用户名: 密码: 验证码:
WAS综合征特异性无整合诱导性多能干细胞体外造血分化及基因靶向编辑研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞重编程技术的重大突破为研究人类发育和疾病搭建了新的体外平台,更为个体化细胞治疗提供了新的策略,是发育生物学领域的巨大革新。解决安全性问题是重编程细胞走向临床应用的前提和关键。本研究利用游离型载体技术将WAS综合征(Wiskott-Aldrich Syndrome, WAS)患者的成纤维细胞重编程为安全的无整合诱导性多能干细胞(Induced Pluripotent Stem Cell, iPSCs)。这些WAS特异性iPSCs可在体外诱导分化为血液细胞,并显示疾病相关表型,因此可作为WAS的体外研究平台。更为重要的是,我们对TALEN介导的WAS基因同源重组策略进行了优化,可对iPSCs基因组高效编辑,从而得到纠正WAS基因的患者特异性iPSCs本研究将为再生医学替代细胞iPSCs的安全获得和安全基因操作提供典范。
     第一章WAS综合征特异性无整合诱导性多能干细胞株的建立和鉴定
     WAS综合征是由WAS基因发生功能缺失型突变所导致的x染色体连锁的免疫缺陷病。WAS蛋白在血液细胞中特异性表达并介导Actin多聚化,是维持正常免疫系统功能不可或缺的重要因子。为建立WAS综合征的体外研究模型,我们利用表达OCT3/4、SOX2、KLF4、L-MYC、LIN28和TP53shRNA的游离型载体重编程WAS综合征患者成纤维细胞。我们所建立的WAS综合征特异性iPSCs (WAS-iPSCs)在形态学与基因表达模式上均与正常人胚胎干细胞(Embryonic Stem Cells, ESCs)相似,且表达完全重编程特异性标志Tra-1-60和Tra-1-81。PCR分析和基因测序结果显示这些WAS-iPSC克隆不含任何重编程载体DNA残留,且均携带患者WAS基因突变,为安全无整合的iPSCs,可用作体外疾病模拟及后续基因操作。
     第二章WAS-iPSCs体外造血分化及疾病表型鉴定
     iPSCs的体外定向分化为研究正常生理发育及疾病进展创造了体外研究平台。为了证实WAS综合征疾病相关表型可在体外模拟,我们利用基质细胞共培养法诱导WAS-iPSCs造血分化。在GM-CSF和M-CSF的作用下,我们从分化体系中成功分离并扩增了CD45+CD43+CD11c+造血祖细胞,后者可在甲基纤维素培养基中分化形成CFU-G、CFU-M和CFU-GM等集落形成单位。为研究成熟免疫细胞功能,我们利用相关细胞因子进一步分化得到CD11c+CD14+CD163+巨噬细胞。我们通过体外实验证实WAS-iPSCs来源的巨噬细胞具有抗原摄取与处理能力、吞噬作用、趋化作用等巨噬细胞经典生物学行为。同时,我们通过免疫荧光染色观察到WAS-iPSCs来源的巨噬细胞由于WAS蛋白功能不全所导致的足体结构形成缺陷。综上,本研究所建立的WAS-iPSCs克隆为研究WAS蛋白在血液免疫系统发育过程中的作用提供了理想的体外模型,经过基因纠正后,将为WAS综合征患者的干细胞基因治疗提供无限细胞来源。
     ‘第三章TALEN介导的WAS基因高效靶向编辑
     对患者来源iPSCs的病变基因进行安全高效的修复是个体化干细胞基因治疗的关键。转录激活子样效应因子核酸酶(Transcription Activator-Like Effector Nuclease, TALEN)介导的基因靶向编辑是目前哺乳动物基因组改造最有前景的策略之一。但是,TALEN的优化设计方案、以及TALEN表达质粒与基因编辑模板的细胞导入方案还没有很好地建立。因此TALEN介导的基因靶向编辑效率普遍较低。本研究针对WAS基因6号内含子高突变位点设计了一系列TALEN组合,并探讨了TALEN靶序列和spacer长度对靶向基因剪切效率的影响,从而优化了TALEN的设计方案。同时,我们采用整合酶缺陷型慢病毒载体(Integration-defective Lentiviral Vectors, IDLVs)作为基因编辑模板的导入手段,使TALEN介导的靶向基因编辑效率大幅提高。本研究为实现人iPSCs的高效基因改造提供了新的优化策略。
Progress in cell reprogramming revolutionizes the whole field of development biology, provides unprecedented opportunity for ex vivo study of human diseases and opens up innovative personalized cell therapy strategy to treat these diseases. Safety concern is one of the most important issues for the clinical application of those reprogrammed cells. Here we show that integration-free induced pluripotent stem cell (iPSCs) can be generated from the fibroblasts of a Wiskott-Aldrich Syndrome (WAS) patient. Those WAS-iPSCs give rise to hematopoietic cells when being differentiated in vitro, and show disease related phenotypes. Most importantly, we show the possibility that the WAS gene mutation in WAS-iPSCs can be corrected via an enhanced TALEN mediated homologous recombination strategy. Our work offers proof-of-principle that iPSCs can be generated and manipulated safely in vitro and serve as an alternative sauce for regenerative medicine.
     Chapter1Establishment and characterization of integration-free iPSCs from WAS patient fibroblasts
     WAS is an X-linked primary immunodeficiency disorder caused by loss-of-function mutations in the gene for the WAS protein. WAS protein is exclusively expressed in hematopoietic lineages and it modulates actin polymerization which is indispensable for the development of an organized immunological system for host defense and maintenance of tolerance. To establish an ex vivo model to study WAS, we reprogrammed the fibroblasts of a WAS patient with3episomal plasmids expressing OCT3/4, SOX2, KLF4, L-MYC, LIN28and TP53shRNA. The established iPSC clones exhibited similar morphology and gene expression pattern as normal human embryonic stem cells (ESCs), and expressed pluripotency markers including Tra-1-60and Tra-1-81. PCR analysis of four WAS-iPSC clones failed to detect any residual episomal DNA, confirming the loss of the input plasmids once the iPSC clones were established. The WAS gene mutation in parental fibroblasts was inherited by all the iPSC clones we tested, indicating those WAS-iPSC clones could be used for in vitro disease modeling and gene manipulation.
     Chapter2Hematopoietic differentiation of WAS patient-specific iPSCs shows distinct disease related phenotypes
     In vitro differentiation of iPSCs to specific tissues or cell types facilitates the study of normal development and disease progression. To determine whether the WAS disease phenotypes can be recapitulated in a dish, we differentiated the WAS-iPSCs into hematopoietic lineage ex vivo through a stromal cell co-culture system. In the presence of GM-CSF and M-CSF, we successfully expanded CD45+CD43+CD11c+progenitors which could give rise to CFU-G, CFU-M and CFU-GM in colony forming cell assay. Further differentiation with proper cytokines showed normal maturation of those progenitors into CD11c+CD14+CD163+macrophages, the vital cell population of innate and adaptive immunity. The WAS-iPSCs derived macrophages were functional in antigen uptake and processing, phagocytosis and chemotaxis. However, these macrophages failed to show the normal podosome formation, due to the defect in WAS gene. Thus these WAS-iPSC clones may provide an ideal ex vivo system to study the role of WAS protein in the development of a functional immune system, and provide a safer, unlimited source for stem cell gene therapy for WAS patients upon gene correction.
     Chapter3High efficiency TALEN-based WAS gene editing mediated by an integration defective lentiviral vector
     Safely and efficiently correction of mutant genes in patient specific iPSCs is crucial for personalized stem cell gene therapy. Recent development in the design of Transcription Activator-Like Effector Nuclease (TALEN) provides a new strategy for targeted gene editing. However, the guideline to optimize TALEN design and the strategy for the delivery of TALEN and the gene editing template are not fully established, and the gene editing efficiency in mammalian cells especially in human iPSCs remains low. In the current study, we designed several TALEN pairs targeting a region in intron6of the WAS gene and showed that both the number of the TALEN repeats and the size of the spacer between the two TALEN-binding sites could modulate the genomic cutting efficiency. We also found that using an integration-defective lentiviral vector (IDLV) to deliver the gene-editing template significantly enhanced the gene editing efficiency. Our study not only showed a possible effective way to achieve WAS gene correction in the WAS-iPSC clones we established, but also facilitate the use of TALEN as a tool for potent genome editing in mammalian cells such as human iPSCs.
引文
1. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science,1998.282(5391):p.1145-7.
    2. Schwartz, S.D., et al., Embryonic stem cell trials for macular degeneration:a preliminary report. Lancet,2012.379(9817):p.713-20.
    3. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006. 126(4):p.663-76.
    4. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007.131(5):p.861-72.
    5. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science,2007.318(5858):p.1917-20.
    6. Hacein-Bey-Abina, S., et al., LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science,2003.302(5644):p. 415-9.
    7. Howe, S.J., et al., Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest,2008.118(9):p.3143-50.
    8. Hacein-Bey-Abina, S., et al., Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest,2008.118(9):p. 3132-42.
    9. Boch, J., et al., Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science,2009.326(5959):p.1509-12.
    10. Moscou, M.J. and A.J. Bogdanove, A simple cipher governs DNA recognition by TAL effectors. Science,2009.326(5959):p.1501.
    11. Christian, M., et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics,2010.186(2):p.757-61.
    12. Li, T., et al., TAL nucleases (TALNs):hybrid proteins composed of TAL effectors and Fokl DNA-cleavage domain. Nucleic Acids Res,2011.39(1):p. 359-72.
    13. Mahfouz, M.M., et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A,2011.108(6):p.2623-8.
    14. Miller, J.C., et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol,2011.29(2):p.143-8.
    15. Cermak, T., et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res,2011. 39(12):p. e82.
    16. Li, T., et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res,2011. 39(14):p.6315-25.
    17. Morbitzer, R., et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res,2011.39(13):p.5790-9.
    18. Zhang, F., et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol,2011.29(2):p.149-53.
    19. Weber, E., et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One,2011.6(5):p. e19722.
    20. Reyon, D., et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol,2012.30(5):p.460-5.
    21. Forte, L. and A.C. Berardi, Stem cell technologies based on hemangioblast technology focusing on human blood cells. Recent Pat Drug Deliv Formul, 2013.7(1):p.4-8.
    22. van Bekkum, D.W. and H.M. Mikkers, Prospects and challenges of induced pluripotent stem cells as a source of hematopoietic stem cells. Ann N Y Acad Sci,2012.1266:p.179-88.
    23. Van Zant, G. and Y. Liang, Concise review:hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med,2012.1(9):p.651-7.
    24. Kotsiou, E. and J.K. Davies, New ways to separate graft-versus-host disease and graft-versus-tumour effects after allogeneic haematopoietic stem cell transplantation. Br J Haematol,2013.160(2):p.133-45.
    25. Amabile, G., et al., In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood,2012.
    26. Zhu, Q., et al., Wiskott-Aldrich syndrome/X-linked thrombocytopenia:WASP gene mutations, protein expression, and phenotype. Blood,1997.90(7):p. 2680-9.
    27. Puri, M.C. and A. Nagy, Concise review:Embryonic stem cells versus induced pluripotent stem cells:the game is on. Stem Cells,2012.30(1):p.10-4.
    28. Yamanaka, S., Induced pluripotent stem cells:past, present, and future. Cell Stem Cell,2012.10(6):p.678-84.
    29. Kurisu, S. and T. Takenawa, The WASP and WAVE family proteins. Genome Biol,2009.10(6):p.226.
    30. Thrasher, A.J. and S.O. Burns, WASP:a key immunological multitasker. Nat Rev Immunol,2010.10(3):p.182-92.
    31. Merten, O.W., et al., Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther,2011.22(3):p.343-56.
    32. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature,2007.448(7151):p.313-7.
    33. Yu, J., et al., Human induced pluripotent stem cells free of vector and transgene sequences. Science,2009.324(5928):p.797-801.
    34. Okita, K., et al., A more efficient method to generate integration-free human iPS cells. Nat Methods,2011.8(5):p.409-12.
    35. Huangfu, D., et al., Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol,2008.26(7):p. 795-7.
    36. Huangfu, D., et al., Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol,2008.26(11):p.1269-75.
    37. Yates, J., et al., A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A,1984.81(12):p.3806-10.
    38. Sugden, B. and N. Warren, A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol,1989.63(6): p.2644-9.
    39. Stadtfeld, M., et al., Induced pluripotent stem cells generated without viral integration. Science,2008.322(5903):p.945-9.
    40. Okita, K., et al., Generation of mouse induced pluripotent stem cells without viral vectors. Science,2008.322(5903):p.949-53.
    41. Chou, B.K., et al., Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res,2011.21(3):p.518-29.
    42. Mali, P., et al., Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells,2010.28(4):p.713-20.
    43. Chan, E.M., et al., Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol,2009.27(11):p.1033-7.
    44. Leight, E.R. and B. Sugden, The cis-acting family of repeats can inhibit as well as stimulate establishment of an oriP replicon. J Virol,2001.75(22):p. 10709-20.
    45. Nanbo, A., A. Sugden, and B. Sugden, The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. EMBO J,2007. 26(19):p.4252-62.
    46. Stray-Pedersen, A., T.G. Abrahamsen, and S.S. Froland, Primary immunodeficiency diseases in Norway. J Clin Immunol,2000.20(6):p.477-85.
    47. Jin, Y., et al., Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood,2004.104(13):p.4010-9.
    48. Jang, J., et al., Disease-specific induced pluripotent stem cells:a platform for human disease modeling and drug discovery. Exp Mol Med,2012.44(3):p. 202-13.
    49. Kudva, Y.C., et al., Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med, 2012.1(6):p.451-61.
    50. Mou, X., et al., Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. Stem Cell Res Ther, 2012.3(2):p.14.
    51. Agarwal, S., et al., Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature,2010.464(7286):p.292-6.
    52. Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature,2009.457(7227):p.277-80.
    53. Chang, T., et al., Brief report:phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells, 2011.29(12):p.2090-3.
    54. Raya, A., et al., Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature,2009.460(7251):p.53-9.
    55. Sollano, J.A., et al., The economics of drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol Ther,2008. 84(2):p.263-6.
    56. Kaitin, K.I., Obstacles and opportunities in new drug development. Clin Pharmacol Ther,2008.83(2):p.210-2.
    57. Inoue, H. and S. Yamanaka, The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther,2011.89(5):p.655-61.
    58. Lee, W.I., et al., Clinical aspects and genetic analysis of taiwanese patients with wiskott-Aldrich syndrome protein mutation:the first identification of x-linked thrombocytopenia in the chinese with novel mutations. J Clin Immunol, 2010.30(4):p.593-601.
    59. Niwa, A., et al., A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One,2011.6(7):p. e22261.
    60. Morishima, T., et al., Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol,2011.226(5):p.1283-91.
    61. Grigoriadis, A.E., et al., Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood,2010.115(14): p.2769-76.
    62. Lengerke, C., et al., Hematopoietic development from human induced pluripotent stem cells. Ann N Y Acad Sci,2009.1176:p.219-27.
    63. Takayama, N., et al., Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med,2010.207(13):p.2817-30.
    64. Choi, K.D., M. Vodyanik, and Slukvin, II, Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc,2011.6(3):p.296-313.
    65. Senju, S., et al., Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther,2011.18(9): p.874-83.
    66. Carpenter, L., et al., Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood,2011.117(15):p.4008-11.
    67. Vizcardo, R., et al., Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell,2013.12(1):p. 31-6.
    68. Seiler, K., M. Tsuneto, and F. Melchers, Experimental limitations using reprogrammed cells for hematopoietic differentiation. J Biomed Biotechnol, 2011.2011:p.895086.
    69. Zicha, D., et al., Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome. Br J Haematol,1998.101(4):p.659-65.
    70. Linder, S., et al., The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J Immunol, 2000.165(1):p.221-5.
    71. Ishihara, D., et al., The chemotactic defect in wiskott-Aldrich syndrome macrophages is due to the reduced persistence of directional protrusions. PLoS One,2012.7(1):p. e30033.
    72. Isaac, B.M., et al., N-WASP has the ability to compensate for the loss of WASP in macrophage podosome formation and chemotaxis. Exp Cell Res,2010. 316(20):p.3406-16.
    73. Ng, E.S., et al., Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood,2005.106(5):p.1601-3.
    74. Chadwick, K., et al., Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood,2003.102(3):p.906-15.
    75. Vodyanik, M.A., et al., Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood,2005.105(2):p.617-26.
    76. Choi, K.D., et al., Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells,2009.27(3):p.559-67.
    77. Inoue-Yokoo, T., K. Tani, and D. Sugiyama, Mesodermal and Hematopoietic Differentiation from ES and iPS Cells. Stem Cell Rev,2012.
    78. Meyer-Bahlburg, A., et al., Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood,2008.112(10):p. 4158-69.
    79. Cotta-de-Almeida, V., et al., Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc Natl Acad Sci U S A,2007. 104(39):p.15424-9.
    80. Westerberg, L.S., et al., Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function. Blood, 2012.119(17):p.3966-74.
    81. Konno, A., et al., Differential contribution of Wiskott-Aldrich syndrome protein to selective advantage in T-and B-cell lineages. Blood,2004.103(2):p.676-8.
    82. Davis, B.R., et al., Unprecedented diversity of genotypic revertants in lymphocytes of a patient with Wiskott-Aldrich syndrome. Blood,2008.111(10): p.5064-7.
    83. Lorenzi, R., et al., Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood,2000.95(9):p.2943-6.
    84. Leverrier, Y., et al., Cutting edge:the Wiskott-Aldrich syndrome protein is required for efficient phagocytosis of apoptotic cells. J Immunol,2001.166(8): p.4831-4.
    85. Tsuboi, S. and J. Meerloo, Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J Biol Chem,2007.282(47): p.34194-203.
    86. Burns, S., et al., Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood,2001.98(4):p.1142-9.
    87. Linder, S., et al., Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A,1999.96(17):p. 9648-53.
    88. Badolato, R., et al., Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-Ⅰ and formyl-methionyl-leucyl-phenylalanine. J Immunol,1998.161(2):p.1026-33.
    89. Wirt, S.E. and M.H. Porteus, Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol,2012.24(5):p.609-16.
    90. Davis, D. and D. Stokoe, Zinc finger nucleases as tools to understand and treat human diseases. BMC Med,2010.8:p.42.
    91. Cathomen, T. and J.K. Joung, Zinc-finger nucleases:the next generation emerges. Mol Ther,2008.16(7):p.1200-7.
    92. Gabriel, R., et al., An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol,2011.29(9):p.816-23.
    93. Joung, J.K., E.I. Ramm, and C.O. Pabo, A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci U S A,2000.97(13):p.7382-7.
    94. Bogdanove, A.J. and D.F. Voytas, TAL effectors:customizable proteins for DNA targeting. Science,2011.333(6051):p.1843-6.
    95. Sugio, A., et al., Two type Ⅲ effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAgammal and OsTFXl during bacterial blight of rice. Proc Natl Acad Sci U S A,2007.104(25):p.10720-5.
    96. Kay, S., et al., A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science,2007.318(5850):p.648-51.
    97. Kay, S. and U. Bonas, How Xanthomonas type Ⅲ effectors manipulate the host plant. Curr Opin Microbiol,2009.12(1):p.37-43.
    98. Schornack, S., et al., Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol,2006.163(3):p. 256-72.
    99. Morbitzer, R., et al., Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A,2010.107(50):p.21617-22.
    100. Xiao, A., et al., EENdb:a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Res,2013.41(D1):p. D415-22.
    101. Mussolino, C., et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res,2011.
    102. Bedell, V.M., et al., In vivo genome editing using a high-efficiency TALEN system. Nature,2012.491(7422):p.114-8.
    103. Giudice, A. and A. Trounson, Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell,2008.2(5):p.422-33.
    104. Lombardo, A., et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol, 2007.25(11):p.1298-306.
    105. Onafuwa-Nuga, A. and A. Telesnitsky, The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev, 2009.73(3):p.451-80, Table of Contents.
    106. Guschin, D.Y., et al., A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol,2010.649:p.247-56.
    107. Chen, S., et al., A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res,2013.
    108. Mochizuki, H., et al., High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol,1998.72(11):p. 8873-83.
    109. Banasik, M.B. and P.B. McCray, Jr., Integrase-defective lentiviral vectors: progress and applications. Gene Ther,2010.17(2):p.150-7.
    110. Greene, W.C. and B.M. Peterlin, Charting HIV's remarkable voyage through the cell:Basic science as a passport to future therapy. Nat Med,2002.8(7):p. 673-80.
    111. Chapman, J.R., M.R. Taylor, and S.J. Boulton, Playing the end game:DNA double-strand break repair pathway choice. Mol Cell,2012.47(4):p.497-510.
    112. Aizawa, E., et al., Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol Ther,2012.20(2): p.424-31.
    113. Smith, J.A., et al., Accurate homologous recombination is a prominent double-strand break repair pathway in mammalian chromosomes and is modulated by mismatch repair protein Msh2. Mol Cell Biol,2007.27(22):p. 7816-27.
    114. Liu, G.H., et al., Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell,2011.8(6):p.688-94.
    115. Lei, Y., et al., Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol Ther,2011.19(5):p. 942-50.
    116. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature,1981.292(5819):p.154-6.
    117. Zhang, S.C., et al., In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol,2001.19(12):p.1129-33.
    118. Reubinoff, B.E., et al., Neural progenitors from human embryonic stem cells. Nat Biotechnol,2001.19(12):p.1134-40.
    119. Schuldiner, M., et al., Induced neuronal differentiation of human embryonic stem cells. Brain Res,2001.913(2):p.201-5.
    120. Ahmad, S., et al., Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells,2007.25(5):p.1145-55.
    121. Passier, R., et al., Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells,2005.23(6):p. 772-80.
    122. Kaufman, D.S., et al., Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A,2001.98(19):p.10716-21.
    123. Kehat, I., et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest,2001. 108(3):p.407-14.
    124. Levenberg, S., et al., Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A,2002.99(7):p.4391-6.
    125. Assady, S., et al., Insulin production by human embryonic stem cells. Diabetes, 2001.50(8):p.1691-7.
    126. Dzierzak, E. and N.A. Speck, Of lineage and legacy:the development of mammalian hematopoietic stem cells. Nat Immunol,2008.9(2):p.129-36.
    127. Wang, L.D. and A.J. Wagers, Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol,2011. 12(10):p.643-55.
    128. Sasaki, T., et al., Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse. Development,2010. 137(23):p.3941-52.
    129. Forrester, L.M. and M. Jackson, Mechanism of action of HOXB4 on the hematopoietic differentiation of embryonic stem cells. Stem Cells,2012.30(3): p.379-85.
    130. Choi, K., et al., A common precursor for hematopoietic and endothelial cells. Development,1998.125(4):p.725-32.
    131. Fehling, H.J., et al., Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development,2003. 130(17):p.4217-27.
    132. Sakurai, H., et al., In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells,2006.24(3):p.575-86.
    133. Kulkeaw, K., et al., Variation in hematopoietic potential of induced pluripotent stem cell lines. Stem Cell Rev,2010.6(3):p.381-9.
    134. Kyba, M., R.C. Perlingeiro, and G.Q. Daley, HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell,2002.109(1):p.29-37.
    135. Wang, Y., et al., Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci U S A,2005.102(52):p.19081-6.
    136. Hanna, J., et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science,2007.318(5858):p.1920-3.
    137. Zhang, X.B., et al., High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J Clin Invest,2008. 118(4):p.1502-10.
    138. Lin, J., I. Fernandez, and K. Roy, Development of feeder-free culture systems for generation of ckit+scal+ progenitors from mouse iPS cells. Stem Cell Rev, 2011.7(3):p.736-47.
    139. Wang, L., et al., Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med, 2005.201(10):p.1603-14.
    140. Kaplan, D., et al., The functional duality of HoxB4 in hematopoietic reconstituting cells. Cytometry A,2013.83(1):p.127-33.
    141. Keller, G., et al., Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol,1993.13(1):p.473-86.
    142. Carotta, S., et al., Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood,2004.104(6):p. 1873-80.
    143. Miharada, K., et al., Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol,2006.24(10):p. 1255-6.
    144. Hiroyama, T., et al., Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLoS One,2008.3(2):p. e1544.
    145. Lu, S.J., et al., Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood,2008.112(12):p.4475-84.
    146. Ma, F., et al., Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A,2008. 105(35):p.13087-92.
    147. Zeuner, A., et al., Concise review:stem cell-derived erythrocytes as upcoming players in blood transfusion. Stem Cells,2012.30(8):p.1587-96.
    148. Era, T., et al., Characterization of hematopoietic lineage-specific gene expression by ES cell in vitro differentiation induction system. Blood,2000. 95(3):p.870-8.
    149. Eto, K., et al., Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A,2002.99(20): p.12819-24.
    150. Fujimoto, T.T., et al., Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood,2003.102(12):p.4044-51.
    151. Gaur, M., et al., Megakaryocytes derived from human embryonic stem cells:a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost,2006.4(2):p.436-42.
    152. Takayama, N., et al., Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood,2008.111(11):p.5298-306.
    153. Klimp, A.H., et al., A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol,2002.44(2):p.143-61.
    154. Wiles, M.V. and G. Keller, Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development,1991.111(2):p.259-67.
    155. Nakano, T., H. Kodama, and T. Honjo, Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science,1994.265(5175):p. 1098-101.
    156. Moore, K.J., et al., In vitro-differentiated embryonic stem cell macrophages:a model system for studying atherosclerosis-associated macrophage functions. Arterioscler Thromb Vasc Biol,1998.18(10):p.1647-54.
    157. Senju, S., et al., Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells,2009.27(5):p.1021-31.
    158. Lieber, J.G., et al., The in vitro production and characterization of neutrophils from embryonic stem cells. Blood,2004.103(3):p.852-9.
    159. Yokoyama, Y., et al., Derivation of functional mature neutrophils from human embryonic stem cells. Blood,2009.113(26):p.6584-92.
    160. Saeki, K., et al., A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells,2009.27(1):p.59-67.
    161. Choi, K.D., M.A. Vodyanik, and Slukvin, Ⅱ, Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J Clin Invest,2009.119(9): p.2818-29.
    162. Cho, S.K., et al., Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proc Natl Acad Sci U S A,1999.96(17):p. 9797-802.
    163. Wada, H., et al., Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells. Int Immunol, 2011.23(1):p.65-74.
    164. de Pooter, R.F., et al., In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood,2003.102(5):p. 1649-53.
    165. Schmitt, T.M., et al., Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol, 2004.5(4):p.410-7.
    166. Lei, F., et al., T lineage differentiation from induced pluripotent stem cells. Cell Immunol,2009.260(1):p.1-5.
    167. Galic, Z., et al., T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A,2006.103(31):p.11742-7.
    168. Galic, Z., et al., Generation of T lineage cells from human embryonic stem cells in a feeder free system. Stem Cells,2009.27(1):p.100-7.
    169. Martin, C.H., et al., Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells. Blood,2008.112(7):p.2730-7.
    170. Timmermans, F., et al., Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol,2009.182(11):p.6879*88.
    171. Lian, R.H., et al., Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro. J Immunol,2002.168(10):p.4980-7.
    172. Watarai, H., et al., Murine induced pluripotent stem cells can be derived from and differentiate into natural killer T cells. J Clin Invest,2010.120(7):p. 2610-8.
    173. Ni, Z., et al., Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity by utilizing diverse cellular mechanisms. J Virol, 2011.85(1):p.43-50.
    174. Gadue, P., et al., Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A,2006.103(45):p.16806-11.
    175. Johansson, B.M. and M.V. Wiles, Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol,1995.15(1):p.141-51.
    176. Nostro, M.C., et al., Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2008.2(1):p.60-71.
    177. Kennedy, M., et al., A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature,1997.386(6624):p.488-93.
    178. Park, C., et al., A hierarchical order of factors in the generation of FLKl- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development,2004.131(11):p.2749-62.
    179. Fujiwara, Y., et al., Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A,1996.93(22):p.12355-8.
    180. Simon, M.C., et al., Rescue of erythroid development in gene targeted GATA-1-mouse embryonic stem cells. Nat Genet,1992.1(2):p.92-8.
    181. Tsai, F.Y., et al., An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature,1994.371(6494):p.221-6.
    182. Lugus, J.J., et al., GATA2 functions at multiple steps in hemangioblast development and differentiation. Development,2007.134(2):p.393-405.
    183. Porcher, C., et al., The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell,1996.86(1):p.47-57.
    184. D'Souza, S.L., A.G. Elefanty, and G. Keller, SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood,2005.105(10):p.3862-70.
    185. Lee, G.S., et al., Forced expression of HoxB4 enhances hematopoietic differentiation by human embryonic stem cells. Mol Cells,2008.25(4):p. 487-93.
    186. Lichtinger, M., et al., RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO J,2012.31(22):p.4318-33.
    187. Ran, D., et al., RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood,2013.
    188. Cao, N. and Z.X. Yao, The hemangioblast:from concept to authentication. Anat Rec (Hoboken),2011.294(4):p.580-8.
    189. Kissa, K. and P. Herbomel, Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature,2010.464(7285):p.112-5.
    190. Zovein, A.C., et al., Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell,2008.3(6):p.625-36.
    191. Eilken, H.M., S. Nishikawa, and T. Schroeder, Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature,2009.457(7231):p. 896-900.
    192. Lancrin, C., et al., The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature,2009.457(7231):p.892-5.
    193. Rafii, S., et al., Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood,2013.121(5): p.770-80.
    194. Robertson, S.M., et al., A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development,2000. 127(11):p.2447-59.
    195. Faloon, P., et al., Basic fibroblast growth factor positively regulates hematopoietic development. Development,2000.127(9):p.1931-41.
    196. Irion, S., et al., Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development,2010. 137(17):p.2829-39.
    197. Nakajima-Takagi, Y., et al., Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood,2013.121(3):p.447-58.
    198. Ye, Z., B.K. Chou, and L. Cheng, Promise and challenges of human iPSC-based hematologic disease modeling and treatment. Int J Hematol,2012. 95(6):p.601-9.
    199. Zou, J., et al., Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells:functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood,2011.117(21):p.5561-72.
    200. D'Andrea, A.D. and M. Grompe, The Fanconi anaemia/BRCA pathway. Nat Rev Cancer,2003.3(1):p.23-34.
    201. Alter, H.J. and H.G. Klein, The hazards of blood transfusion in historical perspective. Blood,2008.112(7):p.2617-26.
    202. Ali, A., M.K. Auvinen, and J. Rautonen, The aging population poses a global challenge for blood services. Transfusion,2010.50(3):p.584-8.
    203. Giarratana, M.C., et al., Proof of principle for transfusion of in vitro-generated red blood cells. Blood,2011.118(19):p.5071-9.
    204. Zou, J., et al., Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood,2011. 118(17):p.4599-608.
    205. Migliaccio, A.R., et al., The potential of stem cells as an in vitro source of red blood cells for transfusion. Cell Stem Cell,2012.10(2):p.115-9.
    206. Lu, S.J., et al., Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res,2011. 21(3):p.530-45.
    207. Woll, P.S., et al., Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood,2009.113(24):p.6094-101.
    208. Brenner, M.K., et al., Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet,1993.341(8837):p.85-6.
    209. Miller, C.B., et al., The effect of graft purging with 4-hydroperoxycyclophosphamide in autologous bone marrow transplantation for acute myelogenous leukemia. Exp Hematol,2001.29(11):p.1336-46.
    210. Petersdorf, E.W., et al., The biological significance of HLA-DP gene variation in haematopoietic cell transplantation. Br J Haematol,2001.112(4):p.988-94.
    211. Shaw, B.E., et al., The importance of HLA-DPB1 in unrelated donor hematopoietic cell transplantation. Blood,2007.110(13):p.4560-6.
    212. June, C.H., Adoptive T cell therapy for cancer in the clinic. J Clin Invest,2007. 117(6):p.1466-76.
    213. Sensi, M. and A. Anichini, Unique tumor antigens:evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res,2006.12(17):p.5023-32.
    214. Mescher, M.F., et al., Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors. Semin Cancer Biol,2007.17(4):p.299-308.
    215. Willimsky, G. and T. Blankenstein, Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature,2005.437(7055):p.141-6.
    216. Robson, N.C., et al., Presentation of tumour antigens by dendritic cells and challenges faced. Curr Opin Immunol,2010.22(1):p.137-44.
    217. Schuler, G., Dendritic cells in cancer immunotherapy. Eur J Immunol,2010. 40(8):p.2123-30.
    218. Higano, C.S., et al., Sipuleucel-T. Nat Rev Drug Discov,2010.9(7):p.513-4.
    219. Lei, F., et al., In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res, 2011.71(14):p.4742-7.
    220. Nishimura, T., et al., Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell,2013. 12(1):p.114-26.
    221. Haruta, M., et al., TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther, 2012.
    222. Sauvageau, G., N.N. Iscove, and R.K. Humphries, In vitro and in vivo expansion of hematopoietic stem cells. Oncogene,2004.23(43):p.7223-32.
    223. Aiuti, A., et al., Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID. Immunol Res,2009.44(1-3):p.150-9.
    224. Baum, C., Gene therapy for SCID-X1:focus on clinical data. Mol Ther,2011. 19(12):p.2103-4.
    225. Zou, J., R. Cochran, and L. Cheng, Double knockouts in human embryonic stem cells. Cell Res,2010.20(3):p.250-2.
    226. Nakayama, M., Homologous recombination in human iPS and ES cells for use in gene correction therapy. Drug Discov Today,2010.15(5-6):p.198-202.
    227. Wang, Y., et al., Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res,2012.22(4):p.637-48.
    228. Lensch, M.W. and G.Q. Daley, Origins of mammalian hematopoiesis:in vivo paradigms and in vitro models. Curr Top Dev Biol,2004.60:p.127-96.
    229. Gekas, C., et al., Hematopoietic stem cell development in the placenta. Int J Dev Biol,2010.54(6-7):p.1089-98.
    230. Adamo, L., et al., Biomechanical forces promote embryonic haematopoiesis. Nature,2009.459(7250):p.1131-5.
    231. North, T.E., et al., Hematopoietic stem cell development is dependent on blood flow. Cell,2009.137(4):p.736-48.
    232. McKinney-Freeman, S.L., et al., Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood,2009.114(2): p.268-78.
    233. Nakano, T., H. Kodama, and T. Honjo, In vitro development of primitive and definitive erythrocytes from different precursors. Science,1996.272(5262):p. 722-4.
    234. Cho, S.K., et al., Expression and function of CD105 during the onset of hematopoiesis from Flkl(+) precursors. Blood,2001.98(13):p.3635-42.
    235. Zambidis, E.T., et al., Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood,2005.106(3):p. 860-70.
    236. Kennedy, M., et al., T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep,2012.2(6):p.1722-35.
    237. Kitajima, K., et al., In vitro generation of HSC-like cells from murine ESCs/iPSCs by enforced expression of LIM-homeobox transcription factor Lhx2. Blood,2011.117(14):p.3748-58.
    238. Matsumoto, K., et al., Stepwise development of hematopoietic stem cells from embryonic stem cells. PLoS One,2009.4(3):p. e4820.
    239. Schuringa, J.J., et al., Enforced activation of STAT5A facilitates the generation of embryonic stem-derived hematopoietic stem cells that contribute to hematopoiesis in vivo. Stem Cells,2004.22(7):p.1191-204.
    240. Perlingeiro, R.C., M. Kyba, and G.Q. Daley, Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development,2001.128(22): p.4597-604.
    241. Narayan, A.D., et al., Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood,2006.107(5):p.2180-3.
    242. Ledran, M.H., et al., Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell,2008.3(1):p.85-98.
    243. Risueno, R.M., et al., Inability of human induced pluripotent stem cell-hematopoietic derivatives to downregulate microRNAs in vivo reveals a block in xenograft hematopoietic regeneration. Stem Cells,2012.30(2):p. 131-9.
    244. Woods, N.B., et al., Brief report:efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines. Stem Cells, 2011.29(7):p.1158-64.
    245. Amabile, G., et al., In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood,2013.121(8):p.1255-64.
    246. Mikkers, H. and A. Berns, Retroviral insertional mutagenesis:tagging cancer pathways. Adv Cancer Res,2003.88:p.53-99.
    247. Duinsbergen, D., et al., Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci,2009.1176:p.197-204.
    248. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell,2009.4(6):p.472-6.
    249. Plews, J.R., et al., Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS One,2010.5(12):p. e14397.
    250. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010.7(5):p.618-30.
    251. Anokye-Danso, F., et al., Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell,2011.8(4):p. 376-88.
    252. Ban, H., et al., Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A,2011.108(34):p.14234-9.
    253. Nishimura, K., et al., Development of defective and persistent Sendai virus vector:a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem,2011.286(6):p.4760-71.
    254. Gore, A., et al., Somatic coding mutations in human induced pluripotent stem cells. Nature,2011.471(7336):p.63-7.
    255. Laurent, L.C., et al., Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell,2011.8(1):p.106-18.
    256. Hussein, S.M., et al., Copy number variation and selection during reprogramming to pluripotency. Nature,2011.471(7336):p.58-62.
    257. Rodriguez-Piza, I., et al., Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells,2010.28(1):p. 36-44.
    258. Ausubel, L.J., P.M. Lopez, and L.A. Couture, GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol, 2011.767:p.147-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700