用户名: 密码: 验证码:
酒精性肝病发生发展的基因组学和蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     酒精性肝病(alcoholic liver disease, ALD)是长期过量饮酒所致的肝损伤,包括酒精性脂肪肝、酒精性肝炎、酒精性肝硬化三种主要病理类型。随着人们饮酒量的增加,ALD的发病率有逐年增长趋势。2011年美国男性和女性ALD的患病率分别为7.4%、4.0%。ALD在俄国的发生率约为5%。我国虽然缺乏大规模的流行病学数据,但据统计,ALD已成为仅次于病毒性肝炎的第二大肝病。2000年浙江省ALD流行病学调查发现,人群患病率为4.34%。
     ALD是一种遗传-行为-环境相互作用的慢性疾病,其发病机制非常复杂,包括乙醇及其衍生物的代谢、营养失衡、免疫因素、氧化应激、内质网应激、缺氧、炎症介质、自噬与凋亡、基因多态性、microRNA和表观遗传学等。但这些诠释尚未涵盖所有的发病机制,ALD发生发展过程中复杂的分子事件直接导致了各种针对ALD的治疗措施收效不显。因此,深入研究其发病机制对指导本病的防治和提高患者的生活质量意义深远。
     本实验在成功构建ALD动物模型的基础上,分析了ALD发生发展过程中肝脏基因和蛋白质表达谱的动态变化,以期为认识ALD发生发展机制提供新线索。
     研究方法
     首先,用酒精给大鼠连续灌胃1月和3月,观察肝脏病理变化。其次,采用基因芯片技术,对酒精性脂肪肝组、酒精性肝炎组和正常对照组大鼠肝脏基因表达变化进行两两比较分析,并应用分子注释系统(MAS)进行基因本体(GO)功能注释和Pathway (KEGG和GenMAPP)分析。第三,应用双向荧光差异凝胶电泳(2D DIGE)技术分析不同病理状态的模型组和对照组大鼠肝脏蛋白质表达谱的差异,所得到的差异蛋白质点经质谱仪(MALDI-TOF/TOF)进行检测以鉴定差异蛋白,并结合生物信息学手段对差异蛋白进行功能分析和相互作用网络分析。
     结果
     动物实验观察到了肝细胞脂肪变性、炎症细胞浸润、坏死,与人类酒精性脂肪肝和酒精性肝炎的病理表现相似。
     基因组学研究方面,分别筛选出显著差异表达的基因285个(酒精性脂肪肝组与正常对照组比较)、318个(酒精性肝炎组和正常对照组比较)。两种病理状态的大鼠在肝脏基因的表达上无显著的统计学差异。这些差异基因主要参与了氧化还原、各种代谢(包括脂质、乙酰辅酶A、p-内酰胺类抗生素、谷氨酸盐、氨基酸、碳水化合物)、细胞分化及凋亡、补体激活等200多种生理过程和分子功能,以及近百条信号通路。通过分析及比较,发现了一些具有明显阶段特异性的差异基因,它们分别参与了不同的代谢途径。H2-T3,Aldhlll,Pklr等基因在酒精性脂肪肝阶段上调;同阶段下调的基因有:Pla2g12a, Hes1,Gcnt2,Adh4等。Coq6, Idi1,Fdps, Ppox, Gck, Npas2,Ddhdl等基因在酒精性肝炎阶段上调;同阶段下调的基因有:C7,Alas2, Got1,Aoc3,Vcam1,Mmp2, G6pc等。这些基因可能因作用于不同的代谢途径而导致了不同的病理改变。其中,大部分基因罕见报道。值得关注的是,Pla2gl2a基因参与了VEGF, MAPK等多条信号通路,而MAPK信号通路又通过细胞色素P4504a8基因与PPAR信号通路有着联系。Pla2g12a基因如何受VEGF信号转导通路的调控,其引起酒精性脂肪肝发生的机制尚待深入研究。
     此外,差异基因相互作用网络图分析发现了位于网络中心的关键节点基因周期素D1(Ccndl).我们还从参与ALD发病机制的信号通路中选择了PPAR.胰岛素、MAPK.粘着斑和P53这5条信号通路,并挑选这些通路中的37个基因进行了荧光定量PCR验证,验证结果与芯片检测结果一致。其中,脂肪酸合成酶基因(Fasn)和肉毒碱棕榈酰基转移酶1A基因(Cpt1a)的表达量随ALD病程的进展分别持续增强和减弱。
     蛋白组学研究方面,共鉴定了49个差异蛋白。除去冗余蛋白,酒精性脂肪肝和酒精性肝炎两个病理阶段的差异蛋白共35个。它们分别与三大物质的代谢、尿素合成、脂肪酸β氧化、细胞骨架、免疫防御、电子转移、细胞交通、ATP结合、抗氧化等功能有关。其中,8个蛋白的表达水平在酒精性脂肪肝和酒精性肝炎阶段均明显上调,分别是:碳酸酐酶3、谷胱甘肽转移酶Mu1和Mu2、衰老标记蛋白、电子转移黄素蛋白亚单位α、腺苷高半胱氨酸酶、类甘油醛-3-磷酸脱氢酶和过氧化氢酶(catalase, CAT)。而ATP合成酶亚单位d和β肌动蛋白FE-3的表达水平在这两阶段均明显下调。提示这些蛋白可能与ALD的发生发展有关。尤其是CAT,在应用Genomatix软件分析差异蛋白的相互作用网络后,发现它处于网络的中心,故推测这些差异蛋白可能因为影响了CAT而最终导致了ALD。综合文献报道,我们认为衰老标记蛋白可以作为诊断ALD的生物学标志物,它可能系通过胰岛素代谢途径而影响了ALD的发生发展。另一发现是,谷胱甘肽转移酶Mul在ALD发展过程中的表达量稳步上升,间接反映了ALD发生发展过程中氧化应激水平的不断加重。
     结论
     1成功地构建了ALD大鼠模型;
     2发现了一些阶段特异性的代谢途径和差异基因,其中Pla2g12a基因及其参与的VEGF信号途径在酒精性脂肪肝发病中的作用值得关注。与ALD病理严重程度一致的Fasn和Cpt1a基因,以及Ccndl节点基因对ALD分子机制的研究、早期诊断及分子靶向治疗研究有较好的提示作用。
     3鉴定到了10个与ALD的发生发展过程密切相关的蛋白。其中,RGN可以作为诊断ALD的生物学标志物;GSTM1有望成为判断ALD严重程度的生物学指标;CAT代谢途径在ALD发生发展中的作用不容忽视。
Background/aims
     Alcoholic liver disease (ALD) is a major healthcare problem worldwide which results from consumption of large amount of alcohol during a sustained period of time in a subset of alcoholics. Globally, in2010, alcohol-attributable liver cirrhosis was responsible for493,300deaths [5] The pathological spectrum runs the gamut from alcoholic fatty liver (AFL) to alcoholic hepatitis (AH), fibrosis, and frank cirrhosis. ALD affects approximately90%to100%of long-term heavy drinkers. Once alcoholic hepatitis develops, abstinence from drinking reverses this condition in only10%of the individuals. About15-40%of the patients rapidly progress towards the end-stage liver disease, digestive hemorrhage and superimposed hepatocellular carcinoma (HCC). Epidemiology in2011showed the prevalence of ALD in US was7.4%in men and4%m women.
     ALD results from a complex interaction between behavioral, environmental, and genetic factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms, including oxidative stress, endotoxin, cytokines, immune regulators, ischaemia, metabolic disturbances (alteration of methionine metabolism, and so on), nutritional factors, and genetic predisposition. Despite decades of intensive investigation, the basic pathophysiological mechanisms responsible for ALD have remained elusive. Hence, there is a great need for using new tools to comprehend the mechanistic perspectives underlying the complex pathogenesis of ALD. Moreover, it is vital to identify non-invasive biomarkers that can accurately distinguish the different ranges of chronic alcoholic liver injuries and therapy thereof.
     This dissertation consists of three parts:establishment of ALD rat model, gene expression analysis by microarray, and proteomic analysis of the spectrum of ALD.
     Methods
     To mimic the progress of human ALD, rats were treated with ethanol by means of intragastric infusion for1and3month respectively. After the animals were killed, liver histology and total RNA analysis by microarray were performed. Then differential expressed genes were annotated with GO and Pathway analysis. Real time-PCR was used for further validation. Changes in protein expression of liver samples from each of the three groups of subjects (controls, AFL, and AH) were analyzed by2D DIGE combined with MALDI-TOF/TOF analysis.
     Results
     In the different experimental groups,285(AFL vs. Con) and318(AH vs. Con) different genes were differentially expressed. Of which, there are137/142up-regulated genes, and148/176down-regulated ones in AFL group and AH group respectively as compared to the control group. The majority of the trafficking genes are involved in the degradation and synthesis of fatty acid, steroid biosynthesis, inflammatory response, oxidative stress, pentose phosphate pathway, nuclear receptors, and proteasome degradation. The expressions of37genes in5pathways done by real time quantitative PCR had coincidence with that of microarray. Dozens of phase specific genes were identified, which may play some roles in the development of ALD. Of them, phospholipase A2group XIIA gene (Pla2g12a) and the signaling pathway of vascular endothelial growth factor (VEGF) deserve mention. Notably, Ccndl was found to be a node gene in the gene network map. It was activated or modulated by other genes. Additionally, fatty acid synthase (Fasn) gene kept rising and carnitine palmitoyltransferase1a (Cpt1a) gene kept down during the process of ALD.
     Forty-nine proteins exhibited significant changes (ratio≥1.5or≤-1.5, P<0.05). Of which,45(AFL vs. Con) and29(AH vs. Con) proteins were identified, with part of them identical. Thirty-five non-redundant proteins were determined to be involved in numerous biological functions, including metabolism of amino acid, lipid and carbohydrate. Catalase was a node protein in the network map after analyzing by Genomatix software. It had extensive connection with other proteins, which means these proteins might have some roles in ALD by involving in ethanol-catalase pathway. Besides, we found that the expression levels of8proteins were significantly up-regulated (>1.5-fold) in alcohol fed group as compared with the control one, namely catalase, carbonic anhydrase3,glutathione S-transferase Mul (GSTM1), glutathione S-transferase Mu2, regucalcin (RGN), electron transfer flavoprotein subunit alpha, adenosylhomocysteinase, and glyceraldehyde-3-phosphate dehydrogenase-like. Meanwhile, the expression levels of ATP synthase subunit d and beta actin FE-3were significantly down-regulated (<1.5-fold) in alcohol fed group as compared with the control one. Interestingly, regucalcin was reported to have close relationship with insulin resistance and could be used as a biomarker of ALD. Our research testified it. We infer that regucalcin may promote the process of ALD by impairing hepatic insulin signaling. Moreover, GSTM1was steadily up-regulated in the rat liver with the progression of ALD.
     Collectively, the results of this study provide our knowledge to the pathopoiesis of ALD by identifying the intrahepatic gene and protein expression profiles of rats. In addition, some ALD-related genes and proteins were revealed, which are plausible of biologic markers of the disease, such as Fasn, Cptla, Ccndl gene, RGN and GSTM1. The relationship between Pla2gl2a in VEGF signaling pathway and ALD should be investigated further. Likewise, ethanol-catalase pathway cannot be ignorant. But the results should be confirmed by further studies.
引文
[1]McCullough AJ, O'Shea RS, Dasarathy S. Diagnosis and management of alcoholic liver disease. J Dig Dis.2011;12(4):257-62.
    [2]段晓燕,范建高.2011亚太肝病年会酒精性肝病纪要.胃肠病学和肝病学杂志。2011;5(20):400-3.
    [3]厉有名.酒精性肝病的流行病学及自然史.中华肝脏病杂志。2010;3(18):171-2.
    [4]Beier JI, McClain CJ. Mechanisms and cell signaling in alcoholic liver disease. Biol Chem.2010;391(11):1249-64.
    [5]Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. J Hepatol.2013 Mar 16.
    [6]Tsukamoto H. Conceptual importance of identifying alcoholic liver disease as a lifestyle disease. J Gastroenterol.200742(8):603-9.
    [7]Sharma MR, Polavarapu R, Roseman D, et al. Increased severity of alcoholic liver injury in female verses male rats:a microarray analysis.Exp Mol Pathol. 2008;84(1):46-58.
    [8]Nezi V, Deutsch M, Gazouli M, et al. Polymorphisms of the CD14 genes are associated with susceptibility to alcoholic liver disease in greek patients. Alcohol Clin Exp Res.2013;37(2):244-51.
    [9]Zeng T, Zhang CL, Han XY, et al. Association between CD14-159C>T polymorphisms and the risk for alcoholic liver disease:a meta-analysis. Eur J Gastroenterol Hepatol.2013 Apr 11.
    [10]Yokoyama A, Mizukami T. Matsui T, et al. Genetic Polymorphisms of Alcohol Dehydrogenase-1B and Aldehyde Dehydrogenase-2 and Liver Cirrhosis, Chronic Calcific Pancreatitis, Diabetes Mellitus, and Hypertension Among Japanese Alcoholic Men. Alcohol Clin Exp Res.2013 Mar 29.
    [11]Costa-Matos L, Batista P, Monteiro N, et al. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients compared with healthy controls.Eur J Gastroenterol Hepatol.2012;24(10):1158-65.
    [12]Zhou Z. Zinc and alcoholic liver disease. Dig Dis.2010;28(6):745-50.
    [13]Kharbanda KK. Methionine metabolic pathway in alcoholic liver injury. Curr Opin Clin Nutr Metab Care.2013;16(1):89-95.
    [14]Duddempudi AT. Immunology in alcoholic liver disease. Clin Liver Dis. 2012;16(4):687-98.
    [15]Garcia-Ruiz C, Fernandez-Checa JC. To binge or not to binge:Binge drinking disrupts glucose homeostasis by impairing hypothalamic but not liver insulin signaling. Hepatology.2013 Mar 26.
    [16]Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury:A critical role for E-selectin. Hepatology.2013 Mar 26.
    [17]Shukla SD, Pruett SB, Szabo G, et al. Binge ethanol and liver:new molecular developments. Alcohol Clin Exp Res.2013;37(4):550-7.
    [18]Naveau S, Dobrin AS, Balian A, et al. Body fat distribution and risk factors for fibrosis in patients with alcoholic liver disease. Alcohol Clin Exp Res. 2013;37(2):332-8.
    [19]Stepanova M, Rafiq N, Younossi ZM. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease:a population-based study. Gut. 2010;59(10):1410-5.
    [20]Cohen JI, Nagy LE. Pathogenesis of alcoholic liver disease:interactions between parenchymal and non-parenchymal cells. J Dig Dis.2011;12(1):3-9.
    [21]Galligan JJ, Smathers RL, Shearn CT, et al. Oxidative Stress and the ER Stress Response in a Murine Model for Early-Stage Alcoholic Liver Disease. J Toxicol. 2012;2012:207594.
    [22]Arteel GE. Alcohol-induced oxidative stress in the liver:in vivo measurements. Methods Mol Biol.2008;447:185-97.
    [23]An L, Wang X, Cederbaum AI. Cytokines in alcoholic liver disease. Arch Toxicol.2012;86(9):1337-48.
    [24]Ding WX, Li M, Chen X, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology.2010; 139(5):1740-52.
    [25]Tatsukawa H, Fukaya Y, Frampton G, et al. Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Spl. Gastroenterology.2009;136(5):1783-95. e10.
    [26]Liu Y, Chen SH, Jin X, et al. Analysis of differentially expressed genes and microRNAs in alcoholicliver disease. Int J Mol Med.2013;31(3):547-54.
    [27]Gao B, Bataller R. Alcoholic liver disease:pathogenesis and new therapeutic targets. Gastroenterology.2011; 141 (5):1572-85
    [28]Esfandiari F, Medici V, Wong DH, et al. Epigenetic regulation of hepatic endoplasmic reticulum stress pathways in the ethanolfed cystathionine beta synthase-deficient mouse. Hepatology.2010;51(3):932-41.
    [29]Setshedi M, Wands JR, Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev.2010;3(3):178-85.
    [30]Farfan Labonne BE, Gutierrez M, Gomez-Quiroz LE, et al. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol.2009;25(6):599-609.
    [31]Bremer AA, Mietus-Snyder M, et al.Toward a unifying hypothesis of metabolic syndrome. Pediatrics.2012;129(3):557-70.
    [32]O'Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Hepatology. 2010;51(1):307-28.
    [33]Lucey MR, Mathurin P, Morgan TR. Alcoholic hepatitis. N Engl J Med. 2009;360(26):2758-69.
    [34]Albano E. Role of adaptive immunity in alcoholic liver disease. Int J Hepatol. 2012;2012:893026.
    [35]Nieto N. A systems biology approach for understanding the collagen regulatory network in alcoholic liver disease. Liver Int.2012;32(2):189-98.
    [36]Chakraborty JB, Oakley F, Walsh MJ. Mechanisms and biomarkers of apoptosis in liver disease and fibrosis. Int J Hepatol.2012;2012:648915.
    [37]Yan K, Deng X, Zhai X, et al. p38 Mitogen-Activated Protein Kinase and Liver X Receptor-a Mediate the Leptin Effect on Sterol Regulatory Element Binding Protein-1c Expression in Hepatic Stellate Cells. Mol Med.2012;18(1):10-8.
    [38]Cohen JI, Nagy LE.酒精性肝病的发病机制:实质细胞与非实质细胞间的相互作用.胃肠病学。2011;16(3):131-4.
    [39]Stickel F, Buch S, Lau K, et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology. 2011;53(1):86-95.
    [40]Trepo E, Gustot T, Degre D, et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol.2011;55(4):906-12.
    [41]Lin F, Taylor NJ, Su H, et al. Alcohol dehydrogenase specific T-cell responses are associated with alcohol consumption in patients with alcohol-related cirrhosis. Hepatology.2013 Feb 19.
    [42]Beier JI, Arteel GE. Alcoholic liver disease and the potential role of plasminogen activator inhibitor-1 and fibrin metabolism. Exp Biol Med (Maywood).2012;237(1):1-9.
    [43]Lee JH, Banerjee A, Ueno Y, et al. Potential relationship between hepatobiliary osteopontin and peroxisome proliferator-activated receptor alpha expression following ethanol-associated hepatic injury in vivo and in vitro. Toxicol Sci. 2008;106(1):290-9.
    [44]Patsenker E, Stoll M, Millonig G, et al. Cannabinoid Receptor Type I Modulates Alcohol-Induced Liver Fibrosis. Mol Med.2011;17(11-12):1285-94.
    [45]Seth D, Haber PS, Syn WK, et al. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol. 2011;26(7):1089-105.
    [46]Jung Y, Brown KD, Witek RP, et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology.2008; 134(5):1532-43.
    [47]Donohue TM Jr, Osna NA, Trambly CS, et al. Early growth response-1 contributes to steatosis development after acute ethanol administration. Alcohol Clin Exp Res.2012;36(5):759-67.
    [48]Czaja MJ. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology.2011; 140(7):1895-908.
    [49]Wu D, Wang X, Zhou R, et al. CYP2E1 enhances ethanol-induced lipid accumulation but impairs autophagy in HepG2 E47 cells. Biochem Biophys Res Commun.2010;402(1):116-22.
    [50]Roychowdhury S, Chiang DJ, Mandal P, et al. Inhibition of apoptosis protects mice from ethanol-mediated acceleration of early markers of CCl(4)-induced fibrosis but not steatosis or inflammation.Alcohol Clin Exp Res. 2012;36(7):1139-47.
    [51]Luo Z, Liu H, Sun X, et al. RNA interference against discoidin domain receptor 2 ameliorates alcoholic liver disease in rats. PLoS One.2013;8(2):e55860.
    [52]Moriya T, Naito H, Ito Y, et al. "Hypothesis of seven balances":molecular mechanisms behind alcoholic liver diseases and association with PPARalpha. J Occup Health.2009;51(5):391-403.
    [53]Cederbaum Al, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol.2009;83(6):519-48.
    [54]Tsukamoto H, Machida K, Dynnyk A, et al. "Second hit" models of alcoholic liver disease. Semin Liver Dis.2009;29(2):178-87.
    [55]Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta.2010;1801(3):299-310.
    [56]Galligan JJ, Smathers RL, Fritz KS, et al. Protein carbonylation in a murine model for early alcoholic liver disease.Chem Res Toxicol.2012;25(5):1012-21.
    [57]Hannivoort RA, Hernandez-Gea V, Friedman SL. Genomics and proteomics in liver fibrosis and cirrhosis. Fibrogenesis Tissue Repair.2012;5(1):1.
    [58]Newton BW, Russell WK, Russell DH, et al. Liver proteome analysis in a rodent model of alcoholic steatosis. J Proteome Res.2009;8(4):1663-71.
    [59]Fernando H, Wiktorowicz JE, Soman KV, et al. Liver proteomics in progressive alcoholic steatosis. Toxicol Appl Pharmacol.2013;266(3):470-80.
    [60]张波,鲁晓岚,宋亚华,等.肠道内环境在酒精性脂肪肝发病中的初始作用及益生菌的治疗效果.中华肝脏病杂志,2012;20(11):848-52.
    [61]孙丽娜,周东方,周俊英,等.内质网应激在大鼠酒精性肝病肝细胞凋亡中的作用.中华肝脏病杂志,2012;20(1):35-9.
    [62]刘颖,陈韶华,厉有名.酒精性肝炎差异基因及其miRNA的研究.中华肝脏病杂志,2012;12(20):883-7.
    [1]Lieber CS, Decarli LM. The Feeding of ethanol inliquid diets. Alocohol Clin Exp Res,1986; 10:550-3.
    [2]Tsukamoto H, Reidelberger RD, French SW, et al. Long-term cannulation model for blood sampling and intragastric infusion in the rat. Am J Physiol,1984, 247(3 pt 2):R595-R599.
    [3]Tsukamoto H, Home W, Kamimura S, et al. Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest,1995,96(7):620-30.
    [4]Tsukamoto H, French SW, Benson N. Severe and progressive steatosis and focal necrosis in rat liver induced by continous introgastric infusion of ethanol and low fat diet. Hepatology,1985,5(2):224-32.
    [5]Yakomoto H, Nagata S, Moriya S, et al. Hepatic fibrosis produced in guinea pigs by chronic ethanol administration and immunization with acetadehyde adducts. Hepatology,1995;21(5):1438-42.
    [6]Brandon-Warner E, Schrum LW, Schmidt CM, et al. Rodent models of alcoholic liver disease:of mice and men. Alcohol.2012;46(8):715-25.
    [7]Degre D, Lemmers A, Gustot T, et al. Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates. Clin Exp Immunol.2012;169(3):302-10.
    [8]Galligan JJ, Smathers RL, Shearn CT, et al. Oxidative Stress and the ER Stress Response in a Murine Model for Early-Stage Alcoholic Liver Disease. J Toxicol. 2012;2012:207594.
    [9]Hu CM, Cao Q, Lv XW, et al. Protective effects of total flavonoids from Litsea coreana on alcoholic fatty liver in rats associated with down-regulation adipose differentiation-related protein expression. Am J Chin Med.2012;40(3):599-610.
    [10]Bertola A, Mathews S, Ki SH, et al. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc.2013;8(3):627-37.
    [11]Kirpich IA, Feng W, Wang Y, et al. The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res. 2012;36(5):835-46.
    [12]Park JH, Kim SJ, Hwang I, et al. Green tea extract co-administered with a polymer effectively prevents alcoholic liver damage by prolonged inhibition of alcohol absorption in mice. Alcohol Alcohol.2013;48(1):59-67.
    [13]王玲,孙妩弋,姜玲,等.酒精性肝病动物模型的研究进展.安徽医药,2010;14(7):745-8.
    [14]赵初环,卢中秋,李惠萍,等.大鼠酒精性肝病模型的建立.浙江临床医学,2007;9(4):435-6.
    [15]房龙,马安林,李靖涛,等.茴三硫对大鼠酒精及四氯化碳致肝纤维化的防治作用.胃肠病学和肝病学杂志,2003;12(5):429-32.
    [16]杨致富,韩德恩,张新宇,等.大鼠酒精肝模型的制备.哈尔滨医科大学学报,2000;34(2):111-2.
    [17]孙怡宁,尚荣军,罗金燕,等.白酒灌胃法建立大鼠早期酒精性肝病模型.陕西医学杂志,2002:32(6):565-7.
    [1]Seth D, Gorrell MD, Cordoba S, et al. Intrahepatic gene expression in human alcoholic hepatitis. J Hepatol.2006;45(2):306-20.
    [2]Deaciuc IV, Arteel GE, Peng X, et al. Gene expression in the liver of rats fed alcohol by means of intragastric infusion. Alcohol.2004;33(1):17-30.
    [3]Seth D, Leo MA, McGuinness PH, et al. Gene expression profiling of alcoholic liver disease in the baboon (Papio hamadryas) and human liver. Am J Pathol. 2003;163(6):2303-17.
    [4]Deaciuc IV, Doherty DE, Burikhanov R, et al. Large-scale gene profiling of the liver in a mouse model of chronic, intragastric ethanol infusion. J Hepatol. 2004;40(2):219-27.
    [5]Liu Y, Chen SH, Jin X, et al. Analysis of differentially expressed genes and microRNAs in alcoholic liver disease.Int J Mol Med.2013;31(3):547-54.
    [6]Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-64.
    [7]Sozio MS, Liangpunsakul S, Crabb D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis. Semin Liver Dis. 2010;30(4):378-90.
    [8]Stickel F, Osterreicher CH. The role of genetic polymorphisms in alcoholic liver disease. Alcohol Alcohol.2006;41(3):209-24.
    [9]Levin I, Petrasek J, Szabo G. The presence of p47phox in liver parenchymal cells is a key mediator in the pathogenesis of alcoholic liver steatosis. Alcohol Clin Exp Res.2012;36(8):1397-406.
    [10]Yin HQ, Kim M, Kim JH, et al. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice. Toxicol Appl Pharmacol.2007;223(3):225-33.
    [11]Zhang J, Xue J, Wang H, Zhang Y, Xie M. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress. Phytother Res. 2011;25(5):638-43.
    [12]Huang H, McIntosh AL, Martin GG, et al. Inhibitors of Fatty Acid Synthesis Induce PPAR a-Regulated Fatty Acid β-Oxidative Genes:Synergistic Roles of L-FABP and Glucose. PPAR Res.2013;2013:865604.
    [13]Nagao M, Parimoo B, Tanaka K. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem.1993;268(32):24114-24.
    [14]Coulon S, Francque S, Colle I, et al. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine. 2012;59(2):442-9.
    [15]Tarantino G, Conca P, Pasanisi F, et al. Could inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur J Gastroenterol Hepatol. 2009;21(5):504-11.
    [16]阎明,王红娟,朱孔锡,等.酒精对肝组织细胞因子影响.中国公共卫生,2006;22(11):1380-1.
    [17]Oh HY, Shin SK, Heo HS, et al. Time-dependent network analysis reveals molecular targets underlying the development of diet-induced obesity and non-alcoholic steatohepatitis. Genes Nutr.2012 Nov 13.
    [18]Carr RM, Dhir R, Yin X, et al. Temporal Effects of Ethanol Consumption on Energy Homeostasis, Hepatic Steatosis. and Insulin Sensitivity in Mice. Alcohol Clin Exp Res.2013 Feb 7.
    [19]Sookoian S, Pirola CJ. Systems Biology Elucidates Common Pathogenic Mechanisms between Nonalcoholic and Alcoholic-Fatty Liver Disease. PLoS One.2013;8(3):e58895.
    [20]Nakajima T, Kamijo Y, Tanaka N, et al. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology. 2004;40(4):972-80.
    [21]Sozio M, Crabb DW. Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab.2008;295(1):E10-6.
    [22]Sharma MR, Polavarapu R, Roseman D, et al. Increased severity of alcoholic liver injury in female verses male rats:a microarray analysis. Exp Mol Pathol. 2008;84(1):46-58.
    [23]张旭,胡悦,杨晓慧,等.猪苹果酸酶1基因5'调控区的多态性、遗传效应及功能分析.中国兽医学报,2012;32(9):1272-78.
    [24]Mandard S, Muller M,. Kersten S. Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci.2004;61(4):393-416.
    [25]Longato L, Ripp K, Setshedi M, et al. Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease. Oxid Med Cell Longev.2012;2012:479348.
    [26]de la Monte S, Derdak Z, Wands JR. Alcohol, insulin resistance and the liver-brain axis. J Gastroenterol Hepatol.2012;27 Suppl 2:33-41.
    [27]Nguyen VA, Le T, Tong M, et al. Impaired insulin/IGF signaling in experimental alcohol-related myopathy. Nutrients.2012;4(8):1058-75.
    [28]Onishi Y, Honda M, Ogihara T, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun. 2003;303(3):788-94.
    [29]Elmadhun NY, Lassaletta AD, Chu LM, et al. Vodka and wine consumption in a swine model of metabolic syndrome alters insulin signaling pathways in the liver and skeletal muscle. Surgery.2012;152(3):414-22.
    [30]Hirota K, Sakamaki J, Ishida J, et al. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding. J Biol Chem. 2008;283(47):32432-41.
    [31]Shearn CT, Fritz KS, Reigan P, et al.Modification of Akt2 by 4-hydroxynonenal inhibits insulin-dependent Akt signaling in HepG2 cells. Biochemistry.2011 May 17;50(19):3984-96. doi:10.1021/bi200029w. Epub 2011 Apr 20.
    [32]Shen Z, Liang X, Rogers CQ, er al. Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol.2010;298(3):G364-74.
    [33]Derdak Z, Lang CH, Villegas KA, et al. Activation of p53 enhances apoptosis and insulin resistance in a rat model of alcoholic liver disease. J Hepatol. 2011;54(1):164-72.
    [34]Tuma DJ, Smith TE, Schaffert CS, et al. Ethanol feeding selectively impairs the spreading of rat perivenous hepatocytes on extracellular matrix substrates. Alcohol Clin Exp Res.1999;23(10):1673-80.
    [35]Guan JL. Focal adhesion kinase in integrin signaling. Matrix Biology, 1997; 16(4):195-200.
    [36]Yee KL, Weaver VM, Hammer DA. Integrin-mediated signaling through the MAP-kinase pathway. IET Syst Bio.12008;2(1):8-15.
    [37]Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest.2002;110:341-50.
    [38]Kishore R, Hill JR, McMullen MR, et al. ERK1/2and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol.2002;282:G6-15.
    [39]Zhao J. Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell.2001;12(12):4066-77.
    [40]Iwamoto H, Nakamuta M, Tada S, et al. A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J Hepatol,2000;32(5): 762-70.
    [41]Golubovskaya VM, Kweh FA, Cance WG Focal adhesion kinase and cancer.Histol Histopathol.2009;24(4):503-10.
    [1]Ramirez T, Tong M, Chen WC, et al. Chronic alcohol-induced hepatic insulin resistance and endoplasmic reticulum stress ameliorated by peroxisome-proliferator activated receptor-δ agonist treatment. J Gastroenterol Hepatol.2013;28(1):179-87.
    [2]de la Monte SM, Yeon JE, Tong M, et al. Insulin resistance in experimental alcohol-induced liver disease. J Gastroenterol Hepatol.2008;23(8 Pt 2):e477-86.
    [3]Longato L, Ripp K, Setshedi M, et al. Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease. Oxid Med Cell Longev.2012;2012:479348.
    [4]Elmadhun NY, Lassaletta AD, Chu LM, et al. Vodka and wine consumption in a swine model of metabolic syndrome alters insulin signaling pathways in the liver and skeletal muscle. Surgery.2012;152(3):414-22.
    [5]Kaur I, Katyal A. Immunoproteomic identification of biotransformed self-proteins from the livers of female Balb/c mice following chronic ethanol administration.Proteomics.2012; 12(12):2036-44.
    [6]Banerjee A, Russell WK, Jayaraman A, et al. Identification of proteins to predict the molecular basis for the observed gender susceptibility in a rat model of alcoholic steatohepatitis by 2-D gel proteomics. Proteomics.2008;8:4327-37.
    [7]Marouga R, David S, Hawkins E. The development of the DIGE system:2D fluorescence difference gel analysis technology. Anal Bioanal Chem.2005, 382:669-78.
    [8]Newton BW, Russell WK, Russell DH, et al. Liver proteome analysis in a rodent model of alcoholic steatosis. J Proteome Res.2009;8(4):1663-71.
    [9]Newton BW, Russell WK, Russell DH, et al. Proteomic methods for biomarker discovery in a rat model of alcohol steatosis. Methods Mol Biol. 2012;909:259-77
    [10]Uto H, Kanmura S, Takami Y, et al. Clinical proteomics for liver disease:a promising approach for discovery of novel biomarkers. Proteome Sci. 2010;8:70.
    [11]Freeman WM, Vrana KE. Future prospects for biomarkers of alcohol consumption and alcohol-induced disorders. Alcohol Clin Exp Res.2010; 34: 946-54.
    [12]Smathers RL, Galligan JJ, Stewart BJ, et al. Overview of lipid peroxidation products and hepatic protein modification in alcoholic liver disease. Chem Biol Interact.2011;192(1-2):107-12.
    [13]Fernando H, Wiktorowicz JE, Soman KV, et al. Liver proteomics in progressive alcoholic steatosis.Toxicol Appl Pharmacol.2013;266(3):470-80.
    [14]Samuel VT, Shulman GI. Mechanisms for insulin resistance:common threads and missing links.Cell.2012; 148(5):852-71.
    [15]Rodriguez-Suarez E, Mato JM, Elortza F. Proteomics analysis of human nonalcoholic fatty liver. Methods Mol Biol.2012;909:241-58.
    [16]Adedara IA, Owumi SE, Uwaifo AO, et al. Aflatoxin B□and ethanol co-exposure induces hepatic oxidative damage in mice.Toxicol Ind Health. 2010;26(10):717-24.
    [17]Liu S, Hou W, Yao P, et al. Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes.Toxicol In Vitro.2010:24(2):516-22.
    [18]Chen YL, Chen LJ, Bair MJ, et al. Antioxidative status of patients with alcoholic liver disease in southeastern Taiwan. World J Gastroenterol. 2011;17(8):1063-70.
    [19]Bae SH, Sung SH, Cho EJ, et al. Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology.2011; 53(3):945-53
    [20]Roede JR, Orlicky DJ, Fisher AB, et al. Overexpression of peroxiredoxin 6 does not prevent ethanol-mediated oxidative stress and may play a role in hepatic lipid accumulation. J Pharmacol Exp Ther.2009;330(1):79-88.
    [21]Comporti M, Signorini C, Leoncini S, et al. Ethanol-induced oxidative stress: basic knowledge.Genes Nutr.2010 Jun;5(2):101-9
    [22]Marques R, Maia CJ, Vaz C, et al. The diverse roles of calcium-binding protein regucalcin in cell biology:from tissue expression and signalling to disease. Cell Mol Life Sci.2013 Mar 22. [Epub ahead of print]
    [23]Yamaguchi M, Murata T. Involvement of regucalcin in lipid metabolism and diabetes. Metabolism.2013;pii:S0026-0495(13)00039-5.
    [24]Yamaguchi M, Igarashi A, Uchiyama S, et al. Hyperlipidemia is induced in regucalcin transgenic rats with increasing age. Int J Mol Med. 2004;14(4):647-51.
    [25]Yamaguchi M. Regucalcin and metabolic disorders:osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats. Mol Cell Biochem. 2010;341(1-2):119-33.
    [26]Nakashima C, Yamaguchi M. Overexpression of regucalcin enhances glucose utilization and lipid production in cloned rat hepatoma H4-II-E cells: Involvement of insulin resistance. J Cell Biochem.2006;99(6):1582-92.
    [27]Nakashima C, Yamaguchi M. Overexpression of regucalcin suppresses gene expression of insulin signaling-related proteins in cloned rat hepatoma H4-II-E cells:involvement of insulin resistance. Int J Mol Med.2007;20(5):709-16.
    [28]Liu Z, Ma Y, Yang J, et al. Upregulated and downregulated proteins in hepatocellular carcinoma:a systematic review of proteomic profiling studies. OMICS.2011;15(1-2):61-71.
    [29]Villanueva JA, Halsted CH. Hepatic transmethylation reactions in micropigs with alcoholic liver disease. Hepatology.2004;39(5):1303-10.
    [30]Sozio M, Crabb DW. Alcohol and lipid metabolism.Am J Physiol Endocrinol Metab.2008;295(1):E10-6.
    [31]Matthews RP, Lorent K, Manoral-Mobias R, et al. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development.2009;136(5):865-75.
    [32]Singal AK, Charlton MR. Nutrition in alcoholic liver disease. Clin Liver Dis. 2012;16(4):805-26.
    [33]Zhang J, Frerman FE, Kim JJ. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci U S A..2006; 103(44): 16212-7.
    [34]Nagao M, Parimoo B, Tanaka K. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem.1993;268(32):24114-24.
    [1]中华医学会肝病学分会脂肪肝和酒精性肝病学组.酒精性肝病诊疗指南.中华肝脏病杂志,2006;14(3):164-6.
    [2]O'Shea RS, Dasarathy S, McCullough AJ, et al. Alcoholic Liver Disease. Hepatology.2010;51(1):307-28.
    [3]Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet.1992;339(8808):1523-6.
    [4]Marmot MG. Alcohol and coronary heart disease. Int J Epidemiol. 2001;30(4):724-9.
    [5]Saunders JB, Aasland OG, Babor TF, et al. Development of the Alcohol Use Disorders Identification Test (AUDIT):WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption-Ⅱ. Addiction. 1993;88(6):791-804.
    [6]Wurst FM, Alling C, Aradottir S, et al. Emerging biomarkers:new directions and clinical applications. Alcohol Clin Exp Res 2005;29(3):465-73.
    [7]Bortolotti F, De Paoli G, Tagliaro F. Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse:a critical review of the literature 2001-2005. J Chromatogr B Analyt Technol Biomed Life Sci 2006;841(1-2):96-109.
    [8]Ponomarenko Y, Leo MA, Kroll W, et al. Effects of alcohol consumption on eight circulating markers of liver fibrosis. Alcohol Alcohol.2002;37(3):252-5.
    [9]Nyblom H, Berggren U, Balldin J, et al. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol 2004;39(4):336-9.
    [10]Shiha G, Sarin SK, Ibrahim AE, et al. Liver fibrosis:consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL). Hepatol Int.2009;3(2):323-33.
    [11]Lieber CS, Weiss DG, Morgan TR, et al. Aspartate aminotransferase to platelet ratio index in patients with alcoholic liver fibrosis. Am J Gastroenterol. 2006;101(7):1500-8.
    [12]Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both signi□cant □brosis and cirrhosis in patients with chronic hepatitis C. Hepatology.2003;38(2):518-26.
    [13]Morra R, Munteanu M, Imbert-Bismut F, et al. FibroMAX:towards a new universal biomarker of liver disease? Expert Rev Mol Diagn.2007;7(5):481-90.
    [14]Thabut D, Naveau S, Charlotte F, et al. The diagnostic value of biomarkers (AshTest) for the prediction of alcoholic steato-hepatitis in patients with chronic alcoholic liver disease. J Hepatol.2006;44(6):1175-85.
    [15]Poynard T, Imbert-Bismut F, Munteanu M, et al. Overview of the diagnostic value of biochemical markers of liver fibrosis (FibroTest, HCV FibroSure) and necrosis (ActiTest) in patients with chronic hepatitis C. Comp Hepatol. 2004;3(1):8.
    [16]Lieber CS, Weiss DG, Paronetto F, et al. Value of fibrosis markers for staging liver fibrosis in patients with precirrhotic alcoholic liver disease. Alcohol Clin Exp Res.2008;32(6):1031-9.
    [17]Naveau S, Raynard B, Ratziu V, et al. Biomarkers for the prediction of liver fibrosis in patients with chronic alcoholic liver disease. Clin Gastroenterol Hepatol 2005;3(2):167-74.
    [18]Naveau S, Gaude G, Asnacios A, et al. Diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with alcoholic liver disease. Hepatology.2009;49(1):97-105.
    [19]Srikureja W, Kyulo NL, Runyon BA, et al. MELD score is a better prognostic model than Child-Turcotte-Pugh score or Discriminant Function score in patients with alcoholic hepatitis. J Hepatol 2005;42(5):700-6.
    [20]Orrego H, Israel Y, Blake JE, et al. Assessment of prognostic factors in alcoholic liver disease:toward a global quantitative expression of severity. Hepatology. 1983;3(6):896-905.
    [21]Mathurin P, Duchatelle V, Ramond MJ, et al. Survival and prognostic factors in patients with severe alcoholic hepatitis treated with prednisolone. Gastroenterology 1996; 110(6):1847-53.
    [22]Yoneda M. Editorial:Utility of controlled attenuation parameter (CAP) measurement for assessing liver steatosis in Japanese patients with chronic liver diseases. Hepatol Res.2013 Apr 1.
    [23]de L e dinghen V, Vergniol J, Foucher J, et al. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int.2012;32(6):911-8.
    [24]Okazaki H, Ito K, Fujita T, et al. Discrimination of alcoholic from virus-induced cirrhosis on MR imaging. AJR Am J Roentgenol.2000;175(6):1677-81.
    [25]Stevenson M, Lloyd-Jones M, Morgan MY, et al. Non-invasive diagnostic assessment tools for the detection of liver fibrosis in patients with suspected alcohol-related liver disease:a systematic review and economic evaluation. Health Technol Assess.2012;16(4):1-174.
    [26]Bensamoun SF, Leclerc GE, Debernard L, et al. Cutoff Values for Alcoholic Liver Fibrosis Using Magnetic Resonance Elastography Technique. Alcohol Clin Exp Res.2012 Dec 6.
    [27]Amathieu R, Nahon P, Triba M, et al. Metabolomic approach by 1H NMR spectroscopy of serum for the assessment of chronic liver failure in patients with cirrhosis. J Proteome Res.2011;10(7):3239-45.
    [28]Parkes J, Guha IN, Harris S, et al. Systematic review of the diagnostic performance of serum markers of liver fibrosis in alcoholic liver disease. Comp Hepatol.2012;11(1):5.
    [29]Alempijevic T, Sokic-Milutinovic A, Milicic B, et al. Noninvasive assessment of portal hypertension in patients with alcoholic cirrhosis. Turk J Gastroenterol. 2012;23(3):239-46.
    [30]Crespo G, Fernandez-Varo G, Marino Z, et al. ARFI, FibroScan, ELF, and their combinations in the assessment of liver fibrosis:a prospective study. J Hepatol. 2012;57(2):281-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700