用户名: 密码: 验证码:
星地下行相干激光通信系统接收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星激光通信技术被视为解决卫星通信领域通信数据率“瓶颈”的有效手段之一,目前该技术得到了国际上的广泛重视,对该领域的研究已成为热门。美国、欧洲、日本和中国等国已相继进行了卫星激光通信在轨空间试验验证工作,并取得了星间和星地激光通信实验的成功,各国正积极准备将卫星光通信技术推向实用化。
     早期研制的卫星激光通信终端受元器件限制多采用强度调制/直接探测(IM/DD)体制,与直接探测技术相比,基于自差、外差和零差探测方式的相干激光通信具有较高的探测灵敏度,成为高速卫星激光通信潜在的解决方案之一。
     然而作为卫星激光通信网络中一个重要组成部分的星地下行激光通信,由于信号光从卫星到地面的传输过程中受到大气湍流的影响,使得接收到的信号光场的空间相干性受到破坏,地面接收到的信号光束的波前相位和振幅发生随机起伏。因相干激光通信系统对入射光场的波前相位畸变极为敏感,大气湍流引起的波前相位随机起伏会限制激光通信系统的相干效率(在基于光纤耦合的星地自差相干激光通信系统中,相干效率即为空间激光至单模光纤的光纤耦合效率)。此外,在星地下行链路中,地面光学系统的波前畸变和角度跟踪系统中跟踪误差也会造成相干效率的降低。
     本文针对大气湍流对星地下行相干激光通信系统接收性能的影响进行了研究,重点对星地下行链路中单模光纤耦合效率特性进行了理论和实验研究,对采取光场波前模式补偿和光场子集接收方式下相干激光通信系统通信性能进行了分析,并针对光学系统的波前畸变和接收机跟踪误差对星地下行相干激光通信系统通信性能的影响进行了分析。具体内容如下:
     研究了大气湍流对星地下行链路中空间光到单模光纤耦合效率概率分布的影响。通过数值仿真湍流畸变波前,给出了不同散斑数下空间光至单模光纤耦合效率的概率分布函数,提出了利用单模光纤后向传输模场为加权函数的孔径内正交多项式进行波前相位模式补偿的方法,对该方法的优势进行了分析,给出了该方法下空间光至单模光纤耦合效率的概率分布函数。
     针对星地长距离链路大气湍流对空间光至单模光纤耦合效率的影响问题,建立了大气湍流导致的波前相位畸变对自差相干激光通信系统通信性能影响模型。分析了大口径条件下,利用单模光纤后向传输模场为加权函数的孔径内正交多项式,得到了波前相位模式补偿下的概率分布,并对补偿后的星地下行自差激光通信系统接收信号衰落统计特性和系统平均误码率进行了分析,同时也对采用光场子集接收方式的系统接收信号衰落统计特性和系统平均误码率进行了分析。
     研究了地面接收光学系统初级像差对相干效率的影响,给出了相干效率随各阶初级像差的均方根误差的变化关系,并分析了望远镜遮挡比对相干效率的影响。修正了角度跟踪系统中大气湍流和接收机跟踪误差共同影响下波前残余相位方差模型,给出了星地下行相干激光通信系统误码率受大气湍流及跟踪误差综合影响的变化关系。
     进行了大气湍流对空间光至单模光纤耦合效率影响的实验研究,通过该实验对空间光至单模光纤耦合效率的概率密度、衰落概率、起伏功率谱等统计特性进行了分析,所得实验结果与数值模拟结果吻合较好。
     本文的研究工作将为星地下行相干激光通信系统性能的分析打下理论基础,对星地下行相干光通信系统的优化设计提供理论和实验依据。
Satellite optical communication, which has been attracted much attentionthroughout the world, is considered to be a potential approach to resolve limitationof data rate in satellite communication. Space experiments in orbit have beenconducted by America, Europe, Japan, China, and so on, then the satellite-to-groundand intersatellite laser communication experiments have been successful. Countriesin the world are promoting this technology to real utility.
     Because of components and parts limitation, early satellite lasercommunication terminals usually adopted intensity modulation/direct detection(IM/DD) scheme. Compare with direct detection, the coherent laser communication,which has advantage of high sensitivity, is recognized as a potential choice of thehigh-speed satellite laser communication.
     The satellite-to-ground coherent laser communication is an important part ofthe satellite laser communication network. Optical downlinks from satellites toground involve beam paths passing through the atmosphere. Spatial coherence ofthe signal optical field is destroyed because of phase fluctuation induced by theatmospheric turbulence. The amplitude and phase fluctuate of the signal opticalfield over time. Coherent efficiency (or fiber coupling efficiency in self-homodyingscheme) of the satellite-to-ground coherent laser communication system is limitedbecause of system susceptivity for phase aberration of signal optical field.Futhermore, wavefront aberrations of ground optical system and tracking errors ofangle tracking mechanism decrease the coherent efficiency in the satellite-to-grounddownlink, too.
     This dissertation presents the research of atmospheric turbulence influence onthe receiving performance of coherent laser communication systems in thesatellite-to-ground downlink. The studies of coupling efficiency from space tosingle-mode fiber are emphasized. The coherent system performance in wavefrontphase modal compensation and space optical field diversity-combining methods isanalyzed. The effects of wavefront aberration and tracking errors of receiver onperformance of satellite-to-ground downlink coherent laser communication systemare analyzed.
     First of all, the influence of atmospheric turbulence on probability distributionof coupling efficiency in process of coupling space light into single-mode fiber isstudied. The probability distribution of coupling efficiency for different numbers ofspeckles is obtained by numerical simulation of atmospheric wavefront. Wavefrontphase modal compensation method using orthonormal polynomials on pupilweighted by the backpropagated fiber mode field is brought forward, and itsadvantage is analyzed. Based on this method, the probability distribution ofcoupling efficiency is given.
     Performace model of self-homodying coherent laser communication system isestablished in allusion to atmospheric wavefront aberration effect on fiber couplingefficiency in the long satellite-to-ground downlink. The fade characteristics ofreceiving signals and average bit error rate of system are investigated by usingwavefront modal compensation method based on orthonormal polynomials. Thefade characteristics of receiving signals and the average bit error rate are analyzedby using optical field diversity-combining method, too.
     The influence of wavefront aberrations of ground optical system on coherentefficiency is studied. The variation rules of coherent efficiency with root meansqure error of primary aberrations and obstruction ratio of telescopes are found. Wemodified residual phase variance model, taking into consideration the combinedeffects of tracking error and atmospheric wavefront aberrations, and the bit errorrate of coherent laser communication system in satellite-to-ground downlink isgiven.
     An experiment about the influence of turbulence on coupling efficiency ofsingle-mode fiber is done. Probability density function, fade statistic and powerspectrum of fiber coupling efficiency are researched based on the analysis of theexperimental data. The experimental results tally with the numerical results.
     This dissertation can benefit the perpormance analysis for thesatellite-to-ground downlink coherent laser communication system, and providetheoretical and experimental foundation for the system design.
引文
[1] Toyoshima M, Leeb W R, Kunimori H, et al.. Comparison of Microwave andLight Wave Communication Systems in Space Application[J]. Proc. SPIE.,2005(5296):1-12.
    [2] Marshalek R G, Mecherle G S, Jordan P R. System-Level Comparison ofOptical and RF Technologies for Space-to-Space and Space-to-GroundCommunication Links[J]. Proc. SPIE.,1996(2699):134-145.
    [3] Oppenhauser G, Wittig M, Popesce A. The European SILEX Project andother Advanced Concepts for Optical Space Communications[J]. Proc. SPIE.,1991(1522):2-13.
    [4] Fletcher G D, Hicks T R, Laurent B. The SILEX Optical Interorbit LinkExperiment[J]. Electronics&Communication Engineering Journal,1991(3):273-279.
    [5] Bailly M, Perez E. The Pointing, Acquisition and Tracking System of SILEXEuropean Program: a Major Technological Step for Intersatellites OpticalCommunication[J]. Proc. SPIE.,1991(1417):142-157.
    [6] Lange R, Smutny B. Homodyne BPSK-based Optical Inter-satelliteCommunication Links[J]. Proc. SPIE.,2007(645703):1-9.
    [7] Smutny B, Kaempfner H, Muehlnikel G, et al..5.6Gbps Optical IntersatelliteCommunication Link[J]. Proc. SPIE.,2009(719906):1-8.
    [8] Fields R, Lunde C, Wong R, et al.. NFIRE-to-TerraSAR-X LaserCommunication Results: Satellite Pointing, Disturbances and otherAttributes Consistent with Successful Performance[J]. Proc. SPIE.,2009(73300Q):1-15.
    [9] WESSELY H W,BOLSTAD J O. Interferometric Technique for Measuringthe Spatial-Correlation Function of Optical Radiation Fields[J]. JOURNALOF THE OPTICAL SOCIETY OF AMERICA,1970(60):678-682.
    [10] Sodnik Z, Lutz H, Furch B, et al.. Optical Satellite Communications inEurope[J]. Proc. SPIE.,2010(758705):1-9.
    [11] Nie1sen T T, Demelenne B, Desplats E. In Orbit Test Results of the FirstSILEX Terminal[J]. Proc. SPIE.,1999(3615):31-42.
    [12] Nie1sen T T, Oppenhaeuser G. In Orbit Test Result of an Operational OpticalIntersatellite Link between ARTEMIS and SPOT4, SILEX[J]. Proc. SPIE.,2002(4635):1-15.
    [13] Reyes M, Chueca S, Alonso A, et al.. Analysis of the Preliminary OpticalLinks between ARTEMIS and the Optical Ground Station[J]. Proc. SPIE.,2002(4821):33-43.
    [14] Romba J, Sodnik Z, Reyes M, et al.. ESA’s Bidirectional Space-to-GroundLaser Communication Experiment[J]. Proc. SPIE.,2004(5550):287-298.
    [15] Reyes M, Sodnik Z, Lopez P, et al.. Preliminary Results of the In-Orbit Testof ARTEMIS with the Optical Ground Station[J]. Proc. SPIE.,2002(4635):38-49.
    [16] Toyoshima M, Yamakawa S, Yamawaki T, et al.. Ground-to-Satellite OpticalLink between Japanese Laser Communications Terminal and EuropeanGeostationary Satellite ARTEMIS[J]. Proc. SPIE.,2004(5338):1-15.
    [17] Toyoshima M, Yamakawa S, Yamawaki T, et al.. Demelenne. Long-TermStatistics of Laser Beam Propagation in an Optical Ground-to-GeostationarySatellite Communication Link[J]. IEEE Transactions on Antennas andPropagation,2005(53):842-850.
    [18] Rich Z. Terminal for Short Range Optical Intersatellite Links: ExecutiveSummary[R]. Oerlikon-Contraves Space,1997:25-41.
    [19] Gregory M, Heine F. Inter-Satellite and Satellite-Ground LaserCommunication Links Based on Homodyne BPSK[J]. Proc. SPIE.,2010(75870E):1-8.
    [20] Fried D L. Scintillation of a Ground-to-Space Laser Illuminator[J]. J. Opt.Soc. Am.,1967(57):980-983.
    [21] Minott P O. Scintillation in an Earth-to-Space Propagation Path[J]. J. Opt.Soc. Am.,1972(62):885-888.
    [22] Koepf G A, Marshalek R G, Bebly D L. Space Laser Communications: aReview of Major Programs in the United States[J]. International J. Elec. andComm.,2002(56):232-242.
    [23] Toyoshima M, Araki K, Arimoto Y, et al.. Reduction of ETS-VI LaserCommunication Equipment Optical-Downlink Telemetry Collected DuringGOLD[J]. TDA Progress Report,1997(128):1-9.
    [24] Wilson K E. An Overview of the GOLD Experiment between the ETS-VISatellite and the Table Mountain Facility[J]. TDA Progress Report,1996(124):1-19.
    [25] Jeganathan M, Wilson K E, Lesh J R. Preliminary Analysis of Fluctutions inthe Received Uplink-Beacon-Power Data Obtained from the GOLDExperiments[J]. TDA Progress Report,1996(42):1-32.
    [26] Kim I I, Hakakha H, Riley B, et al.. Preliminary Results of the STRV-2Satellite-to-Ground Lasercom Experiment[J]. Proc. SPIE.,2000(3932):21-34.
    [27] Biswas A, Williams G, Wilson K E, et al.. Results of the STRV-2LasercomTerminal Evaluation Tests[J]. Proc. SPIE.,2000(3932):21-34.
    [28] Korevaar E, Schuster J, Hakakha H, et al.. Design of Ground Terminal forSTRV-2Satellite-to-Ground Laser Experiment[J]. Proc. SPIE.,1998(3266):153-164.
    [29] Korevaar E, Schuster J, Adhikari P, et al.. The Lasercom Test and EvaluationStation for Flight Terminal Evaluation[J]. Proc. SPIE.,1997(2990):152-158.
    [30] Kim I I, Riey B, Wong N M, et al.. Lessons Learned from the STRV-2Satelitte-to-Ground Lasercom Experiment[J]. Proc. SPIE.,2001(4272):1-15.
    [31] Free-Space Optical Communications at JPL/NASA[R]. JPL Report,2003:35-45.
    [32] Vilnrotter V A, Lau C W. Quantum Detection and Channel Capacity forCommunications Applications[J]. Proc. SPIE.,2002(4635):103-115.
    [33] Lesh J R, Depaula R. Overview of NASA R&D in OpticalCommunications[J]. Proc. SPIE.,1995(2381):4-11.
    [34] Boroson D M, Biswas A, Edwards B L. MLCD: Overview of NASA’s MarsLaser Communications Demonstration System. Proc. SPIE.2004,5338:16~28.
    [35] Wilson K, Lesh J, Araki K, et al.. Premilitary Results of the Ground/OrbitLaser-Communications Demonstration Experiment between Table Mountainand the ETS-VI Satellite[J]. Proc. SPIE.,1996(2699):121-132.
    [36] Morio T, Shiro Y, Toshihiko Y, et al.. Reconfirmation of the OpticalPerformance of the Laser Communications Terminal Onboard the OICETSSatellite[J]. Acta Astronautica,2004(55):261-269.
    [37] Toyoshima M, Yamakawa S, Yamawaki T, et al.. Demelenne. Long-TermStatistics of Laser Beam Propagation in an Optical Ground-to-GeostationarySatellite Communication Link[J]. IEEE Transactions on Antennas andPropagation,2005(53):842-850.
    [38] Toyoshima M, Takizawa K, Kuri T, et al.. Ground-to-OICETS LaserCommunication Experiments[J]. Proc. SPIE.,2006(6304):1-8.
    [39] Toyoshima M, Takahashi T, Suzuki K, et al.. Laser beam propagation inground-to-OICETS laser communication experiments[J]. Proc. SPIE.,2007(65510A):1-12.
    [40] Toyoshima M, Takenaka H, Shoji Y. Polarization measurements throughspace-toground atmospheric propagation paths by using a highly polarizedlaser source in space[J]. OPTICS EXPRESS,2009(17):22333-22340.
    [41] Toyoshima M, Takenaka H, Shoji Y. Results of Kirari optical communicationdemonstration experiments with NICT optical ground station(KODEN)aiming for future classical and quantum communications in space[J]. ActaAstronautica,2012(74):40-49.
    [42] Yamakawa S, Araki T, Morikawa H. Analysis of Noises Generated inHigh-Power-Operated Erbium Doped Fiber Amplifiers and their Influenceson IM-DD/Coherent OIC System Performance[J]. Proc. SPIE.,2000(3932):196-204.
    [43] Yamakawa S, Aroki T, Hisada Y. Trade-off between IM/DD and CoherentSystem in High-Data-Rate Optical Interorbit Links[J]. Proc. SPIE.,1999(3615):80-89.
    [44] Yamakawa S, Takata N. Coherent Lightwave Receivers with a Laser DiodeLocal Oscillator for Interorbit Optical Communication[J]. Proc. SPIE.,2003(4975):69-79.
    [45]马晶,高宠,谭立英.星地光通信中PAT链路的衰落冗余[J].光学精密工程,2007(15):308-314.
    [46] Tan L, Yu J, Ma J, et al.. Approach to Improve Beam Quality ofInter-Satellite Optical Communication System Based on Diffractive OpticalElements[J]. Optics Express,2009(17):6311-6319.
    [47] Jiang Y, Ma J, Tan L, et al.. Measurement of Optical Intensity Fluctuationover an11.8km Turbulent Path[J]. Optics Express,2008(16):6963-6973.
    [48] Ma J, Jiang Y, Tan L, et al.. Influence of Beam Wander on Bit-error Rate in aGround-to-Satellite Laser Uplink Communication System[J]. Optics Letters,2008(33):2611-2613.
    [49] Yang Y, Tan L, Ma J, et al.. Effects of Localized Deformation Induced byReflector Antenna on Received Power[J]. Opt. Comm.,2009(282):396-400.
    [50] Du W, Tan L, Ma J, et al.. Measurements of Angle-of-Arrival Fluctuationsover an11.8km Urban Path[J]. Laser Part. Beams,2010(28):91-99.
    [51] Du W, Tan L, Ma J, et al.. Temporal-Frequency Spectra for Optical WavePropagating through Non-Kolmogorov Turbulence[J]. Optics Express,2009(18):5763-5775.
    [52] Ma J, Zhao F, Tan L, et al.. Plane Wave Coupling into Single-Mode Fiber inthe Presence of Random Angular Jitter[J]. Appl. Opt.,2009(48):5184-5189.
    [53] Zhao F, Yu S, Ma J, et al.. Orthonormal Polynomials in Analysis ofSingle-Mode Fiber Coupling[J]. Opt. Comm.,2011(284):207-214.
    [54] Zhao F, Ma J, Yu S, et al... Impact of Random Angular Jitter onFiber-Coupled DPSK Receivers with Mach-Zehnder InterferometerDemodulation[J]. Appl. Opt.,2010(49):6024-6029.
    [55] Ma J, Jiang Y, Yu S, et al.. Packet error rate analysis of OOK, DPIM andPPM modulation schemes for ground-to-satellite optical communications[J].Optics Communications,2010(283):237-242.
    [56]陈纯毅,杨华民,佟首峰等.空间光通信卫星平台振动实时模拟[J].系统仿真学报,2007,19(16):3834-3837.
    [57]张景旭.卫星捕获与大气补偿技术[J].光机电信息,1999,16:3-6.
    [58]张诚,胡薇薇,徐安士.星地光通信发展状况与趋势[J].中兴通信技术,2006,12:52~56.
    [59] Xiao F, Hu W W, Xu A S. Optical Phased-Array Beam Steering Controlledby Wavelength[J]. Appl. Opt.,2005(44):5429-5433.
    [60]王建民,汤俊雄,孙东喜等.卫星激光通信均匀信标光的研究[J].光学学报,2006,26:7-10.
    [61]李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究[J].应用光学,2005,25:57-62.
    [62]罗彤,胡渝,李贤.星间光链路中捕获系统分析与仿真[J].应用光学,2002,23:5-8.
    [63]刘淑华,卢亚雄,罗彤.空间光通信中快速倾斜镜的数字控制研究[J].激光与红外,2002,32:165-167.
    [64]曹阳,艾勇,黎明等.空间光通信精跟踪系统地面模拟实验[J].光电子·激光.,2009,20:40-43.
    [65]谭莹,艾勇.卫星光通信中的调制技术研究[J].光通信技术,2005,5:15-16.
    [66]郭建中,谭莹,艾勇.卫星光通信中的调制技术研究[J].光通信技术,2006,4:45-46.
    [67] Andrews L C, Phillips R L. Laser Beam Propagation through RandomMedia[M]. Bellingham: SPIE Optical Engineering Press,1998:223-262.
    [68] Tatarskii V I. Wave Propagation in a Turbulent Medium[M]. NewYork:McGraw-Hill,1961:95-105.
    [69]饶瑞中.光在湍流大气中的传播[M].安徽:安徽科学技术出版社,2005:149-159.
    [70] Fried D L. Optical heterodyne detection of an atmospherically distortedsignal wave front[J]. Proc. IEEE.,1967(55):57-67.
    [71] Andrews L C, Phillips R L, Yu P T. Optical scintillations and fade statisticsfor a satellite-communication system[J]. Appl. opt.,1995(34):7742-7751.
    [72] Kazovsky L G, Kalogerakis G, Shaw W T. Homodyne Phase-Shift-KeyingSystems: Past Challenges and Future Opportunities[J]. J. Lightwave Technol.,2006(24):4876-4884.
    [73] Gnauck A H, Winzer P J. Optical Phase-Shift-Keyed Transmission[J]. J.Lightwave Technol.,2005(23):115-130.
    [74] Giggenbach D. Wavefront Measurements at ESA's Optical Ground Stationand Simulation of Heterodyne Receiver Performance[J]. Proc. SPIE.,2000(3932):78-89.
    [75] Lange R, Smutny B, Wandernoth B.142km,5.625Gbps Free-Space OpticalLink based on homodyne BPSK modulation[J]. Proc. SPIE.,2006(61050A):1-9.
    [76] Perlot N, Giggenbach D, Henniger H, et al.. Measurements of theBeam-Wave Fluctuations over a142-km Atmospheric Path[J]. Proc. SPIE.,2006(63041O):1-10.
    [77] Atia W A, Bondurant R S. Demonstration of Return-to-Zero Signaling inboth OOK and DPSK Formats to Improve Receiver Sensitivity in anOptically Preamplified Receiver[C]. Proc. LEOS12th Annual Meeting.1999(1):226-227.
    [78] Koyama Y, Morikawa E, Shiratama K, et al.. Optical Terminal for NeLSIn-orbit Demonstration[J]. Proc. SPIE.,2004(5338):29-36.
    [79] Sakurai K, Suzuki R, Ishikawa S, et al.. A Study of Global MultimediaMobile Satellite Communication System: Current Status[J]. ActaAstronautica,2000(47):163-169.
    [80] Horwath J, David F, Knapek M, et al.. Coherent Transmission FeasibilityAnalysis[J]. Proc. SPIE.,2005(5712):13-23.
    [81] Belmonte A, Kahn J M. Performance of synchronous optical receivers usingatmospheric compensation techniques[J]. OPTICS EXPRESS,2008(16):14151-14162.
    [82] Belmonte A, Kahn J M. Efficiency of complex modulation methods incoherent free-space optical links[J]. OPTICS EXPRESS,2010(18):3928-3937.
    [83] Belmonte A, Kahn J M. Capacity of coherent free-space optical links usingatmospheric compensation techniques[J]. OPTICS EXPRESS,2009(17):2763-2773.
    [84] Vosteen L L, Ahlers B. Darwin Infrared Nulling InterferometerDemonstrator.[J] Proc. SPIE.,2005(59050B):1-8.
    [85] Lawson P R, Ahmed A, Gappinger R O, et al.. Terrestrial Planet FinderInterferometer Technology Status and Plans[J]. Proc. SPIE.,2006(626828):1-8.
    [86] Lawson P R, Lay O P, Martin S R, et al.. Terrestrial Planet FinderInterferometer2007-2008Progress and Plans[J]. Proc. SPIE.,2008(70132N):1-15.
    [87] Perrin G, Foresto V C, Ridgway S T, et al.. A Fibered Recombination Unit forthe Infrared-Optical Telescope Array[J]. Proc. SPIE.,1995(2476):120-128.
    [88] Sato K, Nishikawa J, Yoshizawa M, et al.. Experiments of theFiber-Connected Interferometer for MIRA Project[J]. Proc. SPIE.,2000(4006):1102-1106.
    [89] Salisbury, Michael S. Sensitivity and Signal to Noise Ratio Improvement ofa one Micro Ladar System Incorporating a Neodymium Dopted Optical FiberPreamplifier Laser Radar Testbed[J]. Technical rept.1993:1-3.
    [90] Winze P J, Leeb W R. Fiber coupling efficiency for random light and itsapplications to lidar[J]. OPTICS LETTERS,1998(23):986-988.
    [91] Dikmelik Y, Davidson F M. Fiber-coupling efficiency for free-space opticalcommunication through atmospheric turbulence[J]. APPLIED OPTICS,2005(44):4946-4952.
    [92] Szajowaki P F, Nykolak G, Auborn J J, et al..2.4km Free-Space OpticalCommunication1550nm Transmission Link Operating2.5Gb/s ExperimentalResults[J]. Proc. SPIE.,1998(3532):29-40.
    [93] Szajowaki P F, Nykolak G, Auborn J J, et al.. High-Power Optical AmplifiersEnable1550nm Terrestrial Free-Space Optical Data Links Operating atWDM2.5Gp/s Data Rates[J]. Proc. SPIE.,1999(3850):2-10.
    [94] Nykolak G, Szajowski P F, Cashion A, et al..40-Gb/s DWDM Free-SpaceOptical Transmission Link over4.4km[J]. Proc. SPIE.,2000(3932):16-20.
    [95] Nykolak G, Raybon G, Mikkelsen B, et al..160Gb/s Free-SpaceTransmission Link[J]. Proc. SPIE.,2001(4214):11-13.
    [96] Kalmar A, Kudielka K H, Leeb W R. Experimental Demonstration of aSelf-Tracking16-Aperture Receive Telescope Array for Laser IntersatelliteCommunications[J]. Proc. SPIE.,1998(3266):70-78.
    [97] Song D Y, Hurh Y S, Cho J W, et al..4×10Gb/s Terrestrial Optical FreeSpace Transmission over1.2km using an EDFA Preamplifier with100GHzChannel Spacing[J]. Optics Express,2000(7):280-284.
    [98] Jeong M C, Lee J S, Kim S Y, et al..8×10Gb/s Terrestrial Optical FreeSpace Transmission over3.4km using an Optical Repeater[j]. IEEE Phot.Tech. Lett.,2003(15):171-173.
    [99] Weyrauch T, Vorontsov M A, Gowens J W, et al.. Fiber Coupling withAdaptive Optics for Free-Space Optical Communication[J]. Proc. SPIE.,2002(4489):177-184.
    [100] Ruilier C, Cassaing F. Coupling of Large Telescopes and Single-ModeWaveguides: Application to Stellar Interferometry[J]. J. Opt. Soc. Am. A.,2001(18):143-149.
    [101] Ruilier C. A Study of Degraded Light Coupling into Single-Mode Fibers[J].Proc. SPIE.,1998(3350):319~329.
    [102] Roddier N. Atmospheric wavefront simulation using Zernike polynomials[J].Optical Engineering,1990(29):1174-1180.
    [103]张译新,迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社,1997:6-7.
    [104] Sch ck M, Spillar E J. Method for a quantitative investigation of the frozenflow hypothesis[J]. J. Opt. Soc. Am. A,2000(17):1650-1658.
    [105] Sodnik Z, Armengol J P, Czichy R H, et al.. Adaptive Optics and ESA’sOptical Ground Station[J]. Proc. SPIE.,2009(7464):746406-1-746406-9.
    [106] Fedrigo E, Muradore R, Zilio D. High performance adaptive optics systemwith fine tip/tilt control[J]. Control Engineering Practice,2009(17):122-135.
    [107] Dai G. Modal compensation of atmospheric turbulence with the use ofZernike polynomials and Karhunen–Loève functions[J]. J. Opt. Soc. Am. A,1995(12):2182-2193.
    [108] Dai G, Mahajan V N. Zernike annular polynomials and atmosphericturbulence[J]. J. Opt. Soc. Am. A,2007(24):139-155.
    [109] Forestieri E. Evaluating the Error Probability in Lightwave Systems withChromatic Dispersion, Arbitrary Pulse Shape and Pre-and PostdetectionFiltering[J]. J. Lightwave Technol.,2000(18):1493-1503.
    [110] Yura H T, McKinley W G. Aperture Averaging of Scintillation forSpace-to-ground Optical Communication Applications[J]. Appl. Opt.,1983(22):1608-1609.
    [111] Wang J, Kahn J M. Impact of Chromatic and Polarization-Mode Dispersionon DPSK Systems using Interferometric Demodulation and DirectDetection[J]. J. Lightwave Technol.,2004(22):362-371.
    [112] Wang J. Performance Evaluation of DPSK Optical Fiber CommunicationSystem[D]. California: Doctor dissertation of University of California,2004:30-48
    [113] Forestieri E, Secondini M. On the Error Probability Evaluation in LightwaveSystems with Optical Amplification[J]. J. Lightwave Technol.,2009(27):706-717.
    [114] Bolcar M R, Fienup J R. Sub-aperture piston phase diversity for segmentedand multi-aperture systems[J]. APPLIED OPTICS,2009(48):A5-A12.
    [115] Razavi M, Shapiro J H. Wireless Optical Communications via DiversityReception and Optical Preamplification[J]. IEEE TRANSACTIONS ONWIRELESS COMMUNICATIONS,2005(4):975-983.
    [116] Mahajan V N. Strehl ratio for primary aberrations: some analytical results forcircular and annular pupils[J]. J. Opt. Soc. Am.,1983(72):1258-1266.
    [117] Toyoshima M, Takahashi N, Jono T, et al.. Mutual alignment errors due tothe variation of wave-front aberrations in a free-space laser communicationlink[J]. Opt. Express,2001(9):592-602.
    [118] Noll R J. Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc.Am.,1976(66):207-211.
    [119] Chen C C, Gardner C S. Impact of random pointing and tracking errors onthe design of coherent and incoherent optical intersatellite communicationlinks[J]. IEEE Trans. Commun.,1989(37):252-260.
    [120] Pan F, Han Q Q, Ma J, et al.. Measurement of Scintillation and Link Marginfor Laser Beam Propagation on3.5-km Urbanised Path[J]. Chinese OpticsLetters,2007(5):1-3.
    [121] Gao C, Ma J, Tan L. Effects of Exposure Time on the Image in AtmosphericTurbulence[J]. Proc. SPIE.,2007(6279):62792O.
    [122] Tunick A. Statistical Analysis of Optical Turbulence Intensity over a2.33kmPropagation Path[J]. Opt. Express,2007(15):3619-3628.
    [123] Tunick A. Statistical Analysis of Measured Free-space Laser Signal Intensityover a2.33km Propagation Path[J]. Opt. Express,2007(15):14115-14122.
    [124] Santiago F, Wilcox C, Chang M, et al.. Low Altitude Horizontal ScintillationMeasurements[J]. Proc. SPIE.,2005(6014):601413.
    [125] Mahon R, Moore C I, Burris H R, et al.. Analysis of Long-termMeasurements of Laser Propagation over the Chesapeake Bay[J]. Appl. Opt.,2009(48):2388-2400.
    [126] Peng C, Yang T, Bao X, et al.. Experimental Free-Space Distribution ofEntangled Photon Pairs Over13km: Towards Satellite-Based GlobalQuantum Communication[J]. Physical Review Letters,2005(94):150501.
    [127]赵芳.基于单模光纤耦合自差探测星间光通信系统接收性能研究[D].哈尔滨:哈尔滨工业大学学位论文,2011:42~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700