用户名: 密码: 验证码:
大鼠急性脊髓损伤后紧密连接与血管发生在血—脊髓屏障功能缺失中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     脊髓损伤(spinal cord injury, SCI)是严重危害人类生存和生活质量的一类中枢性神经创伤。随着全民运动的日益普及和越来越频繁的交通运输活动,脊髓损伤的发生率近年来有了显著的增高。研究表明,脊髓损伤后微循环障碍导致的脊髓缺血-水肿-自由基变化-水肿-缺血加重的恶性循环是造成脊髓神经组织不可逆的变性、坏死和细胞凋亡的主要过程之一。在这一过程中,血-脊髓屏障(blood spinal cord barrier, BSCB)功能缺失导致的血管渗透性增加是该恶性循环中的关键事件。本研究定性定量评估SCI前后脊髓血管内皮细胞间紧密连接的超微结构变化和紧密连接蛋白Claudin-5、ZO-1以及新生血管的空间分布和表达,探讨紧密连接与血管发生在脊髓损伤后BSCB功能改变中的作用和相关机制。
     方法
     1.80只SD大鼠用于本实验。20只SD大鼠作为正常组,60只SD大鼠利用改良Allen's打击方法构建脊髓损伤模型后,随机分为损伤后1天组,3天组,7天组,每组20只。获取正常组和上述各时间点胸10(T10)段脊髓组织用于以下检测。
     2.利用透射电子显微镜观察正常与脊髓损伤后1天、3天、7天SD大鼠T10段脊髓微血管紧密连接超微结构。各时间点样品数4只,共16只。
     3.利用组织免疫荧光技术和Western Blotting技术,对正常与脊髓损伤后1天、3天、7天SD大鼠T10段脊髓紧密连接蛋白Claudin-5、ZO-1的空间分布与表达进行定性定量评估。蛋白荧光分析采用ImagePro Plus软件。各时间点样品数4只,共32只,其中16只用于组织免疫荧光分析,余16只用于Western Blotting分析。
     4.利用组织免疫荧光技术,对正常与脊髓损伤后1天、3天、7天SD大鼠血管发生标记CD34+细胞的空间分布与表达进行2D评估。蛋白荧光分析采用ImagePro Plus软件。各时间点样品数4只,共16只。CD34分别与紧密连接蛋白Claudin-5、ZO-1荧光共标记。
     5.通过活体注射EB染料,在荧光显微镜下观察正常与脊髓损伤后1天、3天、7天BSCB渗透性变化,定性分析正常组及脊髓损伤后各时间点BSCB功能。同时借助分光光度仪检测脊髓组织中EB含量,定量评估正常组及脊髓损伤后1天、3天、7天BSCB功能。各时间点样品数4只,共32只,其中16只用于定性分析,余16只用于定量评估。
     6.以上实验数据统计均采用SPSS13.0软件,组间比较使用T检验,P<0.05具有统计学差异。
     结果
     1.紧密连接
     透射电镜观察证实,正常组大鼠脊髓血管内皮细胞间紧密连接呈铆钉状结构,构成相对封闭的血管管腔。在急性脊髓损伤后,细胞间紧密连接开放,在3天时细胞间隙增宽最为显著,之后随时间延续逐渐恢复,但在7天时仍未达到正常水平。
     2.紧密连接蛋白Claudin-5、ZO-1
     组织免疫荧光结果发现,在正常组脊髓,紧密连接蛋白Claudin-5、ZO-1均与血管分布呈现高度一致性。在SCI后1天、3天、7天,上述蛋白均出现分布异常与不同程度的表达下降。其中在损伤后1天最为显著,之后随损伤时间延续逐渐恢复,但在SCI后7天,仍未恢复正常水平。Western Blotting结果同样发现,在SCI后1天,Claudin-5、ZO-1蛋白较正常组显著下降,并在SCI后3天、7天逐渐恢复,但7天时仍未达到正常水平。
     3. CD34+细胞分布与表达
     组织免疫荧光结果发现,在正常组脊髓,CD34+细胞分布于血管内皮。在SCI后,CD34+细胞在损伤中心区域分布缺失,同时出现不同程度表达下降,在脊髓损伤后1天最为显著,之后随损伤时间延续逐渐恢复,但在SCI后7天时仍未恢复正常水平。在脊髓损伤后3天,损伤中心区域出现少量CD34+细胞。在损伤后7天,损伤中心区域可见大量CD34+细胞表达。
     4. BSCB渗透性
     正常大鼠脊髓几乎无法观察到EB的渗出。在脊髓损伤后1、3、7天,出现了不同程度的EB渗出,其中损伤后3天时EB的渗出最为显著。定量结果显示脊髓损伤后1天即出现了组织EB含量的增加,在损伤后3天,组织EB含量最多,与定性观察结果一致。
     结论
     1.大鼠脊髓损伤后脊髓血管内皮细胞紧密连接蛋白Claudin-5、Z0-1出现分布异常与表达下降,在损伤后1天最为显著,之后逐渐恢复。
     2.大鼠脊髓损伤后脊髓血管网络被破坏,在损伤后1天最为显著;在损伤后3天出现损伤中心区域血管发生。
     3.大鼠脊髓损伤后BSCB功能改变可能与紧密连接开放、紧密连接蛋白Claudin-5、ZO-1表达下降、血管发生有关。
Background and Objective
     Spinal cord injury is a central nerve trauma severely endangering survival and quality of human life. Along with the rising popularity of universal movement and increasing transportation, the incidence of SCI has significantly increased in recent years. Studies showed that the spinal cord suffered ischemia-edema-free radical-edema-ischemia. The vicious cycle caused by microcirculation dysfunction after SCI is one of the main processes that resulting in irreversible degeneration, necrosis and apoptosis of spinal cord. Blood spinal cord barrier plays an important role in this process. This study focuses on the ultrastructure of intercellular tight junctions and the expression of tight junctions proteins (Claudin-5and ZO-1) as well as the neovascularization, in order to investigate the probable mechanism between tight junctions and vasculogenesis in BSCB function after SCI.
     Method
     1. A total of80SD rats were used in this experiment. Quarter was as normal group, others were as SCI group by using modified Allen's method,1day,3day,7day group after SCI were divided randomly, each group of20samples. T10section of spinal cord tissue was used for the following test.
     2. Using transmission electron microscope to observe ultrastructure of tight junctions between spinal cord capillary at different point of time, i.e. normal,1day,3day and7day after SCI, each point of4samples, a total of16samples.
     3. Using immunofluorescence and Western Blotting techniques to test the spatial distribution and expression of TJ proteins (Claudin-5and ZO-1) at different point of time (i.e. normal,1day,3day and7day after SCI), each point of4samples, a total of32samples. All the results of immunofluorescence were analyzed by ImagePro Plus software.
     4. Using immunofluorescence techniques to make a two-dimensional evaluation on spatial distribution and expression of SD rats'CD34+cell. The samples were extracted on normal and1day,3day,7day after SCI, each point of4samples, a total of16samples. CD34was common with Claudin-5and ZO-1respectively. All data was analyzed by ImagePro Plus software.
     5. Injecting Evans blue in vivo, the extravasation of Evans blue was observed after SCI by fluorescence microscope, and using spectrophotometer to detect the content of Evans blue at different point of time, i.e. normal,1day,3day and7day after SCI, each point of4samples, a total of32samples.
     6. All statistical analysis was used SPSS13.0statistics software, The T test was applied in the group comparison. P<0.05was statistically significant.
     Results
     1. Tight junctions
     Transmission electron microscopy (TEM) observation confirms that the spinal cord vascular endothelial cells connect closely in normal group. The tight junctions between endothelial cells open after acute SCI, the most significant of which occur in the third day after SCI, then gradually recover as time continues, but still have not reached normal levels in the7day after SCI.
     2. Tight junctions proteins (Claudin-5and ZO-1)
     Immunofluorescence assay observation confirms that the tight junctions proteins (Claduin-5and ZO-1) are consistent with spinal cord vascular distribution. The distribution and expression are abnormal at1day,3day,7day after SCI, significantly occurs in the first day after injury. Though the expression increases gradually after lday post SCI, have not reached to normal levels in7day after injury. The same results are found in Western Blotting test.
     3. CD34+cell
     Immunofluorescence assay observation confirms that the CD34+cells are consistent with blood vessel endothelium. After SCI, there are lacks of CD34+cells at the epicenter zone as well as the expression decreases, significantly occurs in the first day after injury. Though the expression increases gradually after1day post SCI, have not reached to normal levels in7day after injury. At the3day after SCI, there is a few of CD34+cells are observed at the epicenter zone. Until7day after SCI, the CD34+cells are obviously observed in the same region.
     4. BSCB permeability
     The extravasation of EB is hardly observed by fluorescence microscope in normal group, however, there is an overt extravasation of EB at1,3,7day after SCI, especially at3day post-SCI. The same outcome is obtained in quantitative analyze.
     Conclusion
     1. The distribution and expression of TJ proteins (Claudin-5and ZO-1) decline after SCI, especially at1day post-SCI and increase gradually.
     2. The spinal cord vascular network is damaged after SCI, especially at1day post-SCI; Vasculogenesis can be observed at3day after SCI at epicenter zone.
     3. The tight junctions, the decrease expression of tight junctions proteins (Claudin-5and ZO-1) and vasculogenesis may result in dysfunction of BSCB after SCI.
引文
[1].李建军等,2002年北京市脊髓损伤发病率调查.中国康复理论与实践,2004(07):第32-33页.
    [2].焦新旭等,天津市553例颈脊髓损伤患者的流行病学分析.中国脊柱脊髓杂志,2010(09):第725-729页.
    [3]. Dumont, R.J., et al., Acute spinal cord injury, part I:pathophysiologic mechanisms. Clin Neuropharmacol,2001.24(5):p.254-64.
    [4]. Crock, H.V., et al., Commentary on the prevention of paralysis after traumatic spinal cord injury in humans:the neglected factor--urgent restoration of spinal cord circulation. Eur Spine J,2005.14(9):p.910-4.
    [5]. Tator, C.H. and M.G. Fehlings, Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg,1991. 75(1):p.15-26.
    [6]. Abbott, N.J., et al., Structure and function of the blood-brain barrier. Neurobiol Dis,2010.37(1):p.13-25.
    [7]. Manaenko, A., et al., Comparison Evans Blue injection routes:Intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods,2011.195(2):p.206-10.
    [8]. Loy, D.N., et al., Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J Comp Neurol, 2002.445(4):p.308-24.
    [9]. Sadrzadeh, S.M., et al., Hemoglobin potentiates central nervous system damage. J Clin Invest,1987.79(2):p.662-4.
    [10]. Ge, S. and J.S. Pachter, Isolation and culture of micro vascular endothelial cells from murine spinal cord. J Neuroimmunol,2006.177(1-2):p.209-14.
    [11].Zehendner, C.M., H.J. Luhmann and C.R. Kuhlmann, Studying the neurovascular unit:an improved blood-brain barrier model. J Cereb Blood Flow Metab,2009.29(12):p.1879-84.
    [12].Persson, L., H.A. Hansson and P. Sourander, Extravasation, spread and cellular uptake of Evans blue-labelled albumin around a reproducible small stab-wound in the rat brain. Acta Neuropathol,1976.34(2):p.125-36.
    [13].Ghinea, N., et al., Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface. J Biol Chem,1989.264(9):p.4755-8.
    [14].Weiss, N., et al., The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta,2009.1788(4):p.842-57.
    [15].Terry, S., et al., Rho signaling and tight junction functions. Physiology (Bethesda),2010.25(1):p.16-26.
    [16].Piontek, J., et al., Formation of tight junction:determinants of homophilic interaction between classic claudins. FASEB J,2008.22(1):p.146-58.
    [17].Ge, S., L. Song and J.S. Pachter, Where is the blood-brain barrier... really? J Neurosci Res,2005.79(4):p.421-7.
    [18].Hawkins, B.T. and R.D. Egleton, Fluorescence imaging of blood-brain barrier disruption. J Neurosci Methods,2006.151(2):p.262-7.
    [19].Baldwin, S.A., et al., Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg,1996.85(3):p.476-81.
    [20].Jiao, H., et al., Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci,2011.44(2):p.130-9.
    [21].任素萍与奚永志,CD34分子及其单克隆抗体应用.中国输血杂志,2003(5).
    [22]. Yin, T. and L. Li, The stem cell niches in bone. J Clin Invest,2006.116(5):p. 1195-201.
    [23].Reinmuth, N., et al., Current data on predictive markers for anti-angiogenic therapy in thoracic tumours. Eur Respir J,2010.36(4):p.915-24.
    [24].Quon, H., et al., Assessment of tumor angiogenesis as a prognostic factor of survival in patients with oligodendroglioma. J Neurooncol,2010.96(2):p. 277-85.
    [25].Becher, M.U., G. Nickenig and N. Werner, Regeneration of the vascular compartment. Herz,2010.35(5):p.342-51.
    [26].Montesinos, M.C., et al., Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am J Pathol, 2004.164(6):p.1887-92.
    [27].Tonnesen, M.G., X. Feng and R.A. Clark, Angiogenesis in wound healing. J Investig Dermatol Symp Proc,2000.5(1):p.40-6.
    [28].吴天定,川芎嗪对大鼠急性脊髓损伤后血管再生的作用及相关机制的研究.
    [29].Donnelly, D.J. and P.G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol,2008.209(2):p.378-88.
    [30].Petty, M.A. and E.H. Lo,Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol,2002.68(5):p. 311-23.
    [31].Belanger, M., et al., Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int,2007.50(1):p.95-101.
    [32].Neuhaus, W., et al., Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood-brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett,2008.446(2-3):p.59-64.
    [33].Mahajan, S.D., et al., Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression:Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res,2008.1203:p. 133-48.
    [34].Zlokovic, B.V., The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron,2008.57(2):p.178-201.
    [35].Ueno, M., Molecular anatomy of the brain endothelial barrier:an overview of the distributional features. Curr Med Chem,2007.14(11):p.1199-206.
    [36].Hewitt, K.J., R. Agarwal and P.J. Morin, The claudin gene family:expression in normal and neoplastic tissues. BMC Cancer,2006.6:p.186.
    [37]. Yamamoto, M., et al., Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol,2008.172(2):p.521-33.
    [38].Persidsky, Y., et al., Blood-brain barrier:structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol,2006. 1(3):p.223-36.
    [39].Kniesel, U. and H. Wolburg, Tight junctions of the blood-brain barrier. Cell Mol Neurobiol,2000.20(1):p.57-76.
    [40].Anderson, J.M., et al., Zonula occludens (ZO)-1 and ZO-2:membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. Biochem Soc Trans,1995.23(3):p.470-5.
    [41].Wolburg, H. and A. Lippoldt, Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol,2002.38(6):p. 323-37.
    [42].Koto, T., et al., Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol,2007.170(4):p.1389-97.
    [43].Mark, K.S. and T.P. Davis, Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol,2002.282(4):p. H1485-94.
    [44]. Austin, J.W., M. Afshar and M.G. Fehlings, The relationship between localized subarachnoid inflammation and parenchymal pathophysiology after spinal cord injury. J Neurotrauma,2012.29(10):p.1838-49.
    [45].Lee, J.Y., et al., Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem,2012.121(5):p.818-29.
    [46].Patel, C.B., et al., Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury:dynamic contrast-enhanced magnetic resonance imaging. J Neurotrauma,2009.26(7):p.1005-16.
    [47].Kumar, P., et al., Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med,2009.11:p. e19.
    [48]. Cardoso, F.L., D. Brites and M.A. Brito, Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev,2010. 64(2):p.328-63.
    [49].Xu, Q., T. Qaum and A.P. Adamis, Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci,2001.42(3):p. 789-94.
    [50].Bennett, J., et al., Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol,2010. 229(1-2):p.180-91.
    [51].Wang, G., et al., Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas. Ultrasound Med Biol,2013.39(4):p.628-37.
    [52].Cohen, D.M., et al., Blood-spinal cord barrier permeability in experimental spinal cord injury:dynamic contrast-enhanced MRI. NMR Biomed,2009.22(3): p.332-41.
    [53].Whetstone, W.D., et al., Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res,2003.74(2):p. 227-39.
    [54].Casella, G.T., et al., New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol,2002. 173(1):p.63-76.
    [55].马璟曦与罗勇,脑缺血与血管新生.中国康复理论与实践,2005(3).
    [56].Suri, C, et al., Increased vascularization in mice overexpressing angiopoietin-1. Science,1998.282(5388):p.468-71.
    [57].Papapetropoulos, A., et al., Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem,2000.275(13):p.9102-5.
    [58].Baffert, F., et al., Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol,2006. 290(l):p.H107-18.
    [59].Lee, S.W., et al., Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med,2009.23(2):p.279-84.
    [60].Hughes, D.P., M.B. Marron and N.P. Brindle, The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res,2003.92(6):p.630-6.
    [61].Gamble, J.R., et al., Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res,2000.87(7):p.603-7.
    [62].Ritz, M.F., et al., Traumatic spinal cord injury alters angiogenic factors and TGF-betal that may affect vascular recovery. Curr Neurovasc Res,2010.7(4):p. 301-10.
    [63].Yamakawa, M., et al., Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res, 2003.93(7):p.664-73.
    [64].Fiedler, U., et al., Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med,2006.12(2):p. 235-9.
    [65].Iyer, N.V., et al., Cellular and developmental control of 02 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev,1998.12(2):p.149-62.
    [66].Senger, D.R., et al., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science,1983.219(4587):p.983-5.
    [67].Ahmed, Z. and R. Bicknell, Angiogenic signalling pathways. Methods Mol Biol, 2009.467:p.3-24.
    [68].Rosenstein, J.M. and J.M. Krum, New roles for VEGF in nervous tissue--beyond blood vessels. Exp Neurol,2004.187(2):p.246-53.
    [69].Jin, K.L., X.O. Mao and D.A. Greenberg, Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A, 2000.97(18):p.10242-7.
    [70].De Laporte, L., et al., Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. J Biomed Mater Res A,2011.98(3):p.372-82.
    [71].Sharma, H.S., Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des,2005.11(11):p.1353-89.
    [1].Sharma, H.S., Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des,2005.11(11):p.1353-89.
    [2].Zlokovic, B.V., The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron,2008.57(2):p.178-201.
    [3].Hemley, S.J., J. Tu and M.A. Stoodley, Role of the blood-spinal cord barrier in posttraumatic syringomyelia. J Neurosurg Spine,2009.11(6):p.696-704.
    [4].Li, Y.Q., et al., Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res,2004.161(2):p. 143-52.
    [5].Reese, T.S. and M.J. Karnovsky, Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol,1967.34(1):p.207-17.
    [6].Furuse, M., et al., Occludin:a novel integral membrane protein localizing at tight junctions. J Cell Biol,1993.123(6 Pt 2):p.1777-88.
    [7].Persidsky, Y., et al., Blood-brain barrier:structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol,2006. 1(3):p.223-36.
    [8].Abbott, N.J. and I.A. Romero, Transporting therapeutics across the blood-brain barrier. Mol Med Today,1996.2(3):p.106-13.
    [9].周亚军等,糖尿病大鼠血-脊髓屏障紧密连接蛋白claudin-1、claudin-5、ZO-1表达变化.中国神经免疫学和神经病学杂志,(1).
    [10].Huber, J.D., R.D. Egleton and T.P. Davis, Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci, 2001.24(12):p.719-25.
    [11].Tsukita, S., M. Furuse and M. Itoh, Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol,2001.2(4):p.285-93.
    [12].Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol,2003.161(3):p.653-60.
    [13].Wolburg, H., et al., Brain endothelial cells and the glio-vascular complex. Cell Tissue Res,2009.335(1):p.75-96.
    [14].Wolburg, H. and A. Lippoldt, Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol,2002.38(6):p. 323-37.
    [15]. Abbott, N.J., L. Ronnback and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci,2006.7(1):p.41-53.
    [16].Carvey, P.M., B. Hendey and A.J. Monahan, The blood-brain barrier in neurodegenerative disease:a rhetorical perspective. J Neurochem,2009.111(2): p.291-314.
    [17].Kim, J.A., et al., Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab,2006.26(2):p.209-17.
    [18].Lai, C.H. and K.H. Kuo, The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev,2005.50(2):p.258-65.
    [19].Braun, A., et al., Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci,2007.27(44):p.12012-24.
    [20].Daneman, R., et al., Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature,2010.468(7323):p.562-6.
    [21]. Li, F., et al., Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell,2011.20(3):p.291-302.
    [22].Armulik, A., et al., Pericytes regulate the blood-brain barrier. Nature,2010. 468(7323):p.557-61.
    [23]. Bell, R.D., et al., Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron,2010.68(3):p. 409-27.
    [24].Enge, M., et al., Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J,2002.21(16):p.4307-16.
    [25].Bartanusz, V., et al., The blood-spinal cord barrier:morphology and clinical implications. Ann Neurol,2011.70(2):p.194-206.
    [26].Winkler, E.A., et al., Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab,2012.32(10):p. 1841-52.
    [27].Abbott, N.J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat,2002.200(6):p.629-38.
    [28].Bernoud, N., et al., Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J Lipid Res, 1998.39(9):p.1816-24.
    [29].Siddharthan, V., et al., Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res,2007.1147:p.39-50.
    [30].Colgan, O.C., et al., Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res,2008.1193:p.84-92.
    [31].Hayashi, Y., et al., Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 1997.19(1):p.13-26.
    [32].Jiang, S., et al., Acceleration of blood-brain barrier formation after transplantation of enteric glia into spinal cords of rats. Exp Brain Res,2005. 162(1):p.56-62.
    [33].Weiss, N., et al., The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta,2009.1788(4):p.842-57.
    [34].Nakagawa, S., et al., A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int,2009.54(3-4):p. 253-63.
    [35].Zhang, Z., et al., Synergistic effect of low-frequency ultrasound and low-dose bradykinin on increasing permeability of the blood-tumor barrier by opening tight junction. J Neurosci Res,2009.87(10):p.2282-9.
    [36].Ueno, M., Molecular anatomy of the brain endothelial barrier:an overview of the distributional features. Curr Med Chem,2007.14(11):p.1199-206.
    [37].Lossinsky, A.S., et al., The histopathology of Candida albicans invasion in neonatal rat tissues and in the human blood-brain barrier in culture revealed by light, scanning, transmission and immunoelectron microscopy. Histol Histopathol,2006.21(10):p.1029-41.
    [38].Vorbrodt, A.W. and D.H. Dobrogowska, Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers:electron microseopist's view. Brain Res Brain Res Rev,2003.42(3):p.221-42.
    [39].Liebner, S., et al., Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol,2008.183(3):p.409-17.
    [40].Patterson, C.E., R.A. Rhoades and J.G. Garcia, Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. J Appl Physiol,1992.72(3):p.865-73.
    [41].Uyama, O., et al., Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab,1988.8(2):p.282-4.
    [42].邵擎东等,颈髓损伤后内皮素及其受体mRNA表达与血脊髓屏障损害的关系.颈腰痛杂志,2000(2).
    [43].Whetstone, W.D., et al., Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res,2003.74(2):p. 227-39.
    [44].Popovich, P.G., et al., A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol,1996.142(2):p.258-75.
    [45].Tofts, P.S., et al., Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer:standardized quantities and symbols. J Magn Reson Imaging,1999.10(3):p.223-32.
    [46].Bilgen, M. and P.A. Narayana, A pharmacokinetic model for quantitative evaluation of spinal cord injury with dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med,2001.46(6):p.1099-106.
    [47].Bilgen, M., R. Abbe and P.A. Narayana, Dynamic contrast-enhanced MRI of experimental spinal cord injury:in vivo serial studies. Magn Reson Med,2001. 45(4):p.614-22.
    [48].Narayana, P.A., et al., Endogenous recovery of injured spinal cord:longitudinal in vivo magnetic resonance imaging. J Neurosci Res,2004.78(5):p.749-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700