用户名: 密码: 验证码:
饮水型氟病区改水后儿童健康风险度评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:氟广泛地存在于自然界,是地球表面第13个最丰富的天然元素。虽然科学家们仍不确定氟化物是否对人体健康有至关重要的作用,但许多人认为,在日常饮食中少量的氟有助于防止龋齿,强化骨骼。另一方面,长期摄入高剂量的氟对人体健康可产生的不良影响,包括氟斑牙和氟骨症、增加骨折风险、导致出生率下降、增加尿路结石(肾结石)、导致甲状腺功能减退、降低儿童智力等。地方性氟中毒在世界范围内分布广泛,流行于五大洲50多个国家和地区。中国是世界上地氟病分布最广、危害最严重的国家之一。根据氟的摄入途径不同,我国地方性氟中毒病区可分为饮水型、燃煤污染型、饮茶型和混合型等几种,其中以饮水型氟中毒为最严重,其次为煤烟污染型,均可导致牙齿和骨骼的氟中毒流行。广东省是我国南方饮水型地方性氟中毒分布范围最广泛的省份之一,1980年已查清全省共有396个氟病区村,分布在14个地级市37个县,115个乡镇。病区人口数50.24万。广东省粤东地区的汕头市是广东省病区人口数最多的地级市,查明的病区人口数为21.61万,病区8-15岁儿童氟斑牙患病率为62.01%。广东省各饮水型氟病区自1985年开展饮水降氟措施以来,已取得了显著成效,至2003年,全省各氟病区改水后,改水受益率已达到病区总人口数的93.3%,儿童氟斑牙平均患病率由改水前的61.12%降至41.5%。
     然而,虽然改水降氟已取得了明显的效果,但由于氟对人体的健康具有双重效应作用,在地氟病防治过程中,氟在多大的剂量范围内对人体健康是有益的,低于多大剂量或者高于多大剂量是有害的?可接受剂量是多少?引起不同健康效应的基准剂量是多少?高氟区氟暴露人群尤其是儿童群体的健康风险度如何评价?改水后氟病区饮水氟的安全剂量应该是多少为好,如何确定等等,这些问题均需进一步探索研究。本课题就是在这样的背景下,探索高氟病区改水后氟暴露儿童健康的风险度评价方法,通过基准剂量模型的构建,寻找氟暴露安全剂量,为改水地区氟的安全剂量确定提供科学的依据。
     目的:通过对不同改水时间儿童氟暴露水平、基本特征和氟暴露各种特定效应的研究,确定氟暴露各特定效应的基准剂量,寻求不同改水时间、儿童不同尿氟含量的各特定效应指标的变化规律及剂量-反应关系,建立氟病区改水后儿童健康风险度综合评价模型,为制定氟暴露限值、提高氟病区儿童健康水平的政策提供科学的决策依据。
     方法:从汕头市潮南区63个氟病村中随机抽取4个氟病村以及一个非氟病村进行6-12岁儿童氟斑牙、龋齿的普查;同时从中抽取600名儿童,检测其尿氟含量及血清中骨钙素、降钙素、碱性磷酸酶含量和骨密度。根据上述各项指标的检测结果进行氟病区改水后儿童健康风险度评价,评价方法采用美国环保署2001年修订的风险度评价指南,评价步骤有:危害认定、剂量-反应关系评价、暴露评定、危险度特征分析。各步骤的统计方法采用SPSS软件16.0以及BMDS软件进行(P<0.05表示差别有统计学意义)。其中危害认定通过Logistic回归分析进行氟暴露与各指标的患病情况的相关性分析;剂量-反应关系评价使用BMDS软件绘制尿氟与各指标的剂量-反应曲线并计算基准剂量以及基准剂量下限;暴露评定采用平均水平来描述氟暴露的剂量,用各指标90%的上限来确定异常指标的范围,用Logistic回归分析暴露与异常的关系;危险度特征分析根据基准剂量下限确定的范围来定量认定风险,衡量风险的大小。
     结果:A、B、C、D四个氟病区村改水前水氟含量分别是5.51mg/1、2.17mg/1、3.99mg/1和3.31mg/,改水后的水氟含量均降至0.11mg/1,与对照村一致。对照E村儿童尿氟含量平均水平为0.48mg/l,改水后A、B、C、D村儿童尿氟含量分别是:0.62MG/1、0.51mg/1、0.36mg/1和0.27mg/l,各观察村与对照村间差异有统计学意义(χ2=127.915,P<0.001),A村儿童尿氟平均水平高于对照村,而C、D村尿氟平均水平低于对照村。不同改水年限氟病区儿童血清骨钙素水平之间差别有统计学意义(F=14.465,P<0.001),改水年限为14年的B村和对照E村低于其他村。儿童血清降钙素水平之间有差别;F=48.959,P<0.001), B、C村间无差别,低于其他村。血清碱性磷酸酶活性之间差别有统计学意义(F=9.831,P<0.001),C村、D村均低于E村。儿童总骨密度值之间有差别(F=3.781,P=0.005),A村、C村均高于B村。
     改水前4个氟病区村氟斑牙患病率为76.99%。改水后除A村氟斑牙患病率高于30%(低于此值可判断为非氟病区)外,其他村均远低于30%。以E村为对照进行Logistic回归分析,A村OR值为7.71(χ2=212.02,P<0.001),其他村OR值没有统计学意义。五个村龋齿患病率均高于30%。E村龋齿患病率为49.7%,以E村为对照,进行单因素Logistic回归分析。A、B、C、D村龋齿患病率分别为31.97%(OR=0.48, χ2=73.62, P<0.001)、65.0%(OR=1.88,χ2=21.38, P<0.001)、56.3%(OR=1.31,χ2=10.81,P<0.001)、45.2%(OR=0.83, χ2=3.40,P=0.045)。各氟病区村骨钙素、碱性磷酸酶、骨密度异常率均不高于对照村。A村降钙素异常率高于对照E村,其OR值为6.39(χ2=27.14,P<0.001)。
     随着尿氟含量的增加,氟斑牙患病率逐渐增加,OR值也逐渐增加。尿氟剂量组在0.00~组龋齿患病率最高,为53.9%;0.37~组龋齿患病率最低,为39.8%;呈U型变化趋势。骨钙素、碱性磷酸酶、骨密度异常率在不同尿氟组间无差别,而降钙素异常率则有随着尿氟含量的增加而上升的趋势,相比尿氟含量0.0~组,0.6~组骨钙素异常的OR值为2.35(χ2=4.02,P=0.045),0.9~组的OR值为2.78(χ2=4.90,P=0.027)。
     尿氟与氟斑牙的剂量-反应模型选用Logistic模型,计算的基准剂量BMD=0.857mg/1, BMDL=0.720mg/1.儿童尿氟含量与龋齿间的剂量-反应关系选用Multistage模型,下降曲线的BMD和BMDL(基准剂量下限)值分别为1.095mg/l和0.898mg/l,上升曲线的BMD和BMDL值分别为0.275mg/l和0.124mg/l。尿氟与骨钙素剂量-反应关系模型采用Logistic回归模型,计算的BMD=0.975mg/1, BMDL=0.622mg/1。降钙素异常的剂量-反应关系模型为Quantal-线性模型;计算的BMD=0.636mg/1, BMDL=0.383mg/1。碱性磷酸酶异常的剂量-反应关系模型是Logistic回归模型,计算的BMD=2.299mg/1, BMDL=0.837mg/1.尿氟与骨密度异常的剂量-反应关系模型为对数-Logistic回归模型,计算的BMD=0.941mg/1, BMDL=0.811mg/1。
     氟斑牙在改水年限为6年的归因危险度(ARP)最低,为0.41;而改水年限为14年、15年、17年的归因危险度分别是0.91、0.92、0.96。以各效应指标安全剂量范围下限为对照,计算超过安全剂量范围的OR值:氟斑牙、骨钙素、降钙素OR值分别为2.415、1.945、1.761。龋齿、碱性磷酸酶、骨密度OR值均无统计学意义。以疾病危害程度所占权重乘以异常率作为合计风险,计算各基准剂量组总的风险值,结果显示随尿氟含量的增加,总的风险有上升的趋势。
     结论:
     1.改水后各观察村居民饮用水均符合国家饮用水卫生标准(1.0mmg/1以下)。
     2.改水超过六年,观察村儿童尿氟含量、氟斑牙患病率及健康效应指标已达到非氟病区水平。
     3.儿童尿氟与儿童氟斑牙、龋齿患病率及氟性骨损伤四项指标(BPG, CT, ALP和骨密度)均存在剂量-反应关系,其中尿氟含量与龋齿呈U型曲线关系。
     4.通过尿氟与儿童氟斑牙、龋齿患病率及氟性骨损伤四项指标(BPG, CT, ALP和骨密度)的剂量-反应关系构建,计算出各效应指标的BMD值分别为:0.857mg/1、1.095mg/1(龋齿上限值)和0.275mg/l(龋齿下限值)、0.975mg/1、0.636mg/1、2.299mg/1和0.941mg/1; BMDL值分别为:0.720mg/1、0.898mg/1(龋齿上限值)和0.124mg/1(龋齿下限值)、0.622mg/1、0.383mg/1、0.837mg/1和0.811mg/l。
     5.各效应指标的尿氟基准剂量下限可作为当地尿氟含量的生物限值。
     6.在改水后的4个氟病村中,B村和C村儿童患龋齿的风险高于其他村。
Background:Fluorine is widely found in nature and is one of the13most abundant natural elements in the Earth's surface. Although scientists are still not sure the fluoride whether a vital role in human health, but many people believe that a small amount of fluoride in the diet helps to prevent tooth decay and strengthen bones. On the other hand, long-term intake of high doses of fluoride can produce adverse effects on human health, including dental fluorosis and skeletal fluorosis, increased risk of fractures, resulting in declining birth rate, increased urinary calculi (kidney stones), resulting in hypothyroidism and reduce children's intelligence. Endemic fluorosis is widely distributed in the world which includes more than50countries and regions of five continents. China is one of most serious endemic fluorosis in the world. According to the ways of fluoride intake, endemic fluorosis in China can be divided into several types:drinking water type, coal burning pollution type, drinking tea type and mixed type, and the most serious one is drinking water type fluorosis, followed by coal burning type which can lead to dental and skeletal fluorosis epidemic. Most of fluorosis endemic areas in southern China are drinking water type and Guangdong is the most serious one confirmed in the1980s. The province totally has396endemic villages located in115towns of37counties of14cities with an endemic population of502,400. Shantou, a city in eastern Guangdong province, is the most serious city in14endemic cities with an endemic population of216,100. The dental fluorosis prevalence in the children aged8-15in Shantou endemic areas was62.01%. The procedures to treat fluorosis in Guangdong Province is to provide low fluoride public water for the residents in the endemic villages and which has been conducted since the late1980s and the remarkable results have been achieved. Until2003, the province has finished changing the water in all endemic areas and93.3%of the population has got the benefits, and the average prevalence rate of dental fluorosis has fell to41.5%from61.12%.
     However, even though the content of fluoride in the water has been reduced, the effects on the human being remain a lot of unknown elements since the fluoride in the water has a dual effect on human health. For instance, below what dose or higher than what dose the fluoride in the water is harmful to health? What is the acceptable dose? What are the benchmark doses to beneficially or harmfully affect human health? How to assess the health risk for the population in the endemic fluorosis areas? High fluoride areas of fluoride exposure groups, especially groups of children and how to assess the health risks? What dosage of fluoride is safety in the Changed water, and how to determine this dose etc.. The aim of this paper is to create an assessing method to evaluate the children's health risk who explored to the high water fluoride environment but have had water changed for different years, as well as to recommend a safety dose for the local government based on the calculation of bench mark doses.
     Objective:based on the study on the years of the children's exposure, the duration of water changed and different specific effects responded to fluoride exposures, to determine the benchmark doses of the specific effects of different fluoride exposures, to seek the changing rules and dose-response relationship ofthe specific effective criteria related to different water change years and children's urinary fluoride contents, to establish the children's health risk evaluation model and to provide the scientific basis for decision making to set the fluorine exposure limits and improve the children's health in the endemic fluorosis areas.
     Methods:Four endemic fluorosis villages were randomly selected from63endemic fluorosis village of Chaonan county, Shantou city as well as a non-endemic fluorosis village and all of the children aged6-12were chosen for the examination of dental fluorosis, dental caries and600were selected for determines of fluoride contents in urine and serum osteocalcin, calcitonin, alkaline phosphates' content and bone mineral density. According to the test results of the above indicators, children's health risk assessment was conducted based on the Risk Assessment Guide revised in2001by the U.S. Environmental Protection Agency. The evaluation steps included identification of hazards, the dose-response relationship, evaluation of exposure assessment, and risk analysis. Software SPSS16.0and BMDS were used for statistics Including the identification of hazards by using Logistic regression analysis to analyze the correlation of fluoride exposure and the prevalence of various indicators(P<0.05showes statistically significant); using BMDS software to evaluate dose-response relationship and draw the dose-response curve between urine fluoride and indicators and calculate the reference dose, and the benchmark dose lower limit; average exposure was assessed to describe the dose of fluoride exposure, with a ceiling of90%of each indicator to determine the scope of the exception indicators; Logistic regression was used to analyze the relationship between exposure and abnormal; risk determination and risk scope were determined based on the benchmark dose lower limit.
     Results:Fluoride contents in villages A, B, C, D before water changed were5.51mg/1,2.17mg/1,3.99mg/1and3.31mg/1. They all came down to0.11mg/1after water changed, consistent with the control village. The average of the children's urine fluoride in village E (control) was0.480mg/1, and those in A, B, C, D villages were0.62mg/1,0.51mg/1,0.36mg/1and0.27mg/1after water changed. The difference was statistically significant between the observed villages and the control one (χ2=127.915, P<0.001). The averaged children's urine fluoride in village A was higher than control, while the C and D Villages were lower than the control village. The children serum osteocalcin levels were significantly different among the years of water change(F=14.465, P<0.001), village B which was14years of water changed and control Village E were lower than the others. There are statistical differences between the levels of serum calcitonin(F=48.959, P<0.001), village B and C were lower than other villages but no difference between B and C. Differences between children serum alkaline phosphates'activity were statistically significant (F=9.831, P<0.001), Village C and D were lower than Village E. Children's bone mineral densities were also different(F=3.781,P=0.005), A Village and C village were higher than B village.
     The dental fluorosis prevalence rate in the observed villages was76.99%before water change. After the water changes, all the observed villages except A have decreased to30%(below this value can be judged as a non-fluorine area). Based on the control Village E, the Logistic regression showes that the OR value of Village A was7.71(χ2=212.02, P<0.001), and no statistically significant OR values of the other villages. The dental caries prevalence rates in five villages were higher than30%. E village's caries prevalence was49.7%. Compared with E village of control, the Logistic regression analysis showed that the caries prevalence of villages A, B, C, D ware31.97%(OR=0.48, χ2=73.62, P<0.001),65.0%(OR=1.88, χ2=21.38, P<0.001),56.3%(OR=1.31, χ2=10.81, P<0.001), and45.2%(OR=0.83, χ2=3.40, P<0.001) respectively. All of the villages'osteocalcin, alkaline phosphates'and bone mineral density abnormal rates were not higher than the control village, but calcitonin anomalies in village A was higher than the control Village E,(OR=6.39,χ2=27.14, P<0.001).
     With the increase in urine fluoride, dental fluorosis prevalence as well as OR values gradually increased. The urine fluoride content in the0.00-group had the highest caries prevalence of53.9%; The0.37-group had the lowest prevalence of dental caries of39.8%; The change showed a U-shaped trend. Osteocalcin, alkaline phosphates, bone mineral density anomaly rates were not different among the different urine fluoride groups. The calcitonin abnormal rate showed an upward trend with the increase of urinary fluoride contents. Compared to the urine fluoride content of0.0~group, the0.6~group's abnormal osteocalcin OR was2.35(χ2=4.02, P=0.045), and the0.9~group's OR was2.78(χ2=4.90, P=0.027).
     The dose-response model of urinary fluoride and dental fluorosis selected Logistic model, with a benchmark dose BMD=0.857mg/1, BMDL (benchmark dose lower limit)=0.720mg/1. The dose-response relationship between the children's urinary fluoride and dental caries selected the Multistage model, the down trend curve of BMD and BMDL values were1.095and0.898mg/1, and the up trend curve of BMD and BMDL values were0.275and0.124mg/1respectively. Logistic regression model was selected to calculate the dose-response relationship of urinary fluoride and osteocalcin and BMD=0.975mg/1, BMDL=0.622mg/1. The calcitonin abnormal dose-response relationship model calculated Quantal-linear model:the BMD=0.636mg/1, BMDL=0.383mg/1. ALP dose-response relationship model was a Logistic regression model and the BMD=2.299mg/1, BMDL=0.837mg/1. Abnormal urinary fluoride and bone mineral density's dose-response relationship model chosen the log-logistic regression model, the BMD was0.941mg/1, and the BMDL was0.811mg/1.
     The attributable risk (ARP) of dental fluorosis in the village with water change for six years was the lowest0.41; and the attributable risks for those with water change for14years,15years and17years were0.91,0.92and0.96. Compared with the lower limits for the safe dose range of each effect indicators and calculated OR value exceeded the safe dose range:OR values for dental fluorosis, osteocalcin, and calcitonin were2.415,1.945and1.761. Dental caries, alkaline phosphates, bone mineral density OR values were not statistically significant. The total value of risk calculated based on the combination of weight of quality of life and abnormal rate of the indicators showed an upward trend:total risk increases with the increasing of urinary fluoride content.
     Conclusion:
     1. The content of the fluoride in the drinking water in the water-changed villages meets the national health standards for drinking water (1.0mg/1or less).
     2. When the water has been changed for more than six years, the observed village children's urinary fluoride, dental fluorosis prevalence and health effect indicators have reached the levels of non-fluorine village.
     3. There are dose-response relationship between children's urinary fluoride and dental fluorosis, caries prevalence and four fluoride-induced bone damage indicators (BPG, CT, ALP, and bone mineral density). Urinary fluoride and dental caries shows a U-shaped curve relationship.
     4.Through the dose-response relationship building between urinary fluoride and dental fluorosis, dental caries and four fluoride-induced bone injury indicators (BPG, CT, ALP, and bone mineral density), the BMD values for the above indicators were:0.857mg/1,1.095mg/1(caries upper limit) and0.275mg/1(caries lower limit value),0.975mg/1,0.636mg/1,2.299mg/1and0.941mg/1; BMDL value were:0.720mg/1,0.898mg/1(caries upper limit) and0.124mg/1(caries limit)0.622mg/1,0.383mg/1,0.837mg/1and0.811mg/1.
     5. The urinary fluoride benchmark dose lower limit for each indicator can be used as a biological limit for the local areas.
     6. In the observed villages with water change, the risk of dental caries in village B and C was higher than other villages.
引文
[1]Mason B, Moore CB.Principles of geochemistry[M].New York:Wiley 1982, 386-399.
    [2]Fuge R.Sources of halogens in the environment, influence on human and animal health[J]. Environmental Geochemistry and Health,1988,10(2):51-61.
    [3]Ozsvath DL.Fluoride and environmental health:a review[J]. Environmental Science and Bio/Technology,2009,8(1):59-79.
    [4]WHO.UNICEF's Position on Water Fluoridation:Fluoride in water:An overview[M].WHO,2012,28-30.
    [5]WHCXEnvironmental occurrence, geochemistry and exposure:Fluoride distribution in Water[M].WHO,2012,96-112.
    [6]Alarcon-Herrera MT, Martin-Domiguez IR, Trejo-Vazquez RT,et al. Well water fluoride, dental fluorosis, and bone fractures in the Guadiana Valley of Mexico[J].Fluoride,2001,34(2):139-149.
    [7]USEPA.Fluoride in Drinking Water:A Scientific Review of EPA's Standards[M].2012,76-83.
    [8]戴国钧主编.地方性氟中毒[M].内蒙古人民出版社,1985.2-16.
    [9]Ando M, Tadano M, Asanuma S,et al..Health effects of indoor fluoride pollution from coal burning in China[J].Environmental Health Perspectives,1998, 106(5):239-244.
    [10]Cao J, Zhao Y, Liu J,et al.. Brick tea fluoride as a main source of adult fluorosis[J].Food Chem Toxicol,2003,41(4):535-542.
    [11]李永华,王五一.饮水型氟中毒病区氟的环境剂量-效应研究[J].中国地方病防治杂志,2001,16(5):262-265.
    [12]Li HR,Liu QB,Wang WY,et al.Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China[J]. Journal of Hazardous Materials,2009,167(3):892-895.
    [13]Wang LF, Huang JZ.Outline of control practice of endemic fluorosis in China[J]. Soc Sci Med,1995,41(8):1191-1195.
    [14]Zhang J, Smith KR. Household.Air Pollution from Coal and Biomass Fuels in China:Measurements, Health Impacts, and Interventions[J]. Environ Health Perspect,2007,115(6):848-855.
    [15]中华人民共和国卫生部.中国卫生统计年鉴2012[M],中国协和医科大学出版社.2012.
    [16]陈少贤,徐火周,许立凡,等.广东省潮阳市饮水型氟病区改水后儿童氟斑牙患病情况调查分析[J].中国初级卫生保健,2004:18(8):41-44.
    [17]陈少贤,徐火周,许立凡,等.广东省饮水型氟病区改水效果分析[J].中国农村卫生事业管理.2004;24(3):33-35.
    [18]陈少贤,徐火周,许立凡,等.河源市改水降氟的调查分析[J].中国农村卫生事业管理.2004;24(3):40-43.
    [19]王军义,陈少贤,邹志方,等.广东省饮水型氟病区改水减负阶段效果评价[J].中国初级卫生保健.2004,18(8):36-38.
    [20]许立凡,徐火周,陈少贤,等.汕头市饮水型高氟区改水后水氟含量与氟斑牙患病情况的流行病学调查与分析[J],中国农村卫生事业管理,2004,24(3):38-40.
    [21]余江,陈少贤,李伯灵,等.广州、惠州和潮州地氟病区改水效果评价[J],中国农村卫生事业管理,2004,24(3):35-37.
    [22]陈志.我国的地方性氟中毒的分布状况[J].中国公共卫生,1998,13(3):133-134.
    [23]于光前,孙殿军.地方性氟中毒的病情与防治[J].中国公共卫生,2000,16(10):938-939
    [24]王军义,陈少贤,邹志方,等.广东省饮水型氟病区改水降氟阶段成效评价[J].中国初级卫生保健.2004,18(8):36-38
    [25]李伯灵,王军义,余江,等.广东省饮水型氟病区改水后儿童氟斑牙患病情况流行病学分析[J].中国初级卫生保健.2004.18(8):38-41
    [26]邹志方,陈少贤,贺凌飞,等.汕头市地方性氟中毒病区改水后学生尿氟及氟斑牙患病调查[J].环境与健康杂志.2011.28(1):41-43
    [27]孙殿军,沈雁峰,赵新华,等.中国大陆地方性氟中毒病情动态与现状分析[J].中国地方病防治杂志,2001,20(6):429-433.
    [28]Phipps K. Fluoride and bone health[J]. Public Health Dent,1995,55:53-56.
    [29]Czarnowski W, Krechniak J, Urbanska B, et al. The impact of water-borne fluoride on bone density[J]. Fluoride,1999,32:91-95.
    [30]ADA. Position of the American Dietetic Association:the impact of fluoride on health[J]. Journal of the American Dietetic Association,2001,101(1):126-132.
    [31]WHO Guidelines for drinking water quality, Geneva[R]. World Health Organization,1996b.
    [32]Zohouri FV, Rugg-Gunn AJ. Sources of dietary fluoride intake in 4-year old children residing in low, medium and high fluoride areas in Iran[J]. International Journal of Food Sciences and Nutrition,2000,51(5):317-326.
    [33]Liang LY, Katz CK, Niu BP, et al. Effect of fluoride exposure and nutrition on skeletal fluorosis[J]. Journal of Dental Research,1996,75(SISI),2699.
    [34]Zheng B,Ding Z,Huang R,et al. Issues of health and disease relating to coal use in south western China[J]. International Journal of Coal Geology,1999, 40(2):119-132.
    [35]Povoroznuk V, Zhovinsky E, Barhanel, et al. Impact of increased fluoride concentrations in water on bone fissure functional state and teeth[J]. Ukrainian Medicine Almanac,2001.
    [36]Zhouinsky E, Pouoroznuk U. Fluoride in water of region and relation with bone diseases[J].1998.Carpathiau-Balkan Geological Association XVI Congress Austria; University of Vienna,652.
    [37]Whelton HP, Ketley CE, McSweeney F, et al.. A review of fluorosis in the European Union:prevalence, risk factors and aesthetic issues[J].Community Dent Oral Epidemiol.2004,32(1):9-18.
    [38]Beltran-Aguilar ED, Barker LK, Canto MT, et al. Surveillance for dental caries, dental sealants, tooth retention, edentulism, and enamel fluorosis—United States, 1988-1994 and 1999-2002. MMWR Surveill Summ 2005;54(3):1-43.
    [39]Burt BA, Eklund SA. Dentistry, Dental Practice, and the Community.6th ed. St. Louis:Elsevier Saunders; 2005.
    [40]Hiroko Iida and Jayanth V. Kumaro The Association Between Enamel Fluorosis and Dental Caries in U.S. Schoolchildren.J Am Dent Assoc 2009;140;855-862.
    [41]Marilia Afonso Rabelo Buzalafa & Steven Marc Levyb. Fluoride Intake of Children:Considerations for Dental Caries and Dental Fluorosis. Fluoride and the Oral Environment.2011,22:1-19.
    [42]Balan H. Fluoride--the danger that we must avoid.Rom J Intern Med.2012 Jan-Mar;50(1):61-9.
    [43]Belows CG, Heersche JN. The effect of fluoride on osteoblast progenitors in vitro[J]. Bone Miner Res,1990,5(1-1):101-112.
    [44]Meunier PJ, Femenias M, Duboeuf F, et al. Increase of vertebral bone density in heavy drinkers of mineral water with a high fluoride content[J], Press Med, 1989,18(29):1423-1426.
    [45]Phipps KR, Orwoll ES, Bevan I. The association between water-borne fluoride and bone mineral density in older adults[J]. Dent Res,1998,77(7):1739-1748.
    [46]Whitfor Ct.CM.(1997). Determinants and mechanisms of enamel fluorosis[J]. In.Ciba Foundation symposium,205-226.
    [47]Yu-e Song, Hao Tan, Ke-jian Liu et al. Effect of fluoride exposure on bone metabolism indicators ALP, BALP, and BGP[J]. Environ Health Prev Med.2011; 16:158-163.
    [48]Crump K. A new method for determining allowable daily intakes[J]. Fund Appl Toxicol 1984,4:854-871.
    [49]Gaylor.D Ryau L,Krewski D.etal.Procedures for calculation benchmark doses for health risk assessment[J].Regul Toxic Pharm.1998,28:150-164.
    [50]Fordyce F, Vrana K, Zhovinsky E, et al. A health risk assessment for fluoride in Central Europe[J]. Environmental Geochemistry and Health,2007, 29(2):83-102.
    [51]Serap Erdal and Susan N. Buchanan. A quantitative look at fluorosis, fluoride exposure, and intake inchildren using a health risk assessment approach[J].Environmental Health Perspectives 2005,113(1):111-117.
    [52]李永华,王玉,侯少苑,等.我国地方性氟中毒病区环境氟的安全阈值[J],环境科学.2002,23(4):118-122.
    [53]张明访,向永权,彭芳,等,饮水氟含量与地方性氟中毒的剂量-反应关系[J],职业与健康,2006.22(8):566-568.
    [54]向永权,张明访,洪沛,等.总摄氟量与儿童氟斑牙相关关系与研究[J],中国地方病防治杂志,2007.22(4):254-257.
    [55]韩永成.刘策.杨世明,等.儿童总摄氟量与儿童氟斑牙关系的研究[J],北京口腔医学,1998.6(2):55-58.
    [56]向全永.梁友信.陈秉衡,等.水氟的基准剂量及其生物暴露指标的应用[J],中华预防医学,2004,38(1):261-264.
    [57]罗振东,蒋文卿,宋银芳,等.饮水氟钙比值及其居民中毒效应的剖析[J],中华预防医学杂志,1987,21(2):71-73.
    [58]李广生,侯立群.不同钙含量饲养条件下氟中毒对大鼠骨转换的影响[J],中国病理学杂志.1997,26(5):18-20.
    [59]刘开泰.饮水型地方型氟中毒[J].中国地方病防治杂志.1994,10(1),32-34.
    [60]王麟,黄志亚,李为民,等.地方性氟中毒骨代谢生化敏感标志位的研究[J].中国地方病学杂志.2006,2(2):73-75.
    [61]钱海雷,向全永,陈连生等.基准剂量在氟暴露人群骨效应评价中的应用[J]. 环境与医学杂志,2007,24(2):12-15.
    [62]Gaylor.D, Ryau L,Krewski D.etal.Procedures for calculation benchmark doses for health risk assessment Regul Toxic Pharm.1998,28:150-164.
    [63]Molak V. Fundamentals of risk analysis and risk management[M].LEWIS,1997.
    [64]KJ Rothman, S Greenland, TL Lash.Modern epidemiology[M]. Philadelphia: Lippincott Williams & Wilkins,2008.
    [65]Jain,CK.Fluoride Contamination in Ground Water. Water Encyclopedia.2004, 5:130-136.
    [66]Gosselin, RE; Smith RP, Hodge HC. Clinical toxicology of commercial products[M]. Baltimore (MD):Williams & Wilkins.1984.185-193.
    [67]Baselt RC. Disposition of toxic drugs and chemicals in man[J]. Foster City (CA): Biomedical Publications.2008.636-640;
    [68]WHO. Environmental health criteria 227 (Fluoride). Geneva:International Programme on Chemical Safety[S]. World Health Organization, 1.
    [69]Bradford D G,Michael B, John P, et al..Acute fluoride poisoning from a public water system[J].New England Journal of Medicine 1984,330 (2):95-99.
    [70]Pearce F. When the Rivers Run Dry:Journeys Into the Heart of the World's Water Crisis[M]. Toronto:Key Porter,2006.
    [71]San FA, Filippo GC. BattistoneThe fluoride content of a representative diet of the young adult male[J].Clinica Chimica Acta,1971,31(2):453-457.
    [72]Li JX, Cao SR. Recent studies on endemic fluorosis in China[J]. Fluoride 1994,27:125-128
    [73]Yan XY, Yan XT, Morrison A et al. Fluoride induces apoptosis and alters collagen I expression in rat osteoblasts[J].Toxicol Lett,2011,200:133-138.
    [74]Aoba T, Fejerskov O.Dental fluorosis:chemistry and biology[J]. Crit. Rev. Oral Biol. Med.2002,13 (2):155-70.
    [75]Colorado Springs Dental Society.History of Dentistry in the Pikes Peak Region[R].2008
    [76]Alvarez JO.Nutrition, tooth development, and dental caries[J].The American Society for Clinical Nutrition,1995,61(2):410-416.
    [77]Pizzo G, Piscopo MR, Pizzo I, Giuliana G. Community water fluoridation and caries prevention:a critical review[J]. Clin Oral Investig,2007,11(3):189-93.
    [78]Olivares M, Uauy R.Essential nutrients in drinking-water (Draft)[M]. WHO.2008.
    [79]Bouletreau PH, Bost M, Fontanges E, et al.Fluoride exposure and bone status in patients with chronic intestinal failure who are receiving home parenteral nutrition[J]. Am. J. Clin. Nutr.,2006,83 (6):1429-1437.
    [80]Griffin SO, Regnier E, Griffin PM,et al. Effectiveness of fluoride in preventing caries in adults[J]. J. Dent. Res.2007,86 (5):410-415.
    [81]Winston AE, Bhaskar SN.Caries prevention in the 21st century[J]. J. Am. Dent. Assoc.1998,129(11):1579-1587.
    [82]Newbrun E.The fluoridation war:a scientific dispute or a religious argument?[J]. J. Public Health Dent.1996,56(5):246-52.
    [83]Khandare HJ. Fluoride Contaminated Water and its Implications on Human Health-A Review[J]. International Journal of ChemTech Research,2013,5: 502-511.
    [84]刘晓莉,白广禄,范中学,等.陕西省饮水型氟中毒流行现状调查[J].中国地方病学杂志,2005,4(3):310-313.
    [85]王宝珍,张晓明,白宏,等.厦门农村井水卫生学及水传疾病调查[J].海峡预防医学,2004,10(2):28-29.
    [86]白学信,周定友,梁代华,等.地氟病基本控制指标探讨[J].中国地方病学杂志,1996,15(4):244-245.
    [87]戴昌芳,吴锦泉,吴岳琦,等.广东省地方性氟中毒流行与控制[M].广东科技出版社,2011:186-187.
    [88]Alvarez J,Rezende K, Marocho S,et al.Dental fluorosis:exposure, prevention and management[J]. Med Oral Patol Oral Cir Bucal 2009,14 (2):103-7.
    [89]Fawell F, Chilton J, Dahi E,et al. Fluoride in Drinking-water[M].WHO,2006.
    [90]陈培忠,云中杰,马爱华,等.山东省地方性氟中毒病情现况调查分析[J].中国预防医学,2006,4:254-256.
    [91]夏玉婷,王彩生.2008年江苏省饮水型地方性氟中毒监测分析[C].2011年全国环境卫生学术年会论文集,2011:3.
    [92]徐春蓓.燃煤污染型与饮水型氟中毒病区人群尿氟特征的研究[J].中国地方病杂志,1999,18(2):158-160.
    [93]Grimaldo M.Endemic Fluorosis in San-Luis-Potosi, Mexico. Identification of Risk-Factors Associated with Human Exposure to Fluoride[J]. Environ Res, 1995,68(25):58-63.
    [94]Czarnowski W.Fluoride in drinking water and human urine in Northern and Central Poland[J],Sci Total Environ.1996,18(191):177-184.
    [95]Hsiu-Yueh Liu.Urinary fluoride concentration in children with disabilities following long-term fluoride tablet ingestion[J]. Res Dev Disabil.2011, 32(6):2441-2448.
    [96]张莉,余波,朱新波,等.氟斑牙患病率和流行指数与水氟尿氟的多元线性分析[J].中国地方病学杂志,2004,23(2):126-128.
    [97]吴锦权,陈泽池,冯光辉,等.广东省地方性氟中毒10年监测结果分析[J].中国地方病学杂志,2002,21(2):95-98.
    [98]黄长青,王成海,张秀丽,等.地方性氟中毒病区与非病区儿童氟斑牙表现及意义[J].中国地方病学杂志,2005,24(1):64-67.
    [99]刘运起,赵丽军,沈雁峰,等.1991-2005年全国地方性氟中毒监测结果分析[J].中国地方病学杂志,2006,25(6):665-667.
    [100]蔡茂荣,陈锦钟,卢黎明,等.已改水的地方性氟中毒病区用水管理与病情关系的现况调查[J].中国地方病学杂志,2005,24(2):217-219.
    [101]王骋,张微,赵丽军,等.2010年全国饮水型地方性氟中毒监测报告[J].中国地方病学杂志,2012,31(4):220-223.
    [102]白爱梅,李晓茜,等.陕西省饮水型氟中毒改水降氟效果动态观察[J].中国地方病防治杂志,2010.
    [103]贾丽辉,马景,杜永贵,等.2009年河北省饮水型地方性氟中毒病情调查[J].中国地方病学杂志,2011.
    [104]尹玉岩.2010年山东省地方性氟中毒重点调查结果与分析[J].中国地方病学杂志2012,31(2).
    [105]Steven M. Levy DDS, John J. et al.Patterns of Fluoride Intake from Birth to 36 Months[J] Journal of Public Health Dentistry,2007,61(2):416-426.
    [106]Crump, KS; Hoel DG, et al.Fundamental Carcinogenic Processes and Their Implications for Low Dose Risk Assessment[J]. Cancer Research,1976,36(9): 2973-2979.
    [107]Altshuler, B. Modeling of Dose-Response Relationships. Environ Health Perspect.1981,42:23-27.
    [108]Puchacz E, Lian JB, Stein GS, et al. Chromosomal localization of the human osteocalcin gene[J]. Endocrinology,1989,124 (5):2648-50.
    [109]Cancela L, Hsieh CL, Francke U,et al.Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene[J]. J. Biol. Chem.1989,265 (25):15040-8.
    [110]Lee NK, Sowa H, Hinoi E, et al.Endocrine regulation of energy metabolism by the skeleton. Cell,2007,130 (3):456-69.
    [111]Bharadwaj S, Naidu AG, Betageri GV,et al.Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women[J]. Osteoporos Int,2009,20 (9):1603-11.
    [112]Andreotti G, Mendez BL, Amodeo P,et al. Structural determinants of salmon calcitonin bioactivity:the role of the Leu-based amphipathic alpha-helix[J]. J. Biol. Chem..2006,281 (34):24193-203.
    [113]Boron WF, Boulpaep EL.Medical Physiology:A Cellular And Molecular Approach[M].2004.
    [114]Erdogan MF, Gursoy A, Kulaksizoglu M. Long-term effects of elevated gastrin levels on calcitonin secretion[J]. J Endocrinol Invest.2006,29 (9):771-775.
    [1]Jha S K, Mishra V K, Sharma D K, et al. Fluoride in the environment and its metabolism in humans[J]. Reviews of Environmental Contamination and Toxicology,2011, Volume 211:121-142.
    [2]冀芳.改水降氟18年后氟骨症患者功能代谢的研究[D].新疆医科大学,2005.
    [3]Fordyce F M. Fluorine:human health risks [J].Encyclopedia of Environmental Health,2011, Volume 2:776-785.
    [4]陈秉衡,屈卫东.世界卫生组织对氟化物的卫生评价[J].中国地方病学杂志,2000(6):79-80.
    [5]Geneva. Trace elements in human nutrition and health[Z]. World Health Organization(WHO),1996.
    [6]杨永建.氟对人体健康的影响[J].中国科技信息,2007(9):179-180.
    [7]刘洁,柳文美.氟与健康[J].昆明医学院学报,2009(S1):49-53.
    [8]Ozsvath D L. Fluoride and environmental health:a review[J]. Reviews in Environmental Science and Biotechnology,2009,8(1):59-79.
    [9]Dhar V, Bhatnagar M. Physiology and toxicity of fluoride[J]. Indian Journal of Dental Research,2009,20(3):350-355.
    [10]UNICEF's Position on Water Fluoridation:Fluoride in water:An overview[Z]. 2012.
    [11]Fawell J K. Fluoride in Drinking-water[M]. World Health Organization,2006.
    [12]Alarc O N-Herrera M T, Mart I N-Dom I Nguez I R, Trejo-V A Zquez R, et al. Well water fluoride, dental fluorosis, and bone fractures in the Guadiana Valley of Mexico[J]. Fluoride,2001,34(2):139-149.
    [13]Water N R C U. Fluoride in drinking water:a scientific review of EPA's standards[M]. National Academies,2006.
    [14]Smith M C, Lantz E M, Smith H V. The cause of mottled enamel, a defect of human teeth[J].1931.
    [15]Fordyce F M, Vrana K, Zhovinsky E, et al. A health risk assessment for fluoride in Central Europe[J]. Environmental geochemistry and health,2007,29(2): 83-102.
    [16]Guidelines for drinking water quality[R].World Health Organization (WHO), 1984.
    [17]Felsenfeld A J, Roberts M A. A report of fluorosis in the United States secondary to drinking well water[J]. JAMA:the journal of the American Medical Association,1991,265(4):486-488.
    [18]Environmental Health Criteria 227:Fluorides[R].World Health Organization (WHO),2002.
    [19]Suttie J W. Fluoride content of commercial dairy concentrates and alfalfa forage[J]. Journal of Agricultural and Food Chemistry,1969,17(6):1350-1352.
    [20]Mella S, Molina X, Atalah E. [Prevalence of endemic dental fluorosis and its relation with fluoride content of public drinking water][J]. Rev Med Chil, 1994,122(11):1263-1270.
    [21]M. Grimaldo V B A L. Endamic fluorosis in San Luis Potosi, Mexico.I. Identification of risk factors associated with human exposure to fluoride[J]. Environmental Research,1995(68):25-30.
    [22]Li X S, Zhi J L, Gao R O. Effect of fluoride exposure on intelligence in children[J]. Fluoride,1994,28(4):189-192.
    [23]Ayoob S, Gupta A K. Fluoride in drinking water:a review on the status and stress effects[J]. Critical Reviews in Environmental Science and Technology, 2006,36(6):433-487.
    [24]Dissanayake C B. Water quality and dental health in the Dry Zone of Sri Lanka[J]. Geological Society, London, Special Publications, 1996,113(1):131-140.
    [25]Susheela A K. Fluorosis management programme in India[J]. Current Science, 1999,77(10):1250-1256.
    [26]Susheela A K. Prevention and control of fluorosis in India[J]. Rajiv Gandhi National Drinking Water Mission, Ministry of Rural Development, New Delhi, 1993.
    [27]Viswanathan G, Jaswanth A, Gopalakrishnan S, et al. Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India[J]. Science of the Total environment,2009,407(20):5298-5307.
    [28]D I Az-Barriga F, Navarro-Quezada A, Grijalva M I, et al. Endemic fluorosis in M {\'e}xico[J]. Fluoride,1997,30(4):233-239.
    [29]Brasil. Ministerio da Saude. Projeto SB Brasil 2003:condicoes de saude bucal da populacao brasileira 2002-2003-resultados principais[M]. Editora MS,2004.
    [30]Ajayi D M, Arigbede A O, Dosumu O O, et al. The Prevalence and Severity of Dental Fluorosis among Secondary School Children in Ibadan, Nigeria[J]. Niger Postgrad Med J,2012,19(2):102-106.
    [31]李江平,黎昌健,罗莉.氟与人体健康[J].牙膏工业,2004(4):33-34.
    [32]于光前,孙殿军.地方性氟中毒的病情与防治[J].中国公共卫生,2000(10):72-73.
    [33]刘开泰.饮水型地方性氟中毒[J].中国地方病防治杂志,1994,9(001):32-34.
    [34]戴国钧.地方性氟中毒[M].内蒙古人民出版社,1985.
    [35]陈志.我国地方性氟中毒的分布状况[J].中国公共卫生,1997(3):7-8.
    [36]Cao J, Zhao Y, Liu J, et al. Brick tea fluoride as a main source of adult fluorosis[J]. Food and Chemical Toxicology,2003,41 (4):535-542.
    [37]Yonghua L, Wuyi W. Environmental dose-effects of fluoride in endemic fluorosis of drinking type areas [J][J]. Chinese Journal of Control of Endemic Disenaces,2001,5:3.
    [38]Li H, Liu Q, Wang W, et al. Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China[J]. Journal of hazardous materials,2009,167(1):892-895.
    [39]Ando M, Tadano M, Asanuma S, et al. Health effects of indoor fluoride pollution from coal burning in China.[J]. Environmental health perspectives, 1998,106(5):239.
    [40]Zhang J J, Smith K R. Household air pollution from coal and biomass fuels in China:measurements, health impacts, and interventions [J]. Environmental Health Perspectives,2007,115(6):848.
    [41]Lian-Fang W, Jian-Zhong H. Outline of control practice of endemic fluorosis in China[J]. Social Science \& Medicine,1995,41(8):1191-1195.
    [42]向全永.环境中氟对居民健康影响的危险度评价[D].复旦大学,2004.
    [43]吴广恩,刘永笑,孙健纯,等.我国地方性氟中毒的流行概况[J].中国地方病学杂志,1984(2):41-45.
    [44]赵艳,刘开泰,薛茜.我国饮水型氟中毒预防措施效果评价[J].中国地方病学杂志,2006(2):222-224.
    [45]中华人民共和国卫生部.中国卫生统计年鉴2012[M].北京市:中国协和医科大学出版社,2012.
    [46]王骋,张微,赵丽军,等.2010年全国饮水型地方性氟中毒监测报告:第七次全国地方病学术会议,济南,2011[C].
    [47]陈少贤,徐火周,许立凡,等.广东省潮阳市饮水型高氟区改水后儿童氟斑牙患病情况调查分析[J].中国初级卫生保健,2004(8).
    [48]Shaoxian C, Others. An effect analysis on lowering fluoride content at endemic fluorosis areas, Guangdong province[J]. Chinese Rural Health Service Administration,2004,24(3):33-35.
    [49]Shaoxian C, Others. Survey and analysis of water improvement to reduce fluoride in high fluoride area s in Heyuan city[J]. Chinese Rural Health Service Administration,2004,24(3):40-43.
    [50]王军义,陈少贤,李伯灵,等.江门、阳江、云浮、韶关、肇庆5市高氟区改水效果及儿童氟斑牙患病情况流行病学调查分析[J].中国农村卫生事业管理,2004(3):47-48.
    [51]Lifan X U, Others. Epidemiological survey and analysis of fluoride content in drinking water and dental fluorosis prevalence water-type high fluoride areas in Shantou city, Guangdong province[J]. Chinese Rural Health Service Administration,2004,24(3):38-40.
    [52]Jiang Y U, Others. Assessment to the effect of water improvement in the endemic fluorosis areas in Guangzhou, Huizhou and Chaozhou city [J]. Chinese Rural Health Service Administration,2004,24(3):35-37.
    [53]郝阳,孙殿军,魏红联,等.中国大陆地方性氟中毒防治动态与现状分析[J].中国地方病学杂志,2002(1):66-71.
    [54]王军义,陈少贤,邹志芳等.广东省饮水型氟病区改水降氟阶段成效评价[J].中国初级卫生保健,2004,18(8):36-38.
    [55]李伯灵,王军义,余江,等.广东省饮水型氟病区改水后儿童氟斑牙患病情况流行病学分析[J].中国初级卫生保健,2004(8).
    [56]李明峰.氟接触工人氟负荷与骨损伤早期指标的调查分析[D].华中科技大学,2008.
    [57]袁淑德,徐懿梅,谢启文.氟中毒抑制泌乳研究的进展[J].中国地方病学杂志,1993(3):56-58.
    [58]Yiamouyiannis J A. Fluoridation and cancer. The biology and epidemiology of bone and oral cancer related to fluoridation[J]. Fluoride,1993,26(2):83-96.
    [59]李广生.氟骨症病理学中的若干概念问题[J].中国地方病学杂志,2000(6):81-83.
    [60]陈学敏.环境卫生学[M].:人民卫生出版社,2004.
    [61]王连方.氟斑牙的几种"Dean氏分类法”浅析[J].地方病通报,2007(1):71-73.
    [62]刘建军,徐洪兰,詹仲春.氟骨症与骨密度变化[J].实用预防医学,2003(5):826-827.
    [63]韩莎,王素萍,王建武.临床表现诊断饮水型氟骨症价值评析[J].中华疾病控制杂志,2011(6):473-476.
    [64]黄长青.地方性氟骨症的X线诊断[J].中国地方病防治杂志,2011(1):21-25.
    [65]王国荃.环境中氟的分布及其对健康的影响(上)[J].新疆环境保护,1983,2:12.
    [66]蒋明,朱立平,林孝义.风湿病学[M].科学出版社,1995.
    [67]丛建民.氟化物中毒对骨病发病机制影响的研究[J].中国地方病防治杂志, 2007(4):271-273.
    [68]Favus M J, Christakos S. Primer on the metabolic bone diseases and disorders of mineral metabolism[M]. Lippincott-Raven Philadelphia, PA,1996.
    [69]李丽娜,吴玉清,ReneBuchet.丹酰-L-苯丙氨酸和L-苯丙氨酸对小牛肠碱性磷酸酶抑制作用动力学的比较性研究[J].光谱学与光谱分析,2009,29(10):2820-2823.
    [70]何淑萍.血清胆碱酯酶和碱性磷酸酶的测定及临床观察[J].中国医学创新,2009,6(17):140.
    [71]Whyte M P. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization[J]. Endocr Rev,1994,15(4):439-461.
    [72]Farley J R, Wergedal J E, Baylink D J. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells[J]. Science,1983, 222(4621):330-332.
    [73]Wergedal J E, Lau K H, Baylink D J. Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures[J]. Clin Orthop Relat Res,1988(233):274-282.
    [74]Khokher M A, Dandona P. Fluoride stimulates [3H]thymidine incorporation and alkaline phosphatase production by human osteoblasts[J]. Metabolism,1990, 39( 11):1118-1121.
    [75]Bellows C G, Heersche J N, Aubin J E. The effects of fluoride on osteoblast progenitors in vitro[J]. J Bone Miner Res,1990,5 Suppl 1:S101-S105.
    [76]Kassem M, Mosekilde L, Eriksen E F. Effects of fluoride on human bone cells in vitro:differences in responsiveness between stromal osteoblast precursors and mature osteoblasts[J]. Eur J Endocrinol,1994,130(4):381-386.
    [77]崔舜,余达林,余立凯.氟剂对成骨细胞成骨功能表达的影响[J].中华风湿病学杂志,2002(4).
    [78]万桂敏,莫志亚,刘忠杰,等.地方性氟中毒患者多项检验指标的测定及分析[J].中国地方病学杂志,2001(2).
    [79]侯立中,杨春伟,白秀起,等.饮水型氟中毒人群血液某些生化分析[J].中 国地方病防治杂志,1992(1):13-15.
    [80]梁君慧,陈风琴,成小梅.氟骨症患者骨密度与血清骨钙素和生化指标的相关分析[J].中国地方病学杂志,2002(4).
    [81]涂俊,宋玉娥,马俊香,等.基准剂量法在氟性骨损伤相关指标评价中的应用与分析[J].工业卫生与职业病,2010(4).
    [82]姚笠,邵庆亮,李晶,等.高氟地区新生儿脐血血清骨钙素与降钙素测定及分析[J].中国地方病学杂志,2005(1):85-86.
    [83]马晓英,崔留欣,李世宏,等.高氟饮水对8-12岁儿童牙齿及骨代谢指标的影响[J].郑州大学学报(医学版),2007(1).
    [84]马晓英,刘洋,朱静媛,等.高氟区儿童血清骨钙素与降钙素含量测定[J].中国学校卫生,2007(3):244-245.
    [85]Boron WF B E. Endocrine system chapter. Medical Physiology:A Cellular And Molecular Approach.[M]. Elsevier/Saunders.2004. ISBN 1-4160-2328-3..
    [86]Costoff A. A C. Sect.5, Ch.6:Effects of CT on the Small Intestine[J]. Medical College of Georgia,2008.
    [87]Costoff A. A C. Sect.5, Ch.6:Effects of CT on Bone [J]. Medical College of Georgia,2008.
    [88]SL C. Calcitonin and human renal calcium and electrolyte transport[J]. Miner Electrolyte Metab.1997,23 (1):43-7. PMID 9058369,1997.
    [89]Costanzo L S. BRS Physiology [J]. Lippincott, Williams,& Wilkins.2007: 263. ISBN 978-0781773119,2007.
    [90]Erdogan MF G A K M. Long-term effects of elevated gastrin levels on calcitonin secretion[J]. J Endocrinol Invest.October 2006,29 (9):771-775. PMID 17114906,2006.
    [91]薛琰,樊继援,齐建成,等.地方性氟骨症病人血中甲状旁腺激素和降钙素测定[J].中国地方病学杂志,1990(6):8-11.
    [92]上官存民,张启刚,王蔚青,等.氟骨症血清降钙素检测及其意义[J].西安医科大学学报(中文版),1995(4):435-436.
    [93]巴月,武伟华,任丽君,等.氟暴露人群雌激素受体Rsal基因多态性及其与骨密度异常的关系[J].郑州大学学报(医学版),2009(5):971-974.
    [94]McClellan R O. Human health risk assessment:a historical overview and alternative paths forward[J]. Inhal Toxicol,1999,11(6-7):477-518.
    [95]田裘学.健康风险评价的基本内容与方法[J].甘肃环境研究与监测,1997,10(4):32-36.
    [96]卫生部地方病防治司.地方性氟中毒防治手册[Z].北京:人民卫生出版社,1991.
    [97]Nordberg G, Sandstr O M B, Becking G, et al. Essentiality and toxicity of trace elements:Principles and methods for assessment of risk from human exposure to essential trace elements[J]. The Journal of Trace Elements in Experimental Medicine,2000,13(1):141-153.
    [98]Edmunds M, Smedley P. Fluoride in natural waters[J]. Essentials of Medical Geology. Elsevier Academic Press, Burlington,2005:301-330.
    [99]Kaminsky L S, Mahoney M C, Leach J, et al. Fluoride:benefits and risks of exposure[J].bone,1990,14(16):17.
    [100]B U A Lan H. Fluoride--the danger that we must avoid.[J]. Romanian journal of internal medicine= Revue roumaine de m{\'e} decine interne,2012,50(1):61.
    [101]Murray J J. Occurrence and metabolism of fluorides[J]. Murray JJ. Appropriate use of fluorides for human health. In:World Health Organization. Geneva,1986: 3-32.
    [102]Ismail A I, Hasson H. Fluoride supplements, dental caries and fluorosis A systematic review[J]. The Journal of the American Dental Association,2008, 139(11):1457-1468.
    [103]黄长青,王成海,张秀丽,等.地方性氟中毒病区与非病区儿童氟斑牙表现及意义[J].中国地方病学杂志,2005(1):64-66.
    [104]向全永,张明访,洪沛,等.总摄氟量与儿童氟斑牙相关关系研究[J].中国地方病防治杂志,2007(4):254-257.
    [105]Whitford G M, Others. The metabolism and toxicity of fluoride[J]. Monographs in oral science,1989,13:1.
    [106]夏世钧,张家放,王增珍.环境化学污染物危险度评价的“基准剂量法”[J].环境与职业医学,2005(2):178-180.
    [107]Crump K S. A new method for determining allowable daily intakes[J]. Fundamental and applied toxicology,1984,4(5):854-871.
    [108]Filipsson A F, Sand S, Nilsson J, et al. The benchmark dose method--review of available models, and recommendations for application in health risk assessment [J]. Crit Rev Toxicol,2003,33(5):505-542.
    [109]Apambire W B, Boyle D R, Michel F A. Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana[J]. Environmental Geology,1997,33(1):13-24.
    [110]Eklund S A, Burt B A, Ismail A I, et al. High-fluoride drinking water, fluorosis, and dental caries in adults[J]. The Journal of the American Dental Association, 1987,114(3):324-328.
    [111]Phillips C, Amphlett B, Robb E I J. The Long-term Effects of Water Fluoridation on the Human Skeleton[J]. Journal of dental research,2011,90(5): 683.
    [112]Turner C H, Boivin G, Meunier P J. A mathematical model for fluoride uptake by the skeleton[J]. Calcified tissue international,1993,52(2):130-138.
    [113]Mousny M, Omelon S, Wise L, et al. Fluoride effects on bone formation and mineralization are influenced by genetics[J]. Bone,2008,43(6):1067-1074.
    [114]Allolio B, Lehmann R. Drinking water fluoridation and bone[J]. Experimental and Clinical Endocrinology and Diabetes,1999,107:12-20.
    [115]Li Y, Liang C, Slemenda C W, et al. Effect of Long-Term Exposure to Fluoride in Drinking Water on Risks of Bone Fractures[J]. Journal of Bone and Mineral Research,2001,16(5):932-939.
    [116]汪肠,王彩生,向全永,等.饮水氟对儿童龋齿的影响[J].中国公共卫生,2004,20(5):530-531.
    [117]张明访,向全永,彭芳,等.饮水氟含量与地方性氟中毒的剂量-反应关系[J].职业与健康,2006(8):566-568.
    [118]Wong M, Clarkson J, Glenny A M, et al. Cochrane reviews on the benefits/risks of fluoride toothpastes[J]. Journal of dental research,2011,90(5):573-579.
    [119]Levy S M, Kiritsy M C, Warren J J. Sources of fluoride intake in children[J]. Journal of Public Health Dentistry,2007,55(1):39-52.
    [120]Fernandes D, Tabchoury C M, Cury J A. Fluoride concentration in infant foods and risk of dental fluorosis [abstract 1505][J]. J Dent Res,2001,80:224.
    [121]Erdal S, Buchanan S N. A quantitative look at fluorosis, fluoride exposure, and intake in children using a health risk assessment approach[J]. Environ Health Perspect,2005,113(1):111-117.
    [122]Chavoshi E, Afyuni M, Hajabbasi M A, et al. Health Risk Assessment of Fluoride Exposure in Soil, Plants, and Water at Isfahan, Iran[J]. Human and Ecological Risk Assessment,2011,17(2):414-430.
    [123]中华人民共和国卫生部.人群总摄氟量卫生标准[S][D]..
    [124]Cerklewski F L. Fluoride bioavailability—nutritional and clinical aspects[J]. Nutrition research,1997,17(5):907-929.
    [125]王滨滨,郑宝山,翟城,等.我国部分城市和地区居民尿氟含量与饮用水氟含量的相关性[J].城市环境与城市生态,2004(1):25-27.
    [126]莫志亚,杜波,房连营,等.吉林省地方性氟中毒11年监测尿氟结果分析[J].中国地方病防治杂志,2007,22(2):121-122.
    [127]向全永,梁友信,王彩生,等.总摄氟量与儿童龋齿的相关关系研究[J].中国地方病学杂志,2005(6):655-658.
    [128]于光前.尿氟在地方性氟中毒防治中的意义[J].中国地方病学杂志,2003(1):80-82.
    [129]Palmer C, Wolfe S H, Others. Position of the American Dietetic Association: the impact of fluoride on health.[J]. Journal of the American Dietetic Association,2005,105(10):1620.
    [130]Palmer C A, Gilbert J A. Position of the Academy of Nutrition and Dietetics: The Impact of Fluoride on Health[J]. Journal of the Academy of Nutrition and Dietetics,2012,112(9):1443-1453.
    [131]Kohn W G, Maas W R, Malvitz D M, et al. Recommendations for using fluoride to prevent and control dental caries in the United States[J]. MMWR Morb Mortal Wkly Rep,2001,50.
    [132]Barnes D G, Dourson M, Preuss P, et al. Reference dose (RfD):Description and use in health risk assessments [J]. Regulatory Toxicology and Pharmacology, 1988,8(4):471-486.
    [133]向全永.环境中氟对居民健康影响的危险度评价[D].复旦大学,2004.
    [134]Jackson R D, Brizendine E J, Kelly S A, et al. The fluoride content of foods and beverages from negligibly and optimally fluoridated communities[J]. Community dentistry and oral epidemiology,2002,30(5):382-391.
    [135]Grimaldo M, Borjaaburto V H, Ramirez A L, et al. Endemic fluorosis in San-Luis-Potosi, Mexico.1. Identification of risk-factors associated with human exposure to fluoride[J]. Environmental research,1995,68(1):25-30.
    [136]臧照芳,陈晓东,王彩生,等.中度氟病区饮用低氟自来水预防儿童氟斑牙的效果及其影响因素研究[J].现代预防医学,2007(3):519-521.
    [137]王麟,莫志亚,李为民,等.地方性氟中毒骨代谢生化敏感标志物的研究[J].中国地方病防治杂志,2006(2):73-75.
    [138]Phipps K R, Orwoll E S, Bevan L. The association between water-borne fluoride and bone mineral density in older adults[J]. Journal of dental research, 1998,77(9):1739-1748.
    [139]Meunier P J, Femenias M, Duboeuf F, et al. Increase of vertebral bone density in heavy drinkers of mineral water with a high fluoride content[J]. Presse Med, 1989,18(29):1-423.
    [140]Lv W. Fluoride content in drinking water and fluorine content of human urine [J]. Environment and Health,1997,14(3):136-138.
    [141]Karaoz E, Oncu M, Guile K, et al. Effect of chronic fluorosis on lipid peroxidation and histology of kidney tissues in first-and second-generation rats[J]. Biological trace element research,2004,102(1):199-208.
    [142]孙殿军,刘立志.我国饮茶型氟中毒研究的回顾及展望[J].中国地方病学 杂志,2005(1):3-4.
    [143]李永华,王五一.饮水型氟中毒病区氟的环境剂量—效应研究[J].中国地方病防治杂志,2001,16(5):262-265.
    [144]王烁,李伯灵,谈伟君.饮水型地方性氟中毒健康危险度评价[J].职业与健康,2011(9):1041-1044.
    [145]万桂敏,陈志,张丽虹,等.血清或血浆中的氟化物[J].中国地方病防治杂志,2000(2):90-92.
    [146]池西利喜夫,北川隆康.Gas Chromatographic Method for the Dethrmination of Fluoride Ion in Biological Samples. II.:Stability of Fluorine-Containing Drugs and Compounds in Human Plasma[J]. Chemical \& pharmaceutical bulletin,1988,36(2):810-814.
    [147]王麟,莫志亚,魏淑香,等.地方性氟中毒患者血,尿生化结果分析[J].中国地方病防治杂志,2005,20(50):289-290.
    [148]Fejerskov O. Changing paradigms in concepts on dental caries:consequences for oral health care[J]. Caries research,2004,38(3):182-191.
    [149]Zimmer S, Jahn K R, Barthel C R. Recommendations for the use of fluoride in caries prevention[J]. Oral Health Prev Dent,2003,1(1):45-51.
    [150]Pizzo G, Piscopo M R, Pizzo I, et al. Community water fluoridation and caries prevention:a critical review[J]. Clinical oral investigations,2007,11(3): 189-193.
    [151]陈玕,余波.地方性氟骨症的治疗进展[J].中国地方病防治杂志,2012(2):88-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700