用户名: 密码: 验证码:
磁控共溅射制备无氢碳化锗薄膜的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第Ⅳ主族元素单质及其合金材料是目前材料科学领域研究开发的重点和热点之一。碳化锗(Ge_(1-x)C_x)薄膜以其特有的结构、光学和电学性能引起了人们广泛的关注,特别是其折射率随着薄膜中锗碳含量的变化可以在大范围内调节,这种优良的性能使其适合制成多层红外增透保护薄膜。另外,碳化锗薄膜的光学带隙也可以随成分的变化而改变,这使得其成为设计电子设备和太阳能电池的候选材料,是一种具有应用前景的新型半导体材料。但是对碳化锗薄膜的研究大多集中在含氢碳化锗薄膜上,而对于无氢碳化锗薄膜的研究却很少。因其成分和结构上的差异,含氢碳化锗薄膜的热稳定性相对无氢碳化锗薄膜要差,在性能上也会有改变。本文采用磁控共溅射方法制备了无氢碳化锗薄膜,系统地研究工艺参数对薄膜结构、力学性能、热稳定性、光学性能和电学性能的影响。
     在磁控共溅射制备无氢碳化锗薄膜过程中发现,锗靶溅射功率和衬底温度是影响薄膜微观结构的重要参数。研究结果发现随着锗靶溅射功率的增加,薄膜的沉积速率和锗含量均增大,而衬底温度对薄膜的沉积速率和锗含量影响较小。XRD结果表明所制备的碳化锗薄膜均为非晶结构,在高锗靶溅射功率和低衬底温度下薄膜的表面粗糙度较大。FTIR谱中出现了610cm~(-1)左右的Ge-C键振动峰,表明薄膜中生成了碳化锗,升高锗靶溅射功率和衬底温度会使锗原子周围的电负性逐渐降低,导致Ge-C键的峰位向低波数偏移。Raman光谱结果表明碳化锗薄膜中存在锗团簇和碳团簇,当锗靶溅射功率从40W增加到160W时,碳原子能够更好的以sp~3杂化形式融入到锗网络中,碳的D带和G带的相对强度比(ID/IG)从1.17逐渐降至0.75,G带的位置从1572cm~(-1)下移到1563cm~(-1),这些变化都一致表明了薄膜中sp~2碳的含量在逐渐减少。当衬底温度从室温升高到600℃时,Ge-TO模的半高峰宽随着衬底温度的增加逐渐降低,表明了薄膜中锗原子的有序性在增加,同时碳的D带和G带的相对强度比(ID/IG)从0.80逐渐升至1.31,G带的位置从1561cm~(-1)上移到1576cm~(-1),表明了薄膜中的sp~2碳含量在逐渐增加。X射线光电子谱分析表明碳化锗薄膜中的碳原子存在sp~3C-C、sp~2C-C和Ge-C三种结合方式,当锗靶溅射功率从40W增加到160W时,薄膜中sp~3C-C和Ge-C相对含量逐渐增多,而sp~2C-C的相对含量大幅降低。当衬底温度从室温升高到600℃时,薄膜中Ge-C相对含量略微减少,sp~3C-C的相对含量减少较快,而sp~2C-C的相对含量大幅升高,这表明衬底温度的升高使碳化锗薄膜产生石墨化倾向。
     利用XRR、表面轮廓仪和纳米压痕研究了碳化锗薄膜的密度、应力、硬度和杨氏模量。结果表明当锗靶溅射功率从40W增加到160W时,碳化锗薄膜的密度从3.67g/cm~3增大到4.65g/cm~3,硬度从5.6GPa上升到8.0GPa,杨氏模量从100GPa上升至123Gpa;当衬底温度从室温增加到700℃时,薄膜的密度从4.39g/cm~3增大到4.47g/cm~3,硬度从7.5GPa上升到9.2GPa,杨氏模量从121GPa上升至141Gpa。薄膜的内应力随着锗靶溅射功率的降低从70MPa下降为5Mpa,表明碳化锗薄膜的内应力处于一个相对较低的水平,当降低锗靶溅射功率到40W时,基本可以达到消除薄膜内应力;当衬底温度从室温增加到600℃时,薄膜的内应力从50MPa逐渐上升至330Mpa,这表明随着衬底温度逐渐升高,薄膜中的空洞逐渐减少,锗原子的配位数增加。
     将在锗靶功率为140W,衬底温度为200℃条件下制备的碳化锗薄膜在400~900℃下真空保温1小时进行退火处理,分别采用XPS和Raman光谱对薄膜结构的热稳定性进行研究。试验表明,当退火温度从400℃上升至700℃时,碳化锗薄膜的Raman光谱中Ge-TO振动模向300cm~(-1)处移动,表明薄膜中可能出现微晶锗。同时碳的D带和G带的相对强度比(ID/IG)缓慢地从1.10逐渐升至1.20,G带的位置从1559cm~(-1)缓慢上移到1569cm~(-1)。另外,随着退火温度从400℃升高到700℃的过程中,碳化锗薄膜的XPS C1s分峰后的sp~3C-C、sp~2C-C和Ge-C键的相对积分强度基本不变,表明在700℃以下,碳化锗薄膜都具有良好的热稳定性。采用纳米压痕对退火后的薄膜硬度进行了分析,结果表明当退火温度从400℃上升至700℃时,碳化锗薄膜的硬度从8.3Gpa增加到11.8Gpa,当退火温度为800℃时,由于薄膜结构疏松使薄膜硬度突然降低到4.9Gpa。
     采用椭偏仪、傅里叶变换红外光谱仪和高温电阻测试系统对碳化锗薄膜的光学性能和电学性能进行了研究。结果显示随着锗靶溅射功率升高,碳化锗薄膜在可见光623.8nm处的折射率从3.0升至4.5,消光系数从0.12增加到1.15,对应的红外9μm处的折射率为2.8升至4.1,而光学带隙从1.55eV降低到1.05eV,碳化锗薄膜/硫化锌衬底组成系统在8~12μm范围内的平均红外透过率从49.5%降低到42.5%。当衬底温度改变时,薄膜的折射率、消光系数、光学带隙和红外透过率变化都不是很大。变温电导率结果表明碳化锗薄膜在室温到500K的温度范围内存在两种导电机制。在室温到400K的温度范围内载流子很容易被激发到导带的定域态,通过跳跃的传导极大增加了薄膜的电导率。随着温度的进一步增加,载流子被热激发到扩展态,并且通过热激活传导增加薄膜的导电能力。增大锗靶溅射功率和升高衬底温度,都能使薄膜的电导率增大,激活能减小。
     Ge_(1-x)C_x薄膜与a-Si:H相比对太阳光的吸收范围要宽,吸收系数要大,特别是碳含量较低的Ge_(1-x)C_x薄膜在光伏应用上更有优势。根据光学薄膜增透原理,在ZnS红外窗口上单面镀制了Ge_(1-x)C_x双层增透保护膜系,测试结果表明在9.6μm处透过率增加8%,硬度增加到13.1Gpa,能够对ZnS衬底起到增透保护作用,并且经过500℃退火后膜系的红外透过率基本没有变化。
     最后,以实际应用为目的,设计了一种衬底自转-磁控溅射靶步进运动的复合运动方式,实现了小尺寸磁控溅射靶材镀制大平面/半球面均匀薄膜,当满足以下两个条件:(1)靶在所停留位置驻停时间与在该位置的面积成正比,(2)移动的步长不大于5,那么用这种方式制备的薄膜膜厚相对偏差小于5%,能够满足实际应用要求。
Great attention has been given to the development of Group Ⅳ materials inthe field of material science. The amorphous germanium carbide (a-Ge1xCx:H),which have received considerable attention and experimental study, reflecting thehigh interest in these materials because of their exciting structural, optical, andelectrical properties. In particular, the refractive index values of a-Ge1xCx:H maybe adjusted by x in a wide range, this excellent performance makes the a-Ge_(1-x)C_x:Hfilms applicable for design and preparation of multilayer anti-reflection andprotection coatings of IR windows. In addition, the band gap of a-Ge_(1-x)C_x:H filmscan be changed with x in a very wide range, this makes a-Ge_(1-x)C_x:H films goodcandidates in the design of electronic devices and photovoltaic cells. Therefore, a-Ge_(1-x)C_x:H is a new semiconducting material with great potential application.However, a great deal of hydrogen content from the precursors has been remainedin the films. If the service temperature is raised up to350oC, the properties of a-Ge_(1-x)C_x:H films will gradually deteriorate because of the broken C–H and Ge–Hbonds in the films. Therefore, the amorphous non-hydrogenated germanium carbide(a-Ge_(1-x)C_x) films with a better stability are urgently demanded for the harshapplications. However, so far, there are very few reports on a-Ge_(1-x)C_xfilms. In thispaper, the a-Ge1xCxfilms were prepared using magnetron co-sp~uttering technique.The structural, mechanical, optical and electrical properties were focused on anddiscussed.
     The germanium target sp~uttering power and substrate temperature areimportant parameters affectting the film microstructure. As the germanium targetpower increases, the deposition rate and Ge content increase. The deposition rateand germanium content scarcely depond on the substrate temperature. XRD resultsshowed that the films are amorphous, and AFM results demonstrate that the largersurface roughness of the film with high germanium target sp~uttering power and lowsubstrate temperature. FTIR sp~ectra show that Ge-C bond vibration peak positionsare at about610cm~(-1), and Ge target power and substrate temperature graduallyincrease, resulting in the Ge-C peak position shifted to lower wave number. Ramansp~ectroscopy results show that germanium clusters and carbon clusters are in thefilms. As the germanium target power increases from40W to160W, the ratio ofRaman I(D)/I(G) reduces from1.17to0.75, the G peak position reduces from1572cm~(-1)to1563cm~(-1), which implies that the sp~2carbon content gradually reduced in the film. As the substrate temperature increases from room temperature to600°C,the ratio of Raman I(D)/I(G) rises up from0.80to1.31, the G peak positionincreases from1561cm~(-1)to1576cm~(-1), which implies that the sp~2carbon contentgradually increases in the film. XPS results show that the carbon atoms form sp~3C-C, sp~2C-C and Ge-C in the film. As the germanium target power increases from40W to160W, the relative content of sp~3C-C and Ge-C increases, while the relativecontent of sp~2C-C significantly reduces. As the substrate temperature rises up fromroom temperature to600°C, the relative content of the Ge-C reduces slightly, therelative content of sp~3C-C decreased rapidly, while the relative content of sp~2C-Csignificantly increases, suggesting that a progressive inecrease in the size ofgraphitic clusters.
     The density, hardness,Young’s modulus and compressive stress of the a-Ge_(1-x)C_xfilms were resp~ectively measured using X-ray reflectivity, surface profilemeter andnano-indenter. It was identified that the density increases from3.67g/cm~3to4.65g/cm~3, the hardness increases from5.6GPa to8.0GPa and Young’s modulusincreases from100GPa to123Gpa, as the germanium target power increases from40W to160W; the density increases from4.39g/cm~3to4.47g/cm~3, the hardnessincreases from7.5GPa to9.2GPa and Young’s modulus increases from121GPa to141Gpa, as the substrate temperature rises up from room temperature to600°C. Thecompressive stress decreases gradually from70MPa to5Mpa, as the germanium targetpower decreases. The compressive stress inecreases from50MPa to330Mpa, as thesubstrate temperature inecreases room temperature to600°C, hinting that the defectsreduce and coordination number of germanium atoms increases.
     In order to strudy the properties of thermal stability, the a-Ge_(1-x)C_xfilms depositedat140W and200°C were resp~ectively annealed at400~900°C for1h under vacuumconditions. The structural variations of the as-annealed a-Ge_(1-x)C_xfilms were studied byXPS and Raman sp~ectroscopy. Raman analysis shows that the Ge-TO peak position risesup300cm~(-1), the I(D)/I(G) ratio rises up from1.10to1.20, the G peak positionincreases from1559cm~(-1)to1569cm~(-1), as the annealing temperature rises up from400to700°C. Furthermore, the relative content of sp~3C-C, sp~3C-C and Ge-C almostremain below700°C, indicating very good thermal stabilities below this temperature.The hardness of the as-annealed a-Ge_(1-x)C_xfilms were disscussed. The results showthat the hardness increases from5.6GPa to8.0Gpa. It was identified that the hardnessincreases gradually from8.3GPa to11.8GPa with the annealed temperature from400to700°C, and then reduces sharply to4.9GPa at800°C
     The optical and electrical properties of the a-Ge_(1-x)C_xfilms were repectively studied by ellipsometry, FTIR, and temperature dependence resistance measuringsystem. As the germanium target power increases, the refractive index increasesfrom3.0to4.5and the extinction coefficient increases from0.12to1.15at623.8nm, the refractive index increases from2.8to4.1at9μm, while the opticalgap reduces from1.55to1.05eV, and the average transmittance of a-Ge_(1-x)C_x/ZnSsysterm reduces from49.5%to42.5%in range of8~12μm. The refractive index,the extinction coefficient, the optical gap and the average transmittance of the a-Ge_(1-x)C_xfilms scarcely change as the substrate temperature increases. Thetemperature dependence of conductivity indicates the thermally activatedconduction of carriers in extended states and hopping conduction in localized bandtail states near conduction band edges at above and below400K, resp~ectively. Asgermanium target power and substrate temperature increase, the room-temperatureconductivity increases and activation energy decreases.
     The absorption coefficient and resp~onse range of Ge_(1-x)C_xfilms are larger thanthat of a-Si:H films, and the esp~ecially Ge_(1-x)C_xfilm with low carbon content havemore advantage in the field of pv-tech application. According to the optical principle,a double-layer antireflection and protection coating was deposited on the single sidepolished polycrystalline ZnS. The value of the IR transmittance of ZnS wafer withthe double-layer coating is increased by8%at9.6μm, and the hardness is up to13.1GPa, which implies that a-Ge_(1-x)C_xfilms can be used as an effective antireflectionand protection coating for the ZnS IR window. The excellent optical transmission foran antireflection a-Ge_(1-x)C_xdouble-layer film on ZnS substrate is still maintainedafter annealing at400oC.
     To grow uniform films on a large substrate by magnetron sp~uttering with a smalltarget, a new theoretical model has been proposed, implemented and confirmed. Themodel was based on a magnetron sp~uttering system containing a rotation substrateholder and a step-moving target. A magnetron sp~uttering system containing a rotationsubstrate holder and an Φ50mm step-moving target has been established by us. Whentarget stay time was proportional to the target scanning area at the rotating substrateand target moving step was5mm, the relative deviation of film thickness distributionwas less than5%within a diameter of Φ300mm. The numerical results agreed wellwith measurements, which demonstrated that our model was applicable to depositinglarge uniform film.
引文
[1] R. I. Scace, G. A. Slack. Solubility of Carbon in Silicon and Germanium.Journal of Chemical Physics[J].1959,30(6):1551-1555
    [2] D. A. Anderson, W. E. Spear. Electrical and Optical Properties of AmorphousSilicon Carbide, Silicon Nitride and Germanium Carbide Prepared by the GlowDischarge Technique. Philosophical Magazine[J].1977,35(1):1-16
    [3] A. H. Lettington, C. J. H. Wort, B. C. Monachan. Developments and IRApplications of GeC Thin Films, Proccedings of SPIE[C].1989:156-161
    [4] S. Kumar, S. C. Kashyap, K. L. Chopra. Structure and Transport Properties ofAmorphous Ge1-xCxThin Films Obtained by Activated Reactive Evaporation.Journal of Non-Crystalline Solids[J].1988,101(2-3):287-290
    [5] S. Kumar, H. J. Trodahl. Thin Films of Amorphous Germanium-Carbon andGermanium-Nitrogen Alloys Prepared by Activated Reactive Evaporation. ThinSolid Films[J].1990,193-194(Part1):72-76
    [6] L. G. Jacobsohn, F. L. Freire. Germanium Implantation into Amorphous CarbonFilms. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms[J].2001,175-177:442-447
    [7] G. Tessema, M. Bekele, R. Vianden. Growth of Germanium-Carbide Thin Filmon Crystal Substrate. Journal of Materials Science: Materials in Electronics[J].2010,21(11):1144-1148
    [8] P. Wei, Y. Xu, S. Nagata, et al. Structure and Optical Properties of GermaniumImplanted with Carbon Ions. Nucl. Instrum. Nuclear Instruments and Methodsin Physics Research Section B[J].2003,206:233-236
    [9] L. Hoffmann, J. C. Bach, B. Bech Nielsen, et al. Substitutional Carbon inGermanium. Physical Review B[J].1997,55(17):11167-11173
    [10] C. Q. Hu, L. Qiao, H. W. Tian, et al. Role of Carbon in the Formation of HardGe1-xCxThin Films by Reactive Magnetron Sputtering. Physica B: CondensedMatter[J].2011,406(13):2658-2662
    [11] C. Q. Hu, L. Xu, H. W. Tian, et al. Effects of Radio Frequency Power on theChemical Bonding, Optical and Mechanical Properties for Radio FrequencyReactive Sputtered Germanium Carbide Films. Journal of Physics D:AppliedPhysics[J].2006,39(23):5074-5079
    [12] C. Q. Hu, B. Zheng, J. Q. Zhu, et al. Increasing sp3Hybridized Carbon Atomsin Germanium Carbide Films by Increasing the Argon Ion Energy andGermanium Content. Journal of Physics D:Applied Physics[J].2010,43(13):135103
    [13] C. Q. Hu, W. T. Zheng, J. J. Li, et al. Ge1-xCxDouble Layer Antireflection andProtection Coatings. Applied Surface Science[J].2006,252(23):8135-8138
    [14] C. Q. Hu, W. T. Zheng, H. W. Tian, et al. Effects of the Chemical Bonding onthe Optical and Mechanical Properties for Germanium Carbide Films used asAntireflection and Protection Coating of ZnS Windows. Journal of Physics-Condensed Matter[J].2006,18(17):4231-4241
    [15] C. Q. Hu, W. T. Zheng, B. Zheng, et al. Chemical Bonding of a-Ge1-xCx:HFilms Grown by RF Reactive Sputtering. Vacuum[J].2004,77(1):63-68
    [16] C. Q. Hu, J. Q. Zhu, W. T. Zheng, et al. Annealing Effects on the BondingStructures, Optical and Mechanical Properties for Radio Frequency ReactiveSputtered Germanium Carbide Films. Applied Surface Science[J].2009,255(6):3552-3557
    [17] J. Vilcarromero, F. C. Marques. Hardness and Elastic Modulus of Carbon-Germanium Alloys. Thin Solid Films[J].2001,398:275-278
    [18] J. Vilcarromero, F. C. Marques. XPS study of the Chemical Bonding inHydrogenated Amorphous Germanium-Carbon Alloys. Applied Physics A:Materials Science and Processing[J].2000,70(5):581-585
    [19] F. C. Marques, J. Vilcarromero, R. G. Lacerda. Thermomechanical Properties ofAmorphous Hydrogenated Carbon-Germanium Alloys. Applied Physics A:Materials Science and Processing[J].2000,71(6):633-637
    [20] J. Vilcarromero, F. C. Marques. Hydrogen in Amorphous Germanium-Carbon.Thin Solid Films[J].1999,343:445-448
    [21] J. Vilcarromero, F. C. Marques, F. L. Freire. Optoelectronic and StructuralProperties of a-Ge1-xCx:H Prepared by RF Reactive Cosputtering. Journal ofApplied Physics[J]1998,84(1):174-180
    [22] J. Vilcarromero, F. C. Marques, J. Andreu. Bonding Properties of RF-Co-Sputtering Amorphous Ge-C films Studied by X-ray Photoelectron and RamanSpectroscopies. Journal of Non-Crystalline Solids[J].1998,227:427-431
    [23] F. C. Marques, J. Vilcarromero, F. L. Freire. Structural Properties of a-Ge1-xCx:H Alloys Prepared by the RF Sputtering Technique. Amorphous andMicrocrystalline Silicon Technology1997[C].1997,467:537-542
    [24] J. L. Huguenin-Love, R. J. Soukup, N. J. Ianno, et al. Thin Films of GeCDeposited Using a Unique Hollow Cathode Sputtering Technique. Amorphousand Polycrystalline Thin Film Silicon Science and Technology2006[C].2007,910:163-168
    [25] J. Tyczkowski, P. Kazimierski, Y. Hatanaka, et al. Excimer Laser InducedCrystallization of Amorphous Hydrogenated Carbon-Germanium FilmsFabricated by Plasma CVD. Surface and Coatings Technology[J].2005,200(1-4):222-226
    [26] P. Kazimierski, J. Tyczkowski, M. Kozanecki, et al. Transition fromAmorphous Semiconductor to Amorphous Insulator in Hydrogenated Carbon-Germanium Films Investigated by Raman Spectroscopy. Chemistry ofMaterials[J].2002,14(11):4694-4701
    [27] P. Kazimierski, J. Tyczkowski, M. Delamar, et al. Transition from AmorphousInsulator to Amorphous Semiconductor in Hydrogenated Carbon-GermaniumFilms-Investigations in Submicrometer Scale. Journal of Non-CrystallineSolids[J].1998,227:422-426
    [28] J. Tyczkowski, B. Pietrzyk, P. Kazimierski, et al. Amorphous Semiconductorand Amorphous Insulator-Two kinds of Hydrogenated Carbon-Silicon FilmsFabricated in the Three-Electrode Reactor. Surface and Coatings Technology[J].2001,142:843-848
    [29] J. Tyczkowski, P. Kazimierski, J. Grabkowski. Plasma-Deposited HydrogenatedCarbon-Germanium Semiconducting Films Doped with Acceptor and DonorCenters. Surface and Coatings Technology[J].2001,142:792-796
    [30] P. Kazimierski, L. Jozwiak. Transition from Amorphous Semiconductor toAmorphous Insulator in Hydrogenated Carbon-Germanium Films Investigatedby IR Spectroscopy. Journal of Non-Crystalline Solids[J].2009,355(4-5):280-286
    [31] P. Kazimierski. Mesostructured Thin Films Deposited by PECVD from TMGe.Thin Solid Films[J].2006,495(1-2):144-148
    [32] P. Kazimierski. Electrical Conductivity of Plasma-Deposited Carbon-Germanium Amorphous Semiconductors: Correlation with Nanostructure.Journal of Non-Crystalline Solids[J].2003,325(1-3):206-212
    [33] P. Kazimierski, J. Tyczkowski. Deposition Technology of a NewNanostructured Material for Reversible Charge Storage. Surface and CoatingsTechnology[J].2003,174:770-773
    [34] P. Kazimierski, H. Lehmberg. Electrical Conductivity Measurements withSubmicrometer Lateral Resolution. Surface and Coatings Technology[J].1998,98(1-3):939-943
    [35] P. Kazimierski, J. Tyczkowski. Deposition Technology of a new MultilayerSystem from Twin Amorphous Hydrogenated Materials. Surface and CoatingsTechnology[J].1999,119:614-617
    [36] J. Tyczkowski, P. Kazimierski, H. Szymanowski. Correlations Between ProcessParameters, Chemical Structure and Electronic Properties of AmorphousHydrogenated GexC1-xFilms Prepared by Plasma-Enhanced Chemical VapourDeposition in a Three-Electrode Reactor. Thin Solid Films[J].1994,241(1-2):291-294
    [37] J. Tyczkowski, P. Kazimierski. An Amorphous Dielectric-to-AmorphousSemiconductor Transition in Hydrogenated Carbon-Germanium Films. Journalof Physics D: Applied Physics[J].1994,27(1):179-181
    [38] J. Tyczkowski, P. Kazimierski, E. Odrobina. Dielectric and SemiconductingGe-C and Si-C Thin Films Prepared by Plasma Deposition from OrganicCompounds. Surface and Coatings Technology[J].1993,60(1-3):609-612
    [39] X. W. Wu, W. J. Zhang, R. Y. Luo, et al. Mechanical and EnvironmentalProperties of Ge1-xCxThin Film. Vacuum[J].2008,82(5):448-454
    [40] X. W. Wu, W. J. Zhang, L. Q. Yan, et al. The Deposition and Optical Propertiesof Ge1-xCxThin Film and Infrared Multilayer Antireflection Coatings. ThinSolid Films[J].2008,516(10):3189-3195
    [41] Y. Yashiki, S. Miyajima, A. Yamada, et al. Deposition and Characterization ofμc-Ge1-xCxThin Films Grown by Hot-Wire Chemical Vapor Deposition UsingOrgano-Germane. Thin Solid Films[J].2006,501(1-2):202-205
    [42] Y. Yashiki, S. Miyajima, A. Yamada, et al. Preparation of MicrocrystallineGermanium Carbon Thin Films by Hot-Wire Chemical Vapor Deposition UsingDimethylgermane. Jpn. Journal of Applied Physics[J]2007,46(5A):2865-2868
    [43] Y. Yashiki, S. Kouketsu, S. Miyajima, et al. Effect of Boron Doping onMicrocrystalline Germanium Carbon Thin Films. Amorphous andPolycrystalline Thin Film Silicon Science and Technology2007[C].2007,989:81-86
    [44] M. Okinaka, K. Miyatake, J. Ohta, et al. Large Band Gap Bowing of MBEGrown GeC/Si(001) Layers. Journal of Crystal Growth[J].2003,255(3-4):273-276
    [45] M. Okinaka, K. Miyatake, J. Ohta, et al. Effect of Ar+Ion Irradiation onSubstitutional C Incorporation into MBE Grown GeC/Si(001). Journal ofCrystal Growth[J].2003,258(3-4):251-255
    [46] M. Okinaka, Y. Hamana, T. Tokuda, et al. MBE Growth Mode and CIncorporation of GeC Epilayers on Si(001) Substrates Using an Arc PlasmaGun as a Novel C Source. Journal of Crystal Growth[J].2003,249(1-2):78-86
    [47] A. Okinaka, Y. Hamana, T. Tokuda, et al. Effect of Lower Growth Temperatureon C Incorporation in GeC Epilayers on Si(001) Grown by MBE. Physica E:Low-Dimensional Systems and Nanostructures[J].2003,16(3-4):473-475
    [48] M. Oehme, M. Bauer, E. Kasper. MBE Source for Germanium-Carbon Co-Evaporation. Materials Science and Engineering B[J].2002,89(1-3):332-335
    [49] D. J. Smith, M. Todd, J. McMurran, et al. Structural Properties ofHeteroepitaxial Germanium-Carbon Alloys Grown on Si (100). PhilosophicalMagazine A[J].2001,81(6):1613-1624
    [50] D. Gall, J. D. Arcy, J. E. Greene. C Incorporation in Epitaxial Ge1-yCyLayersGrown on Ge(001): An ab Initio Study. Physical Review B[J].2000,62(12):R7723-R7726
    [51] J. D. Arcy, P. Desjardins, I. Petrov, et al. Epitaxial Metastable Ge1-yCy(y≦0.02)Alloys Grown on Ge(001) from Hyperthermal Beams: C Incorporation andLattice Sites. Journal of Applied Physics[J].2000,88(1):96-104
    [52] W. H. Weber, B. K. Yang, M. Krishnamurthy. The Ge-C Local Mode inEpitaxial GeC and Ge-rich GeSiC alloys. Applied Physics Letters[J].1998,73(5):626-628
    [53] B. K. Yang, M. Krishnamurthy, W. H. Weber. Incorporation and Stability ofCarbon During Low Temperature Epitaxial Growth of Ge1-xCx(x≦0.1) Alloyson Si(100): Microstructural and Raman Studies. Journal of Applied Physics[J].1997,82(7):3287-3296
    [54] M. Todd, J. McMurran, J. Kouvetakis, et al. Chemical Synthesis of MetastableGermanium-Carbon Alloys Grown Heteroepitaxially on (100)Si. Chemistry ofMaterials[J].1996,8(10):2491-2498
    [55] M. P. Hernández, M. H. Farías, F. F. Castillón, et al. Growth andCharacterization of Polycrystalline Ge1-xCxby Reactive Pulsed LaserDeposition. Applied Surface Science[J].2011,257(11):5007-5011
    [56] C. Y. Zhan, L. W. Wang, N. K. Huang. Effect of Bias on Content of GeC in Ge1-xCxFilms. Chinese Physics Letters[J].2007,24(3):803-806
    [57] C. Y. Zhan, L. W. Wang, H. Y. Dai, et al. Design and TransmittanceMeasurement of the Ge1-xCxAntireflection Coatings. Journal of the KoreanPhysical Society[J].2008,52:S13-S16
    [58] C. Y. Zhan, L. W. Wang, N. K. Huang. Analysis of the Ge1-xCxFilms Depositedby MFMST. Applied Surface Science[J].2007,253(18):7478-7482
    [59] Y. P. Li, Z. T. Liu, W. T. Liu, et al. Preparation and Properties of GeC ThinFilms Deposited by Reactive RF Magnetron Sputtering. Acta Physica Sinica[J].2008,57(10):6587-6592
    [60] Y. P. Li, Z. T. Liu, H. L. Zhao, et al. Infrared Transmission Properties ofGermanium Carbon Thin Films Deposited by Reactive RF MagnetronSputtering. Vacuum[J].2009,83(6):965-969
    [61] Y. Kanzawa, K. Katayama, K. Nozawa, et al. Preparation of Ge1-yCyAlloys byC Implantation into Ge Crystal and Their Raman Spectra. Jpn. Journal ofApplied Physics[J].2001,40(10):5880-5884
    [62] N. Saito, H. Iwata, I. Nakaaki, et al. Amorphous and Microcrystalline GeC:HFilms Prepared by Magnetron Sputtering. Physica Status Solidi a: Applicationsand Materials Science[J].2009,206(2):238-242
    [63] N. Saito, I. Nakaaki, H. Iwata, et al. Optical and Electrical Properties ofUndoped and Oxygen Doped a-GeC:H Films Prepared by MagnetronSputtering. Thin Solid Films[J].2007,515(7-8):3766-3771
    [64] N. Saito, I. Nakaaki, T. Yamaguchi, et al. Influence of Deposition Conditionson the Properties of a-GeC:H and a-Ge:H Films Prepared by RF MagnetronSputtering. Thin Solid Films[J].1995,269(1-2):69-74
    [65] N. Saito, T. Yamaguchi. Preparation of a-SiC:H/a-GeC:H Superlattices by DualMagnetron Sputtering. Journal of Applied Physics[J].1989,66(7):3114-3116
    [66] N. Saito, T. Yamaguchi, I. Nakaaki. Comparative Study of Properties Betweena-GeC:H and a-SiC:H Films Prepared by Radiofrequency Reactive Sputteringin Methane. Journal of Applied Physics[J].1995,78(6):3949-3954
    [67] J. Tyczkowski. Audio Frequency Glow Discharge for Plasma Chemical VaporDeposition from Organic Compounds of the Carbon Family. Journal of VacuumScience and Technology A[J].1999,17(2):470-479
    [68] J. Tyczkowski, R. Ledzion. Electronic Band Structure of InsulatingHydrogenated Carbon-Germanium Films. Journal of Applied Physics[J].1999,86(8):4412-4418
    [69] J. Tyczkowski, B. Pietrzyk, R. Mazurczyk, et al. Formation of a CrystallinePhase in Amorphous Hydrogenated Carbon-Germanium Films by ElectronBeam Irradiation. Applied Physics Letters[J].1997,71(20):2943-2945
    [70] Y. Yashiki, S. Kouketsu, S. Miyajima, et al. Growth and Characterization ofGermanium Carbon Thin Films Deposited by VHF Plasma CVD Technique.Conference Record of the2006IEEE4th World Conference on PhotovoltaicEnergy Conversion[C].2006,1-2:1608-1611
    [71] Y. Yashiki, S. Kouketsu, S. Miyajima, et al. Influence of Plasma Power andSubstrate Temperature on Structure of Nanocrystalline Germanium CarbonThin Films by VHF Plasma CVD. Journal of Non-Crystalline Solids[J].2008,354(19-25):2355-2358
    [72] M. W. Dashiell, R. T. Troeger, K. J. Roe, et al. Electrical and Optical Propertiesof Phosphorus Doped Ge1-yCy. Thin Solid Films[J].1998,321:47-50
    [73] A. Mahmood, L. E. Sansores. Band Structure and Bulk Modulus Calculationsof Germanium Carbide. Journal of Materials Research[J].2005,20(5):1101-1106
    [74] Mahmood, M. Iqbal, Z. Ali, et al. Optical Analysis of Germanium Carbide ThinFilms Deposited by Reactive Pulsed Laser Ablation. Journal of LaserMicro/Nanoengineering[J].2010,5:204-208
    [75] Mahmood, A. Shah, FF Castillon, et al. Surface Analysis of GeC Prepared byReactive Pulsed Laser Deposition Technique. Current Applied Physics[J].2011,11:547-550
    [76] J.M. Mackowski, B. Cimma, J. Lacuve, et al. Optical and Mechanical Behaviorof GeC and BP Antireflection Coatings Under Rain Erosion Tests, Proccedingsof SPIE[C].1994:552-560
    [77] P.M. Martin, J.W. Johnston, W.D. Bennett. Properties of Reactively DepositedSiC and GeC Alloys, Proccedings of SPIE[C].1990:291-307
    [78] J. Robertson. Diamond Like Amorphous Carbon. Materials Science andEngineering: R: Reports[J].2002,37(4-6):129-281
    [79] Q. J. Liu, Z. T. Liu, X. S. Che, et al. First Principles Calculations of theStructural, Elastic, Electronic, Chemical Bonding and Optical Properties ofZinc Blende and Rocksalt GeC. Solid State Sciences[J].2011,13(12):2177-2184
    [80] H. Rcker, M. Methfessel. Anharmonic Keating Model for Group-IVSemiconductors with Application to the Lattice Dynamics in alloys of Si, Ge,and C. Physical Review B[J].1995,52(15):11059-11072
    [81] R. A. Soref. Electro-optical and Nonlinear Optical Coefficients of OrderedGroup IV Semiconductor Alloys. Journal of Applied Physics[J].1992,72(2):626-630
    [82] S. J. Rathi, A. K. Ray. On the Electronic and Geometric Structures of ArmchairGeC Nanotubes: a Hybrid Density Functional Study. Nanotechnology[J].2008,19(33):335706
    [83] A. Chroneos. Stability of Impurity Vacancy pairs in Germanium Carbide.Journal of Materials Science: Materials in Electronics[J].2008,19(1):25-28
    [84] L. T. Ueno, L. R. Marim, A. Dal Pino, et al. Transition Probabilities andSpectroscopic Properties of the Low-Lying States of GeC Molecule. ChemicalPhysics Letters[J].2006,432(1-3):11-16
    [85] L. T. Ueno, L. R. Marim, A. Dal Pino, et al. MRCI Study of the PhotoelectronSpectrum of GeC and GeSi and Their GeC+and GeSi+Ions. InternationalJournal of Quantum Chemistry[J].2006,106(13):2677-2688
    [86] E. Gonzalez, C. M. L. Rittby, W. R. M. Graham. Vibrational Spectra ofGermanium-Carbon Clusters in Solid Ar: Identification of the ν4(σu) Mode ofLinear GeC5Ge. Journal of Chemical Physics[J].2006,125(4):044504
    [87] M. Sahnoun, R. Khenata, H. Baltache, et al. First Principles Calculations ofOptical Properties of GeC, SnC and GeSn under Hydrostatic Pressure. PhysicaB: Condensed Matter[J].2005,355(1-4):392-400
    [88] Y. L. Cao, G. L. Li, Z. C. Tang. Formation, Structure and Properties of GeCnand Ge2CnBinary Clusters. Chinese Science Bulletin[J].2005,50(9):845-852
    [89] D. L. Robbins, K. C. Chen, C. M. L. Rittby, et al. Vibrational Spectra ofGermanium-Carbon Clusters. II. GeC7and GeC9. Journal of ChemicalPhysics[J].2004,120(10):4664-4671
    [90] W. Sekkal, A. Zaoui. Predictive Study of Thermodynamic Properties of GeC.New Journal of Physics[J].2002,4:91-99
    [91] O. Wilhelmsson, P. Eklund, H. H gberg, et al. Structural, Electrical andMechanical Characterization of Magnetron Sputtered V-Ge-C Thin Films. ActaMaterialia[J].2008,56(11):2563-2569
    [92] J. Wasyluk, T. S. Perova, F. Meyer. Raman and Fourier Transform InfraredStudy of Substitutional Carbon Incorporation in Rapid Thermal ChemicalVapor Deposited Si1-x-yGexCyon (100) Si. Journal of Applied Physics[J].2010,107(2):023518
    [93] R. J. Soukup, N. J. Ianno, J. S. Schrader, et al. Polycrystalline GeC Thin FilmsDeposited Using a Unique Hollow Cathode Sputtering Technique. Amorphousand Nanocrystalline Silicon Science and Technology2005[C].2005,862:195-200
    [94] F. C. Xu, J. Y. Kang. Deposition and Characterizations of GeCN Thin Films.Proccedings of SPIE[C].2004,5774:95-98
    [95] S. Y. Park, J. D. Arcy, D. Gall, et al. C Lattice Site Distributions in MetastableGe1-yCyAlloys Grown on Ge(001) by Molecular Beam Epitaxy. Journal ofApplied Physics[J].2002,91(6):3644-3652
    [96] L. G. Jacobsohn, F. L. Freire, G. Mariotto. Investigation on the Chemical,Structural and Mechanical Properties of Carbon-Germanium Films Depositedby DC Magnetron Sputtering. Diamond and Related Materials[J].1998,7(2-5):440-443
    [97] G. Mariotto, C. Vinegoni, L. G. Jacobsohn, et al. Raman Spectroscopy andScanning Electron Microscopy Investigation of Annealed Amorphous Carbon-Germanium Films Deposited by DC Magnetron Sputtering. Diamond andRelated Materials[J].1999,8(2-5):668-672
    [98] Z. T. Liu, J. Z. Zhu, N. K. Xu, et al. Structure and Properties of GermaniumCarbide Films Prepared by RF Reactive Sputtering in Ar/CH4. Jpn. Journal ofApplied Physics[J].1997,36(6A):3625-3628
    [99] Arshad Mahmood, A. Shah, F. F. Castillon, et al. Surface Analysis of GeCPrepared by Reactive Pulsed Laser Deposition Technique. Current AppliedPhysics[J].2011,11(3):547-550
    [100] Chris J. Kelly, James S. Orr, H. Gordon, et al. Application of GermaniumCarbide in Durable Multilayer IR Coatings. Carl-Gustaf, Ribbing,1990,Proccedings of SPIE[C]:122-134
    [101] N. Zoita, C. E. A. Grigorescu, I. C. Vasiliu, et al. Influence of ProcessParameters on Structure and Optical Properties of GeC Thin Films Depositedby RF Magnetron Sputtering. Thin Solid Films[J].2011,519(12):4101-4104
    [102] Q. Kelly, I. Wiedmann, J. P. Donnelly, et al. Thin Germanium-Carbon AlloyLayers Grown Directly on Silicon for Metal-Oxide-Semiconductor DeviceApplications. Applied Physics Letters[J].2006,88(15):152101
    [103] Guanglei Cui, Lin Gu, Linjie Zhi, et al. A Germanium-Carbon NanocompositeMaterial for Lithium Batteries. Advanced Materials[J].2008,20(16):3079-3083
    [104] S. Liu, D. Q. Kelly, J. P. Donnelly, et al. Negative Differential Resistance inBuried Channel GexC1-xpMOSFETs. IEEE Electron Device Letters[J].2009,30(2):136-138
    [105] M. Konagai. Deposition of New Microcrystalline Materials, μc-SiC, μc-GeC byHWCVD and Solar Cell Applications. Thin Solid Films[J].2008,516(5):490-495
    [106] M. Jamil, J. P. Donnelly, S. H. Lee, et al. A Comprehensive Study of GrowthTechniques and Characterization of Epitaxial Ge1-xCx(111) Layers GrownDirectly on Si (111) for MOS Applications. Advances in GaN, GaAs, SiC andRelated Alloys on Silicon Substrates[C].2008,1068:273-278
    [107] J. S. Schrader, J. L. Huguenin-Love, R. J. Soukup, et al. Thin Films of GeCDeposited Using a Unique Hollow Cathode Sputtering Technique. Solar EnergyMaterials and Solar Cells[J].2006,90(15):2338-2345
    [108] Q. Kelly, J. P. Donnelly, S. Dey, et al. BC high-K/metal Gate Ge/C AlloypMOSFETs Fabricated Directly on Si (100) Substrates. IEEE Electron DeviceLetters[J].2006,27(4):265-268
    [109] J. L. Huguenin-Love, R. J. Soukup, N. J. Ianno, et al. Optical andCrystallographic Analysis of Thin Films of GeC Deposited Using a UniqueHollow Cathode Sputtering Technique. Materials Science in SemiconductorProcessing[J].2006,9(4-5):759-763
    [110] J. L. Huguenin-Love, R. J. Soukup, N. J. Ianno, et al. The Properties of Ge-CThin Films Deposited Using Dual Hollow Cathodes. Conference Record of the2006IEEE4th World Conference on Photovoltaic Energy Conversion[C].2006,1-2:114-117
    [111] D. I. Garcia-Gutierrez, M. Jose-Yacaman, S. F. Lu, et al. Carbon Segregation asa Strain Relaxation Mechanism in Thin Germanium-Carbon Layers DepositedDirectly on Silicon. Journal of Applied Physics[J].2006,100(4):044323
    [112] Dumont, A. Pouydebasque, B. Pawlak, et al. Germanium and Carbon Co-implantation for Enhanced Short Channel Effect Control in pMOS Devices.Doping Engineering for Device Fabrication[C].2006,912:27-32
    [113] X. J. Niu, J. Booher, V. L. Dalal. Growth and Properties of NanocrystallineGermanium and Germanium-Carbide Films and Devices. Conference Record ofthe31th IEEE Photovoltaic Specialists Conference2005[C].2005:1508-1511
    [114] X. J. Niu, J. Booher, V. L. Dalal. Nanocrystalline Germanium and GermaniumCarbide Films and Devices. Amorphous and Nanocrystalline Silicon Scienceand Technology2005[C].2005,862:151-156
    [115] M. Konagai, S. Miyajima, Y. Yashiki, et al. Progress in the Development ofMicrocrystalline3C-SiC, SiGeC and GeC Thin Films for Solar CellApplications. Conference Record of the31th IEEE Photovoltaic SpecialistsConference2005[C].2005:1424-1427
    [116] Q. Kelly, J. P. Donnelly, S. V. Joshi, et al. Drive Current Enhancement in high-K/metal Gate Germanium Carbide pMOSFETs Fabricated Directly on SiSubstrates. IEEE International Electron Devices Meeting2005, TechnicalDigest[C].2005:923-926
    [117] Gibson, E. Waddell, F. Placido. Protective Infrared Antireflection CoatingBased on Sputtered Germanium Carbide. Proccedings of SPIE[C].2011,8168:816804
    [118] L. H. Dong, X. H. Fu, D. Yu, et al. Study on Preparation Technology of GexC1-xFilm on ZnS Substrate. Proccedings of SPIE[C],2006,6034:60341J
    [119]张贵峰.新型红外增透膜与保护膜.红外技术[J].1995,17(5):23-28
    [120]朱景芝,刘正堂.红外增透膜和保护膜的设计与材料.激光与红外[J].1996,26(4):275-278
    [121] Lettington. Review of Recent Advances in Infrared Antireflection Coatings.Recent developments in infrared components and subsystems. Proccedings ofSPIE[C].1988,7-8:60-66
    [122] J. Z. Xu, A. M. Zheng, F. S. Zhang. Review of Recent Advances in InfraredAntireflection Coatings. Laser and Infrared[J].1992,2:21-25
    [123] Y. P. Zuo, H. Qiu, X. B. Chen, et al. Structural, Electrical andPhotoluminescence Properties of ZnO:Al Network Films Grown onNanochannel Al2O3Substrates by Direct Current Magnetron Sputtering with anOblique Target. Materials Chemistry and Physics[J].2012,133(1):507-514
    [124] M. Yanagihara, K. Kawano, T. Honda, et al. Formation of NiZn Ferrite Nano-Crystalline Thin Films by RF Magnetron Sputtering with Changing SubstrateTemperatures. Thermochimica Acta[J].2012,532:145-147
    [125] Y. F. Wang, J. Wang, G. A. Zhang, et al. Microstructure and Tribology ofTiC(Ag)/a-C:H Nanocomposite Coatings Deposited by Unbalanced MagnetronSputtering. Surface and Coatings Technology[J].2012,206(14):3299-3308
    [126] M. M. Vieira, J. Oliveira, A. L. Shaula, et al. Lanthanum Silicate Thin Films forSOFC Electrolytes Synthesized by Magnetron Sputtering and SubsequentAnnealing. Surface and Coatings Technology[J].2012,206(14):3316-3322
    [127] J. F. Cui, L. Qiang, B. Zhang, et al. Mechanical and Tribological Properties ofTi-DLC Films with Different Ti Content by Magnetron Sputtering Technique.Applied Surface Science[J].2012,258(12):5025-5030
    [128] S. Swann. Film Thickness Distribution in Magnetron Sputtering. Vacuum[J].1988,38(8-10):791-794
    [129] S. Swann, S. Collett, I. Scarlett. Film Thickness Distribution Control with off-axis Circular Magnetron Sources onto Rotating Substrate Holders: Comparisonof Computer Simulation with Practical Results. Journal of Vacuum Science andTechnology A[J].1990,8(3):1299-1303
    [130] Q. H. Fan, X. H. Chen, Y. Zhang. Computer Simulation of Film ThicknessDistribution in Symmetrical Magnet Magnetron Sputtering. Vacuum[J].1995,46(3):229-232
    [131] X. Q. Meng, X. J. Fan, H. X. Guo. A New Formula on the Thickness of FilmsDeposited by Planar and Cylindrical Magnetron Sputtering. Thin Solid Films[J].1998,335(1-2):279-283
    [132] X. S. Du, Y. D. Jiang, J. S. Yu, et al. Quantitative Evaluation of Film ThicknessUniformity: Application to off-axis Magnetron Source onto a RotatingSubstrate. Journal of Vacuum Science and Technology A[J].2007,25(2):215-220
    [133] W. Reicher, R. Christian, P. Davidson, et al. Use of Multiple DC MagnetronDeposition Sources for Uniform Coating of Large Areas. Proccedings ofSPIE[C].2009,7409:740909
    [134] C. Fu, C. Yang, L. Han, et al. The Thickness Uniformity of Films Deposited byMagnetron Sputtering with Rotation and Revolution. Surface and CoatingsTechnology[J].2006,200(12-13):3687-3689
    [135] D. Moure-Flores, J. G. Quinones-Galvan, A. Hernandez-Hernandez, et al.Structural, Optical and Electrical Properties of Cd Doped SnO2Thin FilmsGrown by RF Reactive Magnetron Co-sputtering. Applied Surface Science[J].2012,258(7):2459-2463
    [136] S. J. Liu, L. Y. Chen, C. Y. Liu, et al. Physical Properties of Polycrystalline CrDoped SnO2Films Grown on Glasses Using Reactive DC Magnetron Co-sputtering Technique. Applied Surface Science[J].2011,257(6):2254-2258
    [137] J. E. Sanchez, O. M. Sanchez, L. Ipaz, et al. Mechanical, Tribological, andElectrochemical Behavior of Cr1-xAlxN Coatings Deposited by RF ReactiveMagnetron Co-sputtering Method. Applied Surface Science[J].2010,256(8):2380-2387
    [138] C. K. Chung, A. Nautiyal, T. S. Chen. Low Temperature Resistivity andMicrostructure of Reactive Magnetron Co-sputtered Ta-Si-N Thin Films.Journal of Physics D: Applied Physics[J].2010,43(29):295406
    [139] Q. Jing, Y. Xu, X. Y. Zhang, et al. Zr-Cu Amorphous Films Prepared byMagnetron Co-sputtering Deposition of Pure Zr and Cu. Chinese PhysicsLetters[J].2009,26(8):086109
    [140] M. Gazicki, H. Szymanowski, J. Tyczkowski, et al. Chemical Bonding in ThinGe/C films Deposited From Tetraethylgermanium in an RF Glow Discharge anFTIR Study. Thin Solid Films[J].1995,256(1-2):31-38
    [141] Gonzalez, C. M. L. Rittby, W. R. M. Graham. FTIR Identification of the ν4(σu)and ν6(πu) Modes of Linear GeC3Ge Trapped in Solid Ar. Journal of PhysicalChemistry A[J].2008,112(43):10831-10837
    [142] N. Saito. Influence of RF Power on the Properties of Hydrogenated AmorphousSilicon Carbon Alloy Films Prepared by Magnetron Sputtering of Silicon inMethane-Argon Gas Mixtures. Journal of Applied Physics[J].1985,58(9):3504-3507
    [143] S. Choi, H. W. Kim, H. J. Kim, et al. Effect of Interstitial C Incorporation onthe Raman Scattering of Si1-x-yGexCyEpitaxial Layer. Applied PhysicsLetters[J].2008,92(6):061906
    [144] M. Kumeda, A. Masuda, T. Shimizu. Structural Studies on HydrogenatedAmorphous Germanium-Carbon Films Prepared by RF Sputtering. JapaneseJournal of Applied Physics[J].1998,37:1754-1759
    [145] P. Benzi, E. Bottizzo, C. Demaria, et al. Amorphous Nonstoichiometric Ge1-xCx:H Compounds Obtained by Radiolysis Chemical Vapor Deposition ofGermane/Ethyne or Germane/Allene Systems: A Bonding and MicrostructureInvestigation Performed by X-ray Photoelectron Spectroscopy and RamanSpectroscopy. Journal of Applied Physics[J].2007,101(12):124906
    [146] Y. Inoue, S. Nakashima, S. Mitsuishi. Raman Spectra of Amorphous SiC. SolidState Communications[J].1983,48(12):1071-1075
    [147] P. Patsalas, S. Logothetidis, P. C. Kelires. Surface and Interface Morphologyand Structure of Amorphous Carbon Thin and Multilayer Films. Diamond andRelated Materials[J].2005,14(8):1241-1254
    [148] P. K. Chu, L. Li. Characterization of Amorphous and Nanocrystalline CarbonFilms. Materials Chemistry and Physics[J].2006,96(2):253-277
    [149] P. Benzi, E. Bottizzo, L. Operti, et al. Characterization and Properties ofAmorphous Nonstoichiometric Ge1-xCx:H Compounds Obtained by RadiolysisCVD of Germane/Ethyne Systems. Chemistry of Materials[J].2004,16(6):1068-1074
    [150] R. J. Soukup, J. L. Huguenin-Love, N. J. Ianno, et al. Experimental Studies ofGe1-xCxand Ge1-x-yCxAlyThin Films. Journal of Vacuum Science andTechnology A[J].2008,26(1):17-22
    [151]方志军,夏义本,王林军等.金刚石薄膜红外椭圆偏振参量的计算与拟合.光学学报[J].2003,23(12):1507-1512
    [152]李倩,杭凌侠,徐均琪. UBMS技术制备DLC薄膜的光学参数椭偏分析.应用光学[J].2009,30(1):105-109
    [153] J. C. Manifacier, J. Gasiot, J. P. Fillard. A Simple Method for the Determinationof the Optical Constants n, k and the Thickness of a Weakly Absorbing ThinFilm. Journal of Physics E: Scientific Instruments[J].1976,9:1002-1004
    [154] R. Swanepoel. Determination of the Thickness and Optical Constants ofAmorphous Silicon. Journal of Physics E: Scientific Instruments[J].1983,16:1214-1222
    [155] G. Stoney. The Tension of Metallic Films Deposited by Electrolysis.Proceedings of the Royal Society of London. Series A, Containing Papers of aMathematical and Physical Character[C].1909,82(553):172-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700