] A S Sekmen, M Wikes, K Kawamura. An application of passive human-robot interaction: human trackingbased on attention distraction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systemsand Humans,2002,32(2):248-259
    [56] J–M Valin, F Michaud, J Rouat, et al. Robust sound source localization using a microphone array on amobile robot[C]//IEEE/RSJ International Conference on Intelligent Robots and System. Las Vegas, USA,2003:1228-1233
    [57] B Rudzyn, W Kadous, C Sammut. Real time robot audition system incorporating both3D sound sourcelocalisation and voice characterization[C]//IEEE International Conference on Robotics and Automation.Roma, Italy,2007:4733-4738
    [58] K C Kwak, S S Kim. Sound source localization with the aid of excitation source information in homerobot environments[J]. IEEE Transactions on Consumer Electronics,2008,54(2):852-856
    [59] J S Hu, C Y Chan, C K Wang, et al. Simultaneous localization of mobile robot and multiple sound sourcesusing microphone array[C]//IEEE International Conference on Robotics and Automation. Kobe, Japan,2009:29-34
    [60] J S Hu, C H Yang, C K.Wang. Estimation of sound source number and directions under a multi-sourceenvironment[C]//IEEE/RSJ International Conference on Intelligent Robots and System. Louis, USA,2009:181-186
    [61] B Lee, J S Choi. Multi-source sound localization using the competitive K-means clustering[C]//IEEEConference on Emerging Technologies and Factory Automation. Bilbao, Spain,2010:1-7
    [62]周浩洋.基于麦克风阵列的声源定位方法研究:[博士学位论文].大连:大连理工大学,2002
    [63]吕晓玲.基于听觉信息的机器人声源定位技术研究:[博士学位论文].天津:河北工业大学,2010
    [64]朱广信,陈彪,金蓉.基于传声器阵列的声源定位[J].电声技术,2003,01,34-37
    [65]鲁佳.基于传声器阵列的声源定位研究:[博士学位论文].天津:天津大学,2008.5
    [66]贺家琳.声源定位算法研究及实现:[博士学位论文].天津:天津大学2009
    [67] M.Wax, T.Kailath, Optimum localization of multiple sources by passive arrays[J], IEEE Transactions onAcoustics, Speech and Signal Processing,1983,31(5):1210-1217
    [68]郭俊成.基于传声器阵列的声源定位技术研究:[博士学位论文].南京:南京航空航天大学,2007.
    [69]王宏禹,邱天爽.自适应噪声抵消和时间延迟估计[M],大连:大连理工大学出版社,1999.8
    [70] D.H.Youn, N.Ahmed, G.C.Carter. On using the LMS algorithm for time delay estimation[A], IEEETransaction on Acoustics, Speech and Signal Processing,1982,30(5):798-801
    [71]行鸿彦,赵守国.广义相关时延估计算法的自适应实现形式[J],西安石油学院学报,2001,16(6):47-50
    [72]马雯,黄建国. LMS自适应时延估计法在被动定位系统中的应用研究[J],船舶工程2000,6:50-53
    [73]黄晓燕,罗建.自适应时延估计算法在被动声定位系统中的应用[J],探测与控制学报,2007,29(2):73-76
    [74]字正华,石庚辰,基于LMS自适应算法的瞬态信号时延估计[J],探测与控制学报,2006,28(1):37-39
    [75] F.A.Reed, P.L.Feintuch, N.J.Bershad. Time delay estimation using the LMS adaptive filter-static behavior.IEEE Transactions on Acoustics, Speech and Signal Processing[J].1981,29(2):561-571
    [76] M J Hinich, G R Wilson. Time Delay Estimation Using the Cross Bispectrum[J], IEEE Transactions onSignal Processing,1992,40(1):106-113
    [77] J K Tugnait. On Time Delay Estimation with Unknown Spatially Correlated Gaussian Noise UsingGourth-Order Cumulants and Cross Cumulants[J]. IEEE Transactions on Signal Processing,1991,39(6):1003-1007
    [78]徐勤奇.基于声源定位的移动机器人导航系统:[硕士学位论文].天津:河北工业大学,2009
    [79]梁志毅,高金山,董文杰.基于仿生学和SoPC的嵌入式声源定位器[J].电子技术应用,2006,7:61-63
    [80]邵怀宗,林静然,彭启琮.基于麦克风阵列的声源定位研究[J].云南民族大学学报,2004,4:256-259
    [81]严素清,黄冰.传声器阵列的声源定位研究[J].电声技术,2004,12:27-30
    [82]黄晓燕,罗建.自适应时延估计算法在被动声定位系统中的应用[J],探测与控制学报,2007,29(2):73-76
    [83]容茂成.移动机器人寻声导航系统的研究:[硕士学位论文].天津:河北工业大学,2008
    [84] A O Hero, S C Schwartz.A New Generalized Cross Correlator, IEEE Transactions on Acoustics, Speechand Signal Processing,1985,33(1):38-45
    [85]王宏禹,邱天爽.自适应噪声抵消和时间延迟估计[M].大连:大连理工大学出版社,1999.8
    [86]字正华,石庚辰,基于LMS自适应算法的瞬态信号时延估计[J].探测与控制学报,2006,28(1):37-39
    [87]周浩洋.基于麦克风阵列的声源定位方法研究:[硕士学位论文].大连:大连理工大学,2002
    [88]邱天爽,王宏禹.一种维纳加权的广义互相关自适应时间延迟估计方法[J].通信学报,1996,3,17(2):110-115
    [89]唐小明,吴昊,刘志坤.基于广义互相关算法的时延估计研究[J].电声技术,2009,33(8):71-74
    [90]何蒙.基于麦克风阵列的移动机器人听觉定位方法研究:[硕士学位论文].天津:河北工业大学,2010
    [91]余立雪.神经网络与实例学习[M].北京:中国铁道出版社,1996
    [92]邢钰姣.声源定位系统中基于神经网络的定位方法研究:[硕士学位论文].天津:河北工业大学,2011
    [93] M T Hagan, H B Demuth, M H Beale. Neural Network Design[M].北京:机械工业出版社,2002
    [94] B Feldkeller.Neural Network for Process Control in Steell Manufaeturing,IEEE International Conferenceon Acoustic, Speech and Signal Processing.2001,(1),155-158
    [95] Sung Sau,M Karplus.Evolutionary Optimization in Quantitative Structure Activity Relationship:AnApplication of Genetic Neural Networks.Journal of Medicinal Chemistry,1996,39(7):524-528
    [96] N Messai.A Neural Network Approach for Freeway Traffic Flow Prediction.Proc of the InternationalConference on Control Applications.2002,2,984-989
    [97]孟嘉伟.基于BP人工神经网络的水质评价模型:[博士学位论文],天津:天津大学,2010
    [98]卜富清.基于人工神经网络的图像识别和分类:[博士学位论文],成都:成都理工大学,2010
    [99]贺清碧.BP神经网络及应用研究:[硕士学位论文],重庆:重庆交通学院,2004
    [100]雷晓云,张丽霞,梁新平.基于MATLAB工具箱的BP神经网络年径流量预测模型研究[J].水文,2008,28(1):43-48
    [101]吴仕勇.基于数值计算方法的BP神经网络及遗传算法的优化研究:[硕士学位论文].昆明:云南师范大学,2006
    [102] Y,Yang G Liu. Multivariate Time Series Prediction Based on Neural Network Applied to StockMarket.IEEE International Conference on Systems,2001,4,680-684
    [103] Y Zhang, Y Pan. Parallel Granular Neural Networks for Fast Credit Card Fraud Detection Conference onFuzzy Systems Proc. Of the2002IEEE International2002,1,572-577
    [104] N Shaikh-Husin,et al.Implementation of Recurrent Neural Network Algorithm for Shortest PathCalculation in Network Routing.Proc. Of the International Symposium on Parallel Architectures,AlgorithmsandNetworks.2002,2,355-359
    [105]李丽霞.BP神经网络及其在疾病预后分类问题中的应用:[硕士学位论文].太原:山西医科大学.2002
    [106]徐祥和.基于BP神经网络的客户分类方法研究:[博士学位论文].南京:南京航空航天大学,2004
    [107]韩立群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002
    [108]傅荟璇,赵红. MATLAB神经网络应用设计[M].北京:机械工业出版社,2010
    [109]飞思科技产品研发中心.神经网络与MATLAB7实现[M].北京:电子工业出版社,2005
    [110]杜刚.改进的BP神经网络在地下水质评价中的作用:[硕士学位论文].上海:上海师范大学,2007
    [111]刘双.基于MATLAB神经网络工具箱的电力负荷组合预测模型[J].电力自动化设备,2003,23(3),59-61
    [112]陈敏.基于BP神经网络的混沌时间序列预测模型研究[D].长沙:中南大学,2007
    [113]杨盘洪,朱军祥,赵建安等.多传感器数据融合机动目标跟踪算法[J].仪器仪表学报,2006,6(27):1679-1682.
    [114]符拯,王书满,刘丙杰.自适应卡尔曼滤波的最新进展[J].战术导弹技术,2009,(6):62-66.
    [115] S Rashad, N Aboelmagd. Online INS/GPS integration with a radial basis function neural network [J].IEEE Aerospace and Electronic Systems Magazine,2005,20(3):8-14.
    [116]蒋恩松,李孟超,孙刘杰.一种基于神经网络的卡尔曼滤波改进方法[J].电子与信息学报,2007,9(29):2073-2076.
    [117] G H Al-Dhaher, D Mackesy. Multi-sensor data fusion architecture[A].The third IEEE InternationalWorkshop on Haptic, Audio and Visual Environments and Their Applications[C]. Ottawa, Ontario, Canada,2004:159-163.
    [118] Congwei Hu, Chen Wu. Adaptive Kalman filtering for vehicle navigation [J]. Journal of GlobalPositiioning System,2003,2(1):227-233.
    [119] Lianliang Qi, J M Mendel.Equalization of nonlinear time-varying channels using type-2fuzzy adaptivefilters [J]. IEEE transaction on aerospace and electronics system,2000,(10):110-115.
    [120]胡绍林,孙国基.靶场外测数据野值点的统计诊断技术明[J].宇航学报,1999,20(2):68-74.
    [121] V dang. An adaptive Kalman Filter for radar tracking application [A]. Proceedings of Microwaves,Radar and Remote Sensing Symposium[C],Otewang,2008:261-264.
    [122]何友.多传感器信息融合及应用[M].北京:电子工业出版社,2007.
    [123]邓自立.最优估计理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [124]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [125]孙海荣.信息融合在移动机器人目标定位中的应用研究:[硕士学位论文].天津:河北工业大学,2010
    [126]卢迪.一种抗野值的卡尔曼滤波器[J].系统仿真学报,2004,16(5):1027-1029.
    [127] J Ting, A D Souza, S Schaa. Automatic Outlier Detection: A Bayesian Approach[A]. Robotics andAutomation,2007IEEE International Conference[C].Australia,2007.2489-2494.
    [128]张帆,卢峥.自适应抗野值卡尔曼滤波[J].电机与控制学报,2007,11(2):188-185.
    [129]张孝芳,庞晓楠.基于M估计的抗野值卡尔曼滤波方法[J].信息与电子工程,2005,(6):114-117.
    [130]祝转民,秋宏兴,李济生.动态测量数据野值的辨识与剔除[J].系统工程与电子技术,2004,26(2):147-190.
    [131]柳海峰,姚郁,卢迪.等.卡尔曼滤波新息正交性抗野值法研究[J].电机与控制学报,2003,(7):40-42.
    [132]王向华,覃征,杨新宇,等.基于两次卡尔曼滤波的观测噪声自适应调整算法[J].系统工程与电子技术,2010,32(2):232-234.
    [133]徐向前.声源定位系统中声音捕捉单元的开发:[硕士学位论文].天津:河北工业大学,2011
    [134]谷岳.移动机器人听觉导航系统中语音分离技术研究:[硕士学位论文].天津:河北工业大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700