用户名: 密码: 验证码:
组蛋白乙酰化及抑郁症相关基因表达研究和丙戊酸钠的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】研究组蛋白乙酰化及相关基因表达与慢性不可预见刺激致大鼠抑郁症的关系及丙戊酸钠的干预作用
     【方法】雄性SD大鼠60只,随机分为对照组(control group,CG)、模型组(model group,MG)、丙戊酸钠灌胃处理的模型组(sodiumvalproate-treated model group,VPAM)及对照组(sodium valproate-treated control group,VPAC)。丙戊酸钠(300mg/kg/d)及相同体积溶剂分别灌胃给予实验大鼠。采用孤养结合慢性不可预见刺激建立大鼠抑郁症模型。以开场实验、被动游泳实验评价大鼠抑郁行为;采用常规生物化学方法测定大鼠血清、大脑皮质和海马MDA含量及SOD、CAT活力;采用放射免疫法测定血清CORT水平;以HE染色观察海马病理形态学改变;采用Real Time-PCR法检测大脑皮层和海马TH、TPH,海马BDNF、MAO-A、IDO、GSK-3β及下丘脑CRF mRNA表达;以Western Blotting法检测大脑皮层和海马TH、TPH,海马acH3K9、acH3K14、acH4K12、HDAC5及下丘脑CRF蛋白表达。观察丙戊酸钠给予对CUS致大鼠抑郁行为的干预作用以及对正常大鼠的影响。
     【结果】
     1.模型组大鼠开场实验水平运动、垂直运动得分、被动游泳实验不动时间均显著低于对照组大鼠;丙戊酸钠显著阻遏CUS所致的上述行为学改变而对对照组大鼠行为无明显影响。
     2.与对照组大鼠相比,模型组大鼠血清、大脑皮层和海马MDA含量显著升高而SOD、CAT活力显著降低,血清CORT显著升高;丙戊酸钠给予能明显抑制CUS所致的上述改变而对对照组大鼠无明显影响。
     3.与对照组大鼠相比,模型组大鼠海马acH3K9、acH3K14、acH4K12表达显著降低而HDAC5表达显著增高;丙戊酸钠给予能显著增加模型组大鼠acH3K9、acH3K14表达而对acH4K12无显著影响,但显著抑制HDAC5表达;丙戊酸钠对对照组大鼠无显著影响。
     4.与对照组大鼠相比,模型组大鼠大脑皮层TH、TPH和海马TH、TPH、BDNF表达均显著降低,而海马MAO-A、IDO、GSK-3β及下丘脑CRF表达显著增高。丙戊酸钠给予能明显抑制CUS所致的上述改变而对对照组大鼠无明显影响。
     5.与对照组大鼠相比,模型组大鼠海马出现显著的神经细胞核染色质深染、核固缩、核碎裂等病理形态学改变;丙戊酸钠给予能明显阻遏CUS所致的模型组大鼠海马神经细胞损伤而对对照组大鼠无显著影响。
     【结论】
     1.孤养结合慢性不可预见刺激致大鼠出现明显抑郁症样行为和海马神经细胞病理形态学改变。
     2.其发生机制可能与孤养结合慢性不可预见刺激致机体抗氧化应激系统功能失衡,导致HPA轴功能紊乱,组蛋白乙酰化修饰率降低,继而下调BDNF、TH、TPH表达和上调IDO、MAO-A、GSK-3β表达相关。
     3.丙戊酸钠灌胃给予可改善大鼠抑郁行为。其机制除抑制HDAC5表达和提升组蛋白乙酰化水平,进而促进BDNF、TH、TPH而抑制IDO、MAO-A、GSK-3β的表达外,还可能涉及纠正氧化-抗氧化应激功能失衡和改善HPA轴功能有关。
【Objective】 To investigate the relationship between histone acetylationand depression and the antidepressant effect of sodium valproate (VPA) in achronic unpredicted stress induced rat depression model
     【Methods】Sixty Male Sprague-Dawley (SD) rats were divided intocontrol group (CG), model group (MG), VPA-treated model group (VPAM)and VPA-treated control group (VPAC). The depression model wasestablished by chronic unpredicted stress (CUS) with solitary feed. VPA(300mg/kg once daily) was administered to rats (VPAM and VPAC) byintragastric gavage, and the same volume of vehicle was given to rats in theVM and VC groups. Open field test (OFT), forced swim test (FST) wereused to evaluate the depressant behavior. Hippocampus pathomorphologywas observed with HE staining. Malondialdehyde (MDA) level, superoxidedismutase (SOD) and catalase (CAT) activities in the serum, cortex andhippocampus, corticosterone (CORT) level in the serum, mRNA expressionof TH, TPH in the cortex and TH, TPH, BDNF, MAO-A, IDO and GSK-3βin the hippocampus and CRF in the hypothalamus, as well as protein expression of acH3K9, acH3K14, acH4K12, HDAC5, TH and TPH in thehippocampus, TH and TPH in the cortex and CRF in the hypothalamuswere determined.
     【Results】
     1. Compared with control rats, model rats showed a significant decrease ofhorizontal and vertical movements scores in OFT and more immobilityin FST. VPA administration obviously prevented rats from decreasingactivities, compared with model rats. However VPA administration hadno significant influences on behaviors of control rats.
     2. Compared with control rats, model rats showed a significant increase inthe MDA levels, distinct decrease in SOD and CAT activities in theserum, hippocampus and cortices, and a significant increase in CORTlevel in the serum. VPA administration markedly inhibited thesechanges but it had no effects on control rats.
     3. The expression of acH3K9, acH3K14and acH4K12showed significantdecrease but HDAC5showed increase in the hippocampus of model rats,compared with control rats. VPA administration significantly preventedthe changes of acH3K9, acH3K14and HDAC5but it had no effects onacH4K12. VPA administration had no influence on control rats.
     4. Compared with control rats, the TH, TPH expression in the hippocampusand cortex and BDNF expression in the hippocampus showed decrease,but the MAO-A, IDO and GSK-3β expression in the hippocampus and CRF expression in the hypothalamus showed increase significantly inmodel rats. VPA treatment markedly inhibited these changes but it hadno effects on control rats.
     5. The layer of hippocampus pyramidal cells became thinner withkaryopyknosis and chromatin concentration were observed in modelrats, compared with control rats. VPA treatment was beneficial in themodel rats but had no influence on control rats.
     【C onclusion】
     1. CUS with solitary feed can induce depression-like behaviors of ratswith pathomophorlogical changes of hippocampal neurocytes.
     2. The mechanisms may involve the imbalance of oxidative stress andanti-oxidative stress systems, HPA axis dysfunction, inhibition ofhistone acetylation modification (acH3K9, acH3K14, acH4K12),decrease of BDNF, TH and TPH expression, and increase of IDO,MAO-A and GSK-3β expression.
     3. VPA can improve depression-like behaviors in CUS rats, themechanisms may involve reversing oxidative stress and anti-oxidativestress systems imbalance and improving HPA axis function, besidesinhibiting HDAC5, elevating histone avetylation modification, inducingBDNF, TH and TPH expression, and inhibiting IDO, MAO-A andGSK-3β overexpression.
引文
[1] Koponen H, Jokelainen J, Kein nen-Kiukaanniemi S, et al. Depressive symptomsand10-year risk for cardiovascular morbidity and mortality[J]. World J BiolPsychiatry.2010,11:834-839.
    [2] Wongpakaran N, Wongpakaran T. Prevalence of major depressive disorders andsuicide in long-term care facilities: a report from northern Thailand[J].Psychogeriatrics.2012,12:11-17.
    [3] Saveanu RV, Nemeroff CB. Etiology of depression: genetic and environmentalfactors[J]. Psychiatr Clin North Am.2012,35(1):51-71.
    [4] Maes M, Galecki P, Chang YS, et al. A review on the oxidative and nitrosativestress (O&NS) pathways in major depression and their possible contribution to the(neuro)degenerative processes in that illness[J]. Prog Neuropsychopharmacol BiolPsychiatry.2011,35:676-692.
    [5] Rudorfer MV, Risby ED, Osman OT, et al. Hypothalamic-pituitary-adrenal axisand monoamine transmitter activity in depression: a pilot study of central andperipheral effects of electroconvulsive therapy[J]. Biol Psychiatry.1991,29(3):253-264.
    [6] Castrén E, Rantam ki T. The role of BDNF and its receptors in depression andantidepressant drug action: Reactivation of developmental plasticity[J]. DevNeurobiol.2010,70:289-297.
    [7] Kim YK, Na KS, Shin KH, et al. Cytokine imbalance in the pathophysiologyof major depressive disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry.2007,1(5):1044-1053.
    [8] McGowan PO, Kato T. Epigenetics in mood disorders[J]. Environ Health PrevMed.2008,13(1):16-24.
    [9] Shahbazian MD,Grunstein M. Functions of site-specific histone acetylation anddeacetylation[J]. Annu Rev Biochem.2007,76:75-100.
    [10]Tagliari B, dos Santos TM, Cunha AA, et al. Chronic variable stress inducesoxidative stress and decreases butyrylcholinesterase activity in blood of rats[J]. JNeural Transm.2010,117:1067-1076.
    [11]Kotan VO, Sarandol E, Kirhan E, et al. Effects of long-term antidepressanttreatment on oxidative status in major depressive disorder: a24-week follow-upstudy[J]. Prog Neuropsychopharmacol Biol Psychiatry.2011,35(5):1284-1290.
    [12]Zhao Z, Wang W, Guo H, et al. Antidepressant-like effect of liquiritin fromGlycyrrhiza uralensis in chronic variable stress induced depression model rats[J].Behav Brain Res.2008,194(1):108-113.
    [13]Holsboer F, Ising M.Central CRH system in depression and anxiety-Evidence fromclinical studies with CRH1receptor antagonists[J]. Eur J Pharmacol.2008,583:350-357.
    [14]Kehne JH, Cain CK. Therapeutic utility of non-peptidic CRF1receptor antagonistsin anxiety, depression, and stress-related disorders: evidence from animal models[J].Pharmacol Ther.2010,128(3):460-487.
    [15]Neto FL, Borges G, Torres-Sanchez S, et al. Neurotrophins role in depressionneurobiology: a review of basic and clinical evidence[J]. Curr Neuropharmacol.2011,9(4):530-552.
    [16]Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase3beta incellular signaling[J]. Prog Neurobiol.2001,65(4):391-426.
    [17]Oh DH, Park YC, Kim SH. Increased glycogen synthase kinase-3β mRNA level inthe hippocampus of patients with major depression: a study using the stanleyneuropathology consortium integrative database[J]. Psychiatry Investig.2010,7(3):202-207.
    [18]Iversen L. Neurotransmitter transporters and their impact on the development ofpsychopharmacology[J]. Br J Pharmacol.2006,147:82-88.
    [19]Roberts KM, Fitzpatrick PF. Mechanisms of tryptophan and tyrosinehydroxylase[J]. IUBMB Life.2013,26.
    [20] Fu AL, Wu SP, Dong ZH, et al. A novel therapeutic approach to depression viasupplement with tyrosine hydroxylase[J]. Biochem Biophys Res Commun.2006,351(1):140-145.
    [21]Zhao Y, Ma R, Shen J, et al. A mouse model of depression induced by repeatedcorticosterone injections[J]. Eur J Pharmacol.2008,581(1-2):113-120.
    [22]Jacobsen JP, Siesser WB, Sachs BD, et al. Deficient serotonin neurotransmissionand depression-like serotonin biomarker alterations in tryptophan hydroxylase2(Tph2) loss-of-function mice[J]. Mol Psychiatry.2012,17(7):694-704.
    [23]Maes M, Leonard BE, Myint AM, et al. The new '5-HT' hypothesis of depression:cell-mediated immune activation induces indoleamine2,3-dioxygenase, whichleads to lower plasma tryptophan and an increased synthesis of detrimentaltryptophan catabolites (TRYCATs), both of which contribute to the onsetof depression[J]. Prog Neuropsychopharmacol Biol Psychiatry.2011,35(3):702-721.
    [24]Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease andhealthy States[J]. Int J Tryptophan Res.2009,2:1-19.
    [25]Meyer JH, Ginovart N, Boovariwala A, et al. Elevated monoamine oxidase a levelsin the brain: an explanation for the monoamine imbalance of majordepression[J].Arch Gen Psychiatry.2006,63(11):1209-1216.
    [26] Naoi M, Maruyama W, Inaba-Hasegawa K, et al. Type A monoamineoxidase regulates life and death of neurons in neurodegeneration andneuroprotection[J]. Int Rev Neurobiol.2011,100:85-106.
    [27]Davis LL, Ryan W, Adinoff B, et al. Comprehensive review of the psychiatric usesof valproate[J]. J Clin Psychopharmacol.2000,20(1):1-17.
    [28]Smith LA, Cornelius VR, Azorin JM, et al. Valproate for the treatment of acutebipolar depression: systematic review and meta-analysis[J]. J Affect Disord.2010,122(1-2):1-9.
    [29]Monti B, Polazzi E, Contestabile A. Biochemical, molecular and epigeneticmechanisms of valproic acid neuroprotection[J]. Curr Mol Pharmacol.2009,2(1):95-109.
    [30]Ferrero AJ, Cereseto M, Sifonios LL, et al. Cytoskeleton of hippocampal neuronsas a target for valproic acid in an experimental model of depression[J]. ProgNeuropsychopharmacol Biol Psychiatry.2007,31(7):1419-1428.
    [31]Xing B, Zhao Y, Zhang H, et al. Microinjection of valproic acid into theventrolateral orbital cortex exerts an antidepressant-like effect in the rat forcedswim test[J]. Brain Res Bull.2011,85(3-4):153-157.
    [32]Orsetti M, Colella L, Dellarole A, et al. Effects of chronic administrationof olanzapine, amitriptyline, haloperidol or sodium valproate in naive andanhedonic rats[J]. Int J Neuropsychopharmacol.2006,9(4):427-436.
    [1] World Health Organization. Depression.2012. http://www.who.int/mental_health/management/depression/who_paper_depression_wfmh_2012.pdf
    [2] McGowan PO, Kato T. Epigenetics in mood disorders. Environ Health PrevMed[J].2008,13(1):16-24.
    [3] Vialou V, Feng J, Robison AJ, et al. Epigenetic mechanisms of depression andantidepressant action[J]. Annu Rev Pharmacol Toxicol.2013,53:59-87.
    [4] Yang C, Wang G, Wang H, et al. Cytoskeletal alterations in rat hippocampusfollowing chronic unpredictable mild stress and re-exposure to acute and chronicunpredictable mild stress[J]. Behav Brain Res.2009,205:518-524.
    [5] Chen L, Chen M, Wang F, et al. Antidepressant-Like Effects of Shuyusan in RatsExposed to Chronic Stress: Effects on Hypothalamic-Pituitary-Adrenal Function[J].Evid Based Complement Alternat Med.2012,940846.
    [6] Rogó Z, Kabziński M, Sadaj W, et al. Effect of co-treatment with fluoxetine ormirtazapine and risperidone on the active behaviors and plasma corticosteroneconcentration in rats subjected to the forced swim test[J]. Pharmacol Rep.2012,64(6):1391-1399.
    [7] Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming testdifferentially produced by serotonergic and noradrenergic antidepressants[J].Psychopharmacology.1995,121:66-72
    [8] Vaishnav Krishnan and Eric J. Nestler. Animal Models of Depression: MolecularPerspectives[J]. Curr Top Behav Neurosci.2011,7:121-147.
    [9] Willner P. Validity, reliability and utility of the chronic mild stress model ofdepression: a10-year review and evaluation[J]. Psychopharmacology.1997,134(4):319-329.
    [10]Zhao Y, Ma R, Shen J, et al. A mouse model of depression induced by repeatedcorticosterone injections[J]. Eur J Pharmacol.2008,581(1-2):113-120.
    [1] Saveanu RV, Nemeroff CB. Etiology of depression: genetic and environmentalfactors[J]. Psychiatr Clin North Am.2012,35(1):51-71.
    [2] Wolffe AP, Matzke MA. Epigenetics: regulation through repression[J]. Science.1999,286(5439):481-486.
    [3] Eren Ko ak E, Ertu rul A. Psychiatric disorders and epigenetics[J]. Turk PsikiyatriDerg.2012,23(2):130-140.
    [4] Peterson CL, Laniel MA. Histones and histone modifications[J]. Curr Biol.2004,14(14):546-551.
    [5] Felsenfeld G, Groudine M. Controlling the double helix[J]. Nature.2003,421(6921):448-453.
    [6] Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosomeacetylation and methylation in yeast[J]. Cell.2005,122(4):517-527.
    [7] Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylaseinhibitors in the pharmacotherapy of psychiatric disorders?[J]. Mol Pharmacol.2010,77(2):126-135.
    [8] Ferland CL, Schrader LA. Regulation of histone acetylation in the hippocampus ofchronically stressed rats: a potential role of sirtuins[J]. Neuroscience.2011,174:104-114.
    [9] Hollis F, Duclot F, Gunjan A, et al. Individual differences in the effect of socialdefeat on anhedonia and histone acetylation in the rat hippocampus[J]. Horm Behav.2011,59(3):331-337.
    [10]Onishchenko N, Karpova N, Sabri F, et al. Long-lasting depression-like behaviorand epigenetic changes of BDNF gene expression induced by perinatal exposure tomethylmercury[J]. J Neurochem.2008,106(3):1378-1387.
    [11]Yamawaki Y, Fuchikami M, Morinobu S, et al. Antidepressant-like effect of sodiumbutyrate (HDAC inhibitor) and its molecular mechanism of action in the rathippocampus[J]. World J Biol Psychiatry.2012,13(6):458-467.
    [12]Iga J, Ueno S, Yamauchi K, et al. Altered HDAC5and CREB mRNA expressions inthe peripheral leukocytes of major depression[J]. Prog Neuropsychopharmacol BiolPsychiatry.2007,31(3):628-632.
    [13]Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatinregulation in a mouse model of depression and antidepressant action[J]. NatNeurosci.2006,9(4):519-525.
    [14]Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergenceof mechanisms[J]. Neuropsychopharmacology.2008,33(1):88-109.
    [15]Duman RS, Monteggia LM. A neurotrophic model for stress-related mooddisorders[J]. Biol Psychiatry.2006,59(12):1116-1127.
    [16]Grande I, Fries GR, Kunz M, et al. The role of BDNF as a mediatorof neuroplasticity in bipolar disorder[J]. Psychiatry Investig.2010,7(4):243-250.
    [17]Larsen MH, Mikkelsen JD, Hay-Schmidt A, et al. Regulation of brain-derivedneurotrophic factor (BDNF) in the chronic unpredictable stress rat model and theeffects of chronic antidepressant treatment[J]. J Psychiatr Res.2010,44:808-816.
    [18]Glavin GB. Stress and brain noradrenaline: a review[J]. Neurosci Biobehav Rev.1985,9(2):233-243.
    [19]Zhao Y, Ma R, Shen J, et al. A mouse model of depression induced by repeatedcorticosterone injections[J]. Eur J Pharmacol.2008,581(1-2):113-120.
    [20]Duncko R, Kiss A, Skultétyová I, et al. Corticotropin-releasing hormone mRNAlevels in response to chronic mild stress rise in male but not in female rats whiletyrosine hydroxylase mRNA levels decrease in both sexes[J].Psychoneuroendocrinology.2001,26(1):77-89.
    [21]Fu AL, Wu SP, Dong ZH, et al. A novel therapeutic approach to depression viasupplement with tyrosine hydroxylase[J]. Biochem Biophys Res Commun.2006,351(1):140-145.
    [22]Yang FZ, Wu Y, Zhang WG, et al. Influence of estradiol on tryptophanhydroxylase and5-hydroxytryptamine content in raphe nuclei of rats under forcedswimming stress[J]. Zhonghua Yi Xue Za Zhi.2010,90(27):1929-1932.
    [23]Kim SW, Park SY, Hwang O. Up-regulation of tryptophan hydroxylase expressionand serotonin synthesis by sertraline[J]. Mol Pharmacol.2002,61(4):778-785.
    [24]Onishchenko N, Karpova N, Sabri F, et al. Long-lasting depression-like behaviorand epigenetic changes of BDNF gene expression induced by perinatal exposure tomethylmercury[J]. J Neurochem.2008,106(3):1378-1387.
    [1] Meyer JH, Ginovart N, Boovariwala A, et al. Elevated monoamine oxidase a levelsin the brain: an explanation for the monoamine imbalance of major depression[J].Arch Gen Psychiatry.2006,63(11):1209-1216.
    [2] Schulze TG, Müller DJ, Krauss H, et al. Association between a functionalpolymorphism in the monoamine oxidase A gene promoter and major depressivedisorder[J]. Am J Med Genet.2000,96(6):801-803.
    [3] Lung FW, Tzeng DS, Huang MF, et al. Association of the MAOA promoteruVNTR polymorphism with suicide attempts in patients with major depressivedisorder[J]. BMC Med Genet.2011,12:74.
    [4] Takikawa O. Clinical aspects of indoleamine2,3-dioxygenase (IDO)-initiatedtryptophan metabolism: IDO is a target of drug discovery for various diseases[J].International Congress Series.2007,1304:290-297
    [5] Maes M, Leonard BE, Myint AM, et al. The new '5-HT' hypothesis of depression:cell-mediated immune activation induces indoleamine2,3-dioxygenase, whichleads to lower plasma tryptophan and an increased synthesis of detrimentaltryptophan catabolites (TRYCATs), both of which contribute to the onsetof depression[J]. Prog Neuropsychopharmacol Biol Psychiatry.2011,35(3):702-721.
    [6] Miura H, Ozaki N, Sawada M, et al. A link between stress and depression: shifts inthe balance between the kynurenine and serotonin pathways of tryptophanmetabolism and the etiology and pathophysiology of depression[J]. Stress.2008,11(3):198-209.
    [7] Hepgul N, Mondelli V, Pariante CM. Psychological and biological mechanisms ofcytokine induced depression[J]. Epidemiol Psichiatr Soc.2010,19(2):98-102.
    [8] Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease andhealthy States[J]. Int J Tryptophan Res.2009,2:1-19.
    [9] Plangar I, Majlath Z, Vecsei L. Kynurenines in cognitive functions: their possiblerole in depression[J]. Neuropsychopharmacol Hung.2012,14(4):239-244.
    [10]Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3from rabbit skeletalmuscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylasekinase[J]. Eur J Biochem.1980,107:519-527.
    [11]Michelon L, Meira-Lima I, Cordeiro Q, et al. Association study of the INPP1,5HTT, BDNF, AP-2beta and GSK-3beta GENE variants and restrospectivelyscored response to lithium pro-phylaxis in bipolar disorder[J]. Neurosci Lett.2006,403:288-293.
    [12]Hetman M, Cavanaugh JE, Kimelman D, et al. Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal[J]. J Neurosci.2000,20:2567-2574.
    [13]Oh DH, Park YC, Kim SH. Increased glycogen synthase kinase-3β mRNA level inthe hippocampus of patients with major depression: astudy using the stanleyneuropathology consortium integrative database[J]. Psychiatry Investig.2010,7(3):202-207.
    [14]Gould TD, Einat H, Bhat R, Manji HK. AR-A014418, a selective GSK-3inhibitor,produces antidepressant-like effects in the forced swim test[J]. Int JNeuropsychopharmacol.2004,7:387-390.
    [1] Haddad PM, Das A, Ashfaq M, et al. A review of valproate in psychiatricpractice[J]. Expert Opin Drug Metab Toxicol.2009,5(5):539-551.
    [2] Smith LA, Cornelius VR, Azorin JM, et al. Valproate for the treatment of acutebipolar depression: systematic review and meta-analysis[J]. J Affect Disord.2010,122(1-2):1-9.
    [3] Davis LL, Ryan W, Adinoff B, et al. Comprehensive review of the psychiatric usesof valproate[J]. J Clin Psychopharmacol.2000,20(1):1-17.
    [4] Chen PS, Peng GS, Li G, et al. Valproate protects dopaminergic neurons inmidbrain neuron/glia cultures by stimulating the release of neurotrophic factorsfrom astrocytes[J]. Mol Psychiatry.2006,11(12):1116-1125.
    [5] Monti B, Polazzi E, Contestabile A. Biochemical, molecular and epigeneticmechanisms of valproic acid neuroprotection[J]. Curr Mol Pharmacol.2009,2(1):95-109.
    [6] Mottet D, Castronovo V. Histone deacetylases: target enzymes for cancer therapy[J]. Clin Exp Metastasis.2008,25(2):183-189.
    [7] Leng Y, Chuang DM. Endogenous alpha-synuclein is induced by valproic acidthrough histone deacetylase inhibition and participates in neuroprotection againstglutamate-induced excitotoxicity[J]. J Neurosci.2006,26(28):7502-7512.
    [8] Chen PS, Wang CC, Bortner CD, et al. Valproic acid and other histone deacetylaseinhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induceddopaminergic neurotoxicity[J]. Neuroscience.2007,149(1):203-212.
    [9] Sharma RP, Rosen C, Kartan S, et al. Valproic acid and chromatin remodeling inschizophrenia and bipolar disorder: preliminary results from a clinical population[J].Schizophr Res.2006,88(1-3):227-231.
    [10]Klengel T, Binder EB. Gene-environment interactions in major depressivedisorder[J]. Can J Psychiatry.2013,58(2):76-83.
    [11]Saveanu RV, Nemeroff CB. Etiology of depression: genetic and environmentalfactors[J]. Psychiatr Clin North Am.2012,35(1):51-71
    [12]Scholl JL, Renner KJ, Forster GL, et al. Central monoamine levels differ betweenrat strains used in studies of depressive behavior[J]. Brain Res.2010,1355:4151.
    [13]Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergenceof mechanisms[J]. Neuropsychopharmacology.2008,33(1):88-109.
    [14]Vreeburg SA, Hoogendijk WJ, van Pelt J, et al. Major depressive disorder andhypothalamic-pituitary-adrenal axis activity: results from a large cohort study[J].Arch Gen Psychiatry.2009,66(6):617-626.
    [15]Maes M, Galecki P, Chang YS, et al. A review on the oxidative and nitrosativestress (O&NS) pathways in major depression and their possible contribution to the(neuro)degenerative processes in that illness[J]. Prog Neuropsychopharmacol BiolPsychiatry.2011,35(3):676-692.
    [16]Str mberg R, Backlund LG, L fvander M. Psychosocial stressors and depression ata Swedish primary health care centre. A gender perspective study[J]. BMC FamPract.2011,12:120.
    [17]Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives[J].Curr Top Behav Neurosci.2011,7:121-147.
    [18]Willner P. The validity of animal models of depression[J]. Psychopharmacology.1984,83:1-16.
    [19]Brenes Sáenz JC, Villagra OR, Fornaguera-Trías J. Factor analysis of ForcedSwimming test, Sucrose Preference test and Open Field test on enriched, social andisolated reared rats[J]. Behav Brain Res.2006,169:57-65.
    [20]Maes M, Galecki P, Chang YS, et al. A review on the oxidative and nitrosativestress (O&NS) pathways in major depression and their possible contribution to the(neuro)degenerative processes in that illness[J]. Prog Neuropsychopharmacol BiolPsychiatry.2011,35:676-692.
    [21]Yager S, Forlenza MJ, Miller GE.Depression and oxidative damage to lipids[J].Psychoneuroendocrinology.2010,35(9):1356-1362.
    [22]Kamper EF, Chatzigeorgiou A, Tsimpoukidi O, et al. Sex differences inoxidant/antioxidant balance under a chronic mild stress regime[J]. Physiol Behav.2009,98:215-222.
    [23]Lin MT,Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases[J]. Nature.2006,443:787-795.
    [24]Pariante CM, Lightman SL.The HPA axis in major depression: classical theoriesand new Developments[J].Trends Neurosci.2008,31:464-468.
    [25]Buckley TM, Schatzberg AF. On the interactions ofthe hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activityand circadian rhythm, exemplary sleep disorders[J]. J Clin Endocrinol Metab.2005,90(5):3106-3114.
    [26]Gillespie CF, Nemeroff CB. Hypercortisolemia and depression[J]. PsychosomMed.2005,67(1):26-28.
    [27]Chiba S, Numakawa T, Ninomiya M, et al.Chronic restraint stress causes anxiety-and depression-like behaviors, downregulates glucocorticoid receptor expression,and attenuates glutamate release induced by brain-derived neurotrophic factor in theprefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry.2012,39(1):112-119.
    [28]Ducottet C, Griebel G, Belzung C.Effects of the selective nonpeptidecorticotropin-releasing factor receptor1antagonist antalarmin in the chronic mildstress model of depression in mice[J]. Prog Neuropsychopharmacol BiolPsychiatry.2003,27(4):625-631.
    [29]Zhao Y, Ma R, Shen J, et al. A mouse model of depression induced by repeatedcorticosterone injections[J]. Eur J Pharmacol.2008,581(1-2):113-120.
    [30]Bird A. Perceptions of epigenetics. Nature.2007,447(7143):396-398.
    [31]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospectsfor epigenetic therapy[J]. Nature.2004,429(6990):457-463.
    [32]Gr nbaek K, Hother C, Jones PA. Epigenetic changes in cancer[J]. APMIS.2007,115(10):1039-1059.
    [33]Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease[J]. NatMed.2012,18(8):1194-1204.
    [34]Eren Ko ak E, Ertu rul A. Psychiatric disorders and epigenetics[J]. Turk PsikiyatriDerg.2012,23(2):130-140.
    [35]Webster AL, Yan MS, Marsden PA. Epigenetics and cardiovascular disease[J]. CanJ Cardiol.2013,29(1):46-57.
    [36]Quintero-Ronderos P, Montoya-Ortiz G. Epigenetics and autoimmune diseases[J].Autoimmune Dis.2012,2012:593720.
    [37]Kornberg RD. Chromatin structure: repeating unit of histones and DNA[J].Science.1974,184(4139):868-871.
    [38]Roth SY, Denu JM, Allis CD. Histone acetyltransferases[J]. Annu Rev Biochem.2001,70:81-120.
    [39]Ferland CL, Schrader LA. Regulation of histone acetylation in the hippocampus ofchronically stressed rats: a potential role of sirtuins[J]. Neuroscience.2011,174:104-114.
    [40]Onishchenko N, Karpova N, Sabri F, et al. Long-lasting depression-like behaviorand epigenetic changes of BDNF gene expression induced by perinatal exposure tomethylmercury[J]. J Neurochem.2008,106(3):1378-1387.
    [41]Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatinregulation in a mouse model of depression and antidepressant action[J]. NatNeurosci.2006,9(4):519-525.
    [42]Iga J, Ueno S, Yamauchi K, et al. Altered HDAC5and CREB mRNA expressionsin the peripheral leukocytes of major depression[J]. Prog NeuropsychopharmacolBiol Psychiatry.2007,31(3):628-632.
    [43]Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histonedeacetylases in mood disorder patients[J]. J Psychiatr Res.2010,44(5):263-270.
    [44]Strey CW, Schamell L, Oppermann E, et al. Valproate inhibits colon cancer growththrough cell cycle modification in vivo and in vitro[J]. Exp Ther Med.2011,2(2):301-307.
    [45]Gavin DP, Kartan S, Chase K, et al. Histone deacetylase inhibitors and candidategene expression: An in vivo and in vitro approach to studying chromatinremodeling in a clinical population[J]. J Psychiatr Res.2009,43(9):870-876.
    [46]Malberg JE, Schechter LE. Increasing hippocampal neurogenesis: a novelmechanism for antidepressant drugs[J]. Curr Pharm Des.2005,11(2):145-155.
    [47]Duman RS, Monteggia LM. A neurotrophic model for stress-related mooddisorders[J]. Biol Psychiatry.2006,59(12):1116-1127.
    [48]Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depressionand in antidepressant treatment[J]. Psychiatry Investig.2010,7(4):231-235.
    [49]Molendijk ML, Bus BA, Spinhoven P, et al. Serum levels of brain-derivedneurotrophic factor in major depressive disorder: state-trait issues, clinicalfeatures and pharmacological treatment[J]. Mol Psychiatry.2011,16(11):1088-1095.
    [50]Fava M. The role of the serotonergic and noradrenergic neurotransmitter systems inthe treatment of psychological and physical symptoms of depression[J]. J ClinPsychiatry.2003,64:26-29.
    [51]Komori T, Nomura J, Inoue K, Kitayama I. Tyrosine hydroxylase activity indiscrete brain regions of depression model rats[J]. Jpn J Psychiatry Neurol.1990,44(4):747-754.
    [52]Fu AL, Wu SP, Dong ZH, Sun MJ. A novel therapeutic approach to depression viasupplement with tyrosine hydroxylase[J]. Biochem Biophys Res Commun.2006,351(1):140-145.
    [53]Mann JJ, Malone KM, Nielsen DA, et al. Possible association of a polymorphismof the tryptophan hydroxylase gene with suicidal behavior in depressed patients[J].Am J Psychiatry.1997,154(10):1451-1453.
    [54]Kim SW, Park SY, Hwang O.Up-regulation of tryptophan hydroxylase expressionand serotonin synthesis by sertraline[J]. Mol Pharmacol.2002,61(4):778-785.
    [55]Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, YoungT, Praschak-Rieder N, Wilson AA, Houle S. Elevated monoamine oxidase a levelsin the brain: an explanation for the monoamine imbalance of major depression[J].Arch Gen Psychiatry.2006,63(11):1209-1216.
    [56]Schulze TG, Müller DJ, Krauss H, et al. Association between a functionalpolymorphism in the monoamine oxidase A gene promoter and major depressivedisorder[J]. Am J Med Genet.2000,96(6):801-803.
    [57]Preisig M, Bellivier F, Fenton BT, et al. Association between bipolar disorderand monoamine oxidase A gene polymorphisms: results of a multicenter study[J].Am J Psychiatry.2000,157(6):948-955.
    [58]Thase ME. The role of monoamine oxidase inhibitors in depression treatmentguidelines[J]. J Clin Psychiatry.2012,73:10-16.
    [59]Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease andhealthy States[J]. Int J Tryptophan Res.2009,2:1-19.
    [60]Maes M, Leonard BE, Myint AM, et al. The new '5-HT' hypothesis of depression:cell-mediated immune activation induces indoleamine2,3-dioxygenase, whichleads to lower plasma tryptophan and an increased synthesis of detrimentaltryptophan catabolites (TRYCATs), both of which contribute to the onset ofdepression[J]. Prog Neuropsychopharmacol Biol Psychiatry.2011,35(3):702-721.
    [61]Hepgul N, Mondelli V, Pariante CM. Psychological and biological mechanisms ofcytokine induced depression[J]. Epidemiol Psichiatr Soc.2010,19(2):98-102.
    [62]Okuda S, Nishiyama N, Saito H, et al.3-Hydroxykynurenine, an endogenousoxidative stress generator, causes neuronal cell death with apoptotic features andregion selectivity[J]. J Neurochem.1998,70(1):299-307.
    [63]Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A. Quinolinic Acid, anendogenous molecule combining excitotoxicity, oxidative stress and other toxicmechanisms[J]. Int J Tryptophan Res.2012,5:1-8.
    [64]O'Connor JC, André C, Wang Y, et al. Interferon-gamma and tumor necrosisfactor-alpha mediate the upregulation of indoleamine2,3-dioxygenase and theinduction of depressive-like behavior in mice in response to bacillus Calmette-Guerin[J]. J Neurosci.2009,29(13):4200-4209.
    [65]Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biologyand Animal Models[J]. Front Mol Neurosci.2011,4:40.
    [66]Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase3beta incellular signaling[J]. Prog Neurobiol.2001,65(4):391-426.
    [67]Leroy K, Brion JP. Developmental expression and localization of glycogen synthasekinase-3beta in rat brain[J]. J Chem Neuroanat.1999,16(4):279-293.
    [68]Karege F, Perroud N, Burkhardt S, et al. Alteration in kinase activity but not inprotein levels of protein kinase B and glycogen synthase kinase-3beta in ventralprefrontal cortex of depressed suicide victims[J]. Biol Psychiatry.2007,61(2):240-245.
    [69]Inkster B, Nichols TE, Saemann PG, et al. Association of GSK3beta polymorphismswith brain structural changes in major depressive disorder[J]. Arch Gen Psychiatry.2009,66(7):721-728.
    [70]Kaidanovich-Beilin O, Milman A, Weizman A, et al.Rapid antidepressive-likeactivity of specific glycogen synthase kinase-3inhibitor and its effect on beta-catenin in mouse hippocampus[J]. Biol Psychiatry.2004,55(8):781-784.
    [1] Kessler RC, Adler L, Barkley R, et al. The prevalence and correlates of adultADHD in the United States: results from the National Comorbidity SurveyReplication[J]. Am J Psychiatry.2006,163(4):716-723.
    [2] Trivedi MH, Fava M, Wisniewski SR,et al. Medication augmentation after thefailure of SSRIs for depression[J]. N Engl J Med.2006,354(12):1243-1252.
    [3] Judd LL, Akiskal HS, Schettler PJ, et al. The long-term natural history of theweekly symptomatic status of bipolar I disorder[J]. Arch Gen Psychiatry.2002,59(6):530-537.
    [4] Sachs GS, Gardner-Schuster EE. Adjunctive treatment of acute mania: a clinicaloverview[J]. Acta Psychiatr Scand Suppl.2007,116:27-34.
    [5] Zarate CA, Manji HK. Bipolar disorder: candidate drug targets[J]. Mt Sinai J Med.2008,75(3):226-247.
    [6] Alda M, Hajek T, Calkin C, et al. Treatment of bipolar disorder: newperspectives[J]. Ann Med.2009,41(3):186-196.
    [7] JKaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from CellBiology and Animal Models[J]. Front Mol Neurosci.2011,4:40.
    [8] Beaulieu JM, Zhang X, Rodriguiz RM, et al. Role of GSK3beta in behavioralabnormalities induced by serotonin deficiency[J]. Proc Natl Acad Sci USA.2008,105(4):1333-1338.
    [9] Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3activity and mimics wingless signaling in intact cells[J]. Curr Biol.1996,6(12):1664-1668.
    [10]Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target forlithium mimetic drugs[J]. Neuropsychopharmacology.2005,30(7):1223-1237.
    [11]Chen G, Huang LD, Jiang YM, et al. The mood-stabilizing agent valproate inhibitsthe activity of glycogen synthase kinase-3[J]. J Neurochem.1999,72(3):1327-1330.
    [12]Gurvich N, Klein PS. Lithium and valproic acid: parallels and contrasts in diversesignaling contexts[J]. Pharmacol Ther.2002,96(1):45-66.
    [13]Chuang DM. The antiapoptotic actions of mood stabilizers: molecular mechanismsand therapeutic potentials[J]. Ann N Y Acad Sci.2005,1053:195-204.
    [14]Aubry JM, Schwald M, Ballmann E, et al. Early effects of mood stabilizers on theAkt/GSK-3beta signaling pathway and on cell survival and proliferation[J].Psychopharmacol (Berl).2009,205(3):419-429.
    [15]Gould TD, Zarate CA, Manji HK. Glycogen synthase kinase-3: a target for novelbipolar disorder treatments[J]. J Clin Psychiatry.2004,65(1):10-21.
    [16]Gould TD, Picchini AM, Einat H, et al. Targeting glycogen synthase kinase-3in theCNS:implications for the development of new treatments for mood disorders[J].Curr Drug Targets.2006,7(11):1399-1409.
    [17]Gould TD, Einat H, Bhat R, et al. AR-A014418, a selective GSK-3inhibitor,produces antidepressant-like effects in the forced swim test[J]. Int JNeuropsychopharmacol.2004,7(4):387-390.
    [18]Rayasam GV, Tulasi VK, Sodhi R, et al. Glycogen synthase kinase3: more than anamesake[J]. Br J Pharmacol.2009,156(6):885-898.
    [19]Stabel S, Parker PJ. Protein kinase C[J]. Pharmacol Ther.1991,51(1):71-95.
    [20]Zeng L, Webster SV, Newton PM. The biology of protein kinase C[J]. Adv ExpMed Biol.2012,740:639-661.
    [21]Steckert AV, Valvassori SS, Mina F, et al. Protein kinase C and oxidative stress in ananimal model of mania[J]. Curr Neurovasc Res.2012,9(1):47-57.
    [22]Friedman E, Hoau Yan W, Levinson D, et al. Altered platelet protein kinase Cactivity in bipolar affective disorder, manic episode[J]. Biol Psychiatry.1993,33(7):520-525.
    [23]Hahn CG, Friedman E. Abnormalities in protein kinase C signaling and thepathophysiology of bipolar disorder[J]. Bipolar Disord.1999,1(2):81-86.
    [24]Einat H, Yuan P, Szabo ST, et al. Protein kinase C inhibition by tamoxifenantagonizes manic-like behavior in rats: implications for the development of noveltherapeutics for bipolar disorder[J]. Neuropsychobiology.2007,55(3-4):123-131.
    [25]Zarate CA Jr, Singh JB, Carlson PJ, et al. Efficacy of a protein kinase C inhibitor(tamoxifen) in the treatment of acute mania: a pilot study[J]. Bipolar Disord.2007,9(6):561-570.
    [26]Yildiz A, Guleryuz S, Ankerst DP, et al. Protein kinase C inhibition in the treatmentof mania: a double-blind, placebo-controlled trial of tamoxifen[J]. Arch GenPsychiatry.2008,65(3):255-263.
    [27]Mallinger AG, Thase ME, Haskett R, et al. Verapamil augmentation of lithiumtreatment improves outcome in mania unresponsive to lithium alone: preliminaryfindings and a discussion of therapeutic mechanisms[J]. Bipolar Disord.2008,10(8):856-866.
    [28]Bird A. Perceptions of epigenetics[J]. Nature.2007,447(7143):396-398.
    [29]Kornberg RD. Chromatin structure: repeating unit of histones and DNA[J].Science.1974,184(4139):868-871.
    [30]Langley B, Gensert JM, Beal MF, et al. Remodeling chromatin and stress resistancein the central nervous system: histone deacetylase inhibitors as novel and broadlyeffective neuroprotective agents[J]. Curr Drug Targets.2005,4(10):41-50.
    [31]Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylaseinhibitors in the pharmacotherapy of psychiatric disorders[J]. Mol Pharmacol.2010,77(2):126-135.
    [32]Yamawaki Y, Fuchikami M, Morinobu S, et al. Antidepressant-like effectof sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in therat hippocampus[J]. World J Biol Psychiatry.2012,13(6):458-467.
    [33]Covington HE3rd, Vialou VF, et al. Hippocampal-dependent antidepressant-likeactivity of histone deacetylase inhibition[J]. Neurosci Lett.2011,493(3):122-126.
    [34]Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatinregulation in a mouse model of depression and antidepressant action[J]. NatNeurosci.2006,9(4):519-525.
    [35]Chen PS, Peng GS, Li G, et al. Valproate protects dopaminergic neurons inmidbrain neuron/glia cultures by stimulating the release of neurotrophic factorsfrom astrocytes[J]. Mol Psychiatry.2006,11(12):1116-1125.
    [36]Chen PS, Wang CC, Bortner CD, et al. Valproic acid and other histone deacetylaseinhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induceddopaminergic neurotoxicity[J]. Neuroscience.2007,149(1):203-212.
    [37]Lanfumey L, Mongeau R, Hamon M. Biological rhythms and melatonin in mooddisorders and their treatments[J]. Pharmacol Ther.2013,138(2):176-184.
    [38]Willis GL. Parkinson's disease as a neuroendocrine disorder of circadian function:dopamine-melatonin imbalance and the visual system in the genesis andprogression of the degenerative process[J]. Rev Neurosci.2008,19(4-5):245-316.
    [39]Srinivasan V, Pandi-Perumal SR, Trakht I, et al. Pathophysiology of depression:role of sleep and the melatonergic system[J]. Psychiatry Res.2009,165(3):201-214.
    [40]Quera Salva MA, Hartley S, Barbot F, et al. Circadian rhythms, melatonin anddepression[J]. Curr Pharm Des.2011,17(15):1459-1470.
    [41]Bersani G, Garavini A. Melatonin add-on in manic patients with treatment resistantinsomnia[J]. Prog Neuropsychopharmacol Biol Psychiatry.2000,24(2):185-191.
    [42]Norman TR. Agomelatine, melatonin and depressive disorder[J]. Expert OpinInvestig Drugs.2013,22(4):407-410.
    [43]Srinivasan V, Zakaria R, Othman Z, et al. Agomelatine in depressive disorders: itsnovel mechanisms of action[J]. J Neuropsychiatry Clin Neurosci.2012,24(3):290-308.
    [44]Bertaina-Anglade V, la Rochelle CD, Boyer PA, et al. Antidepressant-like effects ofagomelatine (S20098) in the learned helplessness model[J]. Behav Pharmacol.2006,17(8):703-713.
    [45]Millan MJ, Brocco M, Gobert A, et al. Anxiolytic properties of agomelatine, anantidepressant with melatoninergic and serotonergic properties: role of5-HT2Creceptor blockade[J].Psychopharmacology (Berl).2005,177(4):448-458.
    [46]Papp M, Gruca P, Boyer PA, et al. Effect of agomelatine in the chronic mild stressmodel of depression in the rat[J]. Neuropsychopharmacology.2003,28(4):694-703.
    [47]Srinivasan V, De Berardis D, Shillcutt SD, et al. Role of melatonin in mooddisorders and the antidepressant effects of agomelatine[J]. Expert Opin InvestigDrugs.2012,21(10):1503-1522.
    [48]Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressivedisorder. Ann Pharmacother[J].2008,42(12):1822-1831.
    [49]L o H, Hale A, D'haenen H. Determination of the dose of agomelatine,a melatoninergic agonist and selective5-HT(2C) antagonist, in the treatment ofmajor depressive disorder: placebo-controlled dose range study[J]. Int ClinPsychopharmacol.2002,17(5):239-247.
    [50]Sapetti A. Agomelatine: an antidepressant without deterioration of sexualresponse[J]. J Sex Marital Ther.2012,38(2):190-197.
    [51]Banasr M, Soumier A, Hery M, et al. Agomelatine, a new antidepressant, inducesregional changes in hippocampal neurogenesis[J]. Biol Psychiatry.2006,59(11):1087-1096.
    [52]Chenu F, El Mansari M, Blier P. Electrophysiological effects of repeatedadministration of agomelatine on the dopamine, norepinephrine, and serotoninsystems in the rat brain[J]. Neuropsychopharmacology.2013,38(2):275-284.
    [53]Satake H, Aoyama M, Sekiguchi T, et al. Insight into molecular and functionaldiversity of tachykinins and their receptors[J]. Protein Pept Lett.2012.
    [54]Khawaja AM, Rogers DF. Tachykinins: receptor to effector[J]. Int J Biochem CellBiol.1996,28(7):721-738.
    [55]Ebner K, Sartori SB, Singewald N. Tachykinin receptors as therapeutic targets instress-related disorders[J]. Curr Pharm Des.2009,15(14):1647-1674.
    [56]Ebner K, Singewald N. The role of substance P in stress and anxiety responses[J].Amino Acids.2006,31(3):251-272.
    [57]Czéh B, Pudovkina O, van der Hart MG, et al. Examining SLV-323, a novel NK1receptor antagonist, in a chronic psychosocial stress model for depression[J].Psychopharmacology (Berl).2005,180(3):548-557.
    [58]Kramer MS, Winokur A, Kelsey J, et al. Demonstration of the efficacy and safety ofa novel substance P (NK1) receptor antagonist in major depression[J].Neuropsychopharmacology.2004,29(2):385-392.
    [59]Overstreet DH, Naimoli VM, Griebel G. Saredutant, an NK2receptor antagonist,has both antidepressant-like effects and synergizes with desipramine in an animalmodel of depression[J]. Pharmacol Biochem Behav.2010,96(2):206-210.
    [60]Salomé N, Stemmelin J, Cohen C, et al. Selective blockade of NK2or NK3receptors produces anxiolytic-and antidepressant-like effects in gerbils. PharmacolBiochem Behav.2006,83(4):533-539.
    [61]Louis C, Stemmelin J, Boulay D, et al. Additional evidence for anxiolytic-andantidepressant-like activities of saredutant (SR48968), an antagonist at theneurokinin-2receptor in various rodent-models[J]. Pharmacol Biochem Behav.2008,89(1):36-45.
    [62]Hopkins CR. ACS chemical neuroscience molecule spotlight on Saredutant[J]. ACSChem Neurosci.2010,1(10):653-654.
    [63]Altamura M. Tachykinin NK2receptor antagonists. A patent review (2006-2010)[J]. Expert Opin Ther Pat.2012,22(1):57-77.
    [64]Maes M, Galecki P, Chang YS, et al. A review on the oxidative and nitrosativestress (O&NS) pathways in major depression and their possible contribution to the(neuro)degenerative processes in that illness[J]. Prog Neuropsychopharmacol BiolPsychiatry.2011,35:676-692.
    [65]Kuloglu M, Ustundag B, Atmaca M, et al. Lipid peroxidation and antioxidantenzyme levels in patients with schizophrenia and bipolar disorder[J]. Cell BiochemFunct.2002,20(2):171-175.
    [66]Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms inbipolar disorder--a double-blind randomized placebo-controlled trial[J]. BiolPsychiatry.2008,64(6):468-475.
    [67]Berk M, Dean O, Cotton SM, et al. The efficacy of N-acetylcysteine as anadjunctive treatment in bipolar depression: an open label trial[J]. J AffectDisord.2011,135(1-3):389-94.
    [68]Saks VA, Kongas O, Vendelin M, et al. Role of the creatine/phosphocreatinesystem in the regulation of mitochondrial respiration[J]. Acta Physiol Scand.2000,168(4):635-641.
    [69]Freitas TP, Scaini G, Corrêa C, et al. Evaluation of brain creatine kinase activity inan animal model of mania induced by ouabain[J]. J Neural Transm.2010,117(2):149-153.
    [70]Segal M, Avital A, Drobot M, et al. Serum creatine kinase level in unmedicatednonpsychotic, psychotic, bipolar and schizoaffective depressed patients[J]. EurNeuropsychopharmacol.2007,17(3):194-198.
    [71]Roitman S, Green T, Osher Y, et al. Creatine monohydrate in resistant depression: apreliminary study[J]. Bipolar Disord.2007,9(7):754-758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700