用户名: 密码: 验证码:
心肌缺血/再灌注损伤的内质网应激—炎症机制及环磷酰胺的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分环磷酰胺保护心脏缺血/再灌注损伤的机制研究
     目的与背景:
     炎症在心肌缺血/再灌注损伤的发生发展过程中起着重要的作用,但目前尚不清楚抗炎治疗对心肌缺血/再灌注损伤的疗效。环磷酰胺是一种免疫抑制剂,它具有广泛的抗炎症作用,多年以来被广泛应用于风湿病及其他与自身免疫相关疾病的治疗,包括系统性红斑狼疮、慢性肾脏疾病、以及类风湿性关节炎等。我们推测应用环磷酰胺进行抗炎治疗可能有益于减轻心肌缺血/再灌注损伤。
     方法:
     在大鼠原位心脏缺血/再灌注模型上,探讨小剂量环磷酰胺对心脏缺血/再灌的保护作用及可能机制。先缺血30分钟,继以再灌注3,12和24小时。术前于腹腔内注射环磷酰胺(0.75g/m2,干预组)或2ml生理盐水(对照组)。实验分为3组:假手术组,缺血/再灌注损伤组和环磷酰胺干预组。假手术组在术中不结扎冠状动脉,故实验过程中无心脏缺血/再灌注损伤过程。测量血流动力学指标、心肌梗死面积、心肌病理损伤程度、外周血高敏C-反应蛋白水平、肿瘤坏死因子α浓度,并用免疫组化法检测心肌肿瘤坏死因子α水平。
     结果应用方差分析进行统计学处理。
     结果:
     与缺血/再灌注损伤组比较,环磷酰胺干预组明显改善左心室收缩压(LVSP)。在再灌注3小时为88.3±3.8mmHg,但缺血/再灌注损伤组为68.6±3.8mmHg,P<0.01;再灌注12小时为92.0±3.8vs63.7±4.9mmHg, P<0.01;再灌注24小时为90.4±4.0vs64.2±4.9mmHg, P<0.01。环磷酰胺干预组左室舒张末压(LVEDP)及左室压力上升变化最大速率(+dp/dtmax)也有所改善。在再灌注3小时,左室舒张末压在环磷酰胺干预组为14.57±0.94mmHg,在缺血/再灌注损伤组为14.45±0.48mmHg, P>0.05;再灌注12小时为13.00±0.88vs15.13±0.88mmHg, P<0.05;再灌注24小时为13.24±0.79vs15.50±0.81mmHg, P<0.05。在再灌注3小时,+dp/dtmax在环磷酰胺干预组为4675.8±342.4,而在缺血/再灌注损伤组为3477.0±342.4mmHg/s,P<0.05;再灌注12小时为5094.3±342.4vs5182.7±442.0mmHg/s,P>0.05;再灌注24小时为4992.6±300.3vs3608.7±326.5mmHg/s, P<0.05。但环磷酰胺治疗不影响左室压力下降变化最大速率(-dp/dtmax)的数值。
     应用环磷酰胺后心肌梗死面积也显著减少。在再灌注3小时,在环磷酰胺干预组为26.1±0.4%,而在缺血/再灌注损伤组为40.4±0.4%,P<0.01;再灌注12小时为21.6±0.4%vs49.9±0.4%,P<0.01;再灌注24小时为21.6±0.4%vs40.0±0.4%,P<0.01。
     心肌病理损伤评分在环磷酰胺干预组也显著降低。在再灌注3小时,在环磷酰胺干预组为1.83±0.14,而在缺血/再灌注损伤组为2.17±0.14,P<0.01;在再灌注12小时为2.33±0.14vs3.17±0.14,P<0.01;再灌注24小时为2.83±0.14vs3.83±0.14,P<0.01。环磷酰胺干预组心肌中性粒细胞计数显著减少,在再灌注3小时,环磷酰胺干预组为6.9±2.7/HPF,而在缺血/再灌注损伤组为20.4±1.5/HPF,P<0.01;再灌注12小时为18.6±2.8vs37.5±3.6/HPF,P<0.01;再灌注24小时为16.8±2.5vs58.8±5.0/HPF,P<0.01。
     血清高敏C-反应蛋白在环磷酰胺干预组也明显降低。再灌注3小时,环磷酰胺干预组为29.3±0.5,而缺血/再灌注损伤组为32.3±0.5ng/ml, P<0.01;再灌注12小时为29.1±0.5vs31.8±0.5ng/ml, P<0.01;再灌注24小时为28.6±0.5vs31.9±0.5ng/ml, P<0.01。
     环磷酰胺干预组血清肿瘤坏死因子α(TNF-α)表达也减少。再灌注3小时,环磷酰胺干预组血清肿瘤坏死因子α为13.3±2.6pg/mL,而缺血/再灌注损伤组为14.1±6.0pg/mL, P<0.05;再灌注12小时为10.1±2.7vs12.5±5.0pg/mL,P<0.05;再灌注24小时为10.4±5.6vs13.0±3.6pg/mL, P<0.05。免疫组化检测心肌TNF-a,其染色密度分别为,再灌注3小时,环磷酰胺干预组为2.42±0.38,而缺血/再灌注损伤组为3.33±0.36,P<0.01;再灌注12小时为3.75±0.52vs5.08±0.58,P<0.01;再灌注24小时为6.50±0.45vs8.08±0.80,P<0.01。
     结论:
     环磷酰胺对大鼠原位心脏缺血/再灌注损伤有确切的保护作用,同时还带来心肌肿瘤坏死因子α及中性粒细胞浸润的减少,以及血清炎症指标高敏C-反应蛋白及肿瘤坏死因子α明显下降。我们认为环磷酰胺的心肌保护作用至少部分与其抗炎症作用有关。
     第二部分内质网应激-未折叠蛋白反应在心脏缺血/再灌注损伤时的作用
     目的与背景:
     在心肌缺血/再灌注时,存在内质网应激和炎症反应,其中间过程及信号传导通路尚不清楚。其他领域的研究提示,各种相应的刺激引起内质网应激后,经两个参与炎症反应的信号分子NF-κb和JNK介导,进而诱导炎症转录因子及各种炎症因子的表达,启动炎症反应,进而使细胞损伤加重。我们推测在心肌缺血/再灌注导致内质网应激-炎症反应的过程中,NF-κb起着重要的作用
     方法:
     在心肌细胞缺氧/复氧模型上,观察心肌缺氧/复氧所引起内质网应激-炎症反应的过程中,NF-Kb的作用。将原代培养的乳鼠心肌细胞,进行缺氧12小时和复氧12小时处理,实验分五组,(1)空白对照组(Control组);(2)衣霉素组(Tm组,即阳性对照组,含衣霉素1mg/L);(3)缺氧/复氧组(H/R组,缺氧12h,再复氧12h);(4)衣霉素+SN50组(Tm+SN50组,含衣霉素lmg/L, SN5050μg/ml);(5)缺氧/复氧+SN50组(H/R+SN50组,含SN5050μg/ml)。采用Western blot法测定GRP78蛋白含量,实时荧光定量PCR检测GRP78mRNA表达情况,CCK-8(Cell Counting Kit-8)法检测心肌细胞增殖及活性水平,流式细胞仪测量肿瘤坏死因子α浓度,倒置相差显微镜观察细胞形态及搏动情况,苏木素伊红(HE)染色后观察心肌细胞形态学变化。
     结果应用方差分析进行统计学处理。
     结果:
     心肌缺氧/复氧后,内质网应激标志蛋白GRP78有升高,在使用NF-κb抑制剂SN50组,GRP78下降。以GRP78/GAPDH代表内质网应激蛋白GRP78水平。蛋白印迹实验发现,在空白对照组(Control组)GRP78/GAPDH为0.80±0.02,衣霉素组(Tm组)为1.84±0.11,缺氧/复氧组(H/R组)1.44±0.02,衣霉素+SN50组(Tm+SN50组)为1.12±0.07,缺氧/复氧+SN50组(H/R+SN50组)为1.16±0.12。其余各组与对照组相比,p<0.01;衣霉素+SN50组与衣霉素相比,p<0.05;缺氧/复氧+SN50组与缺氧/复氧组相比,p<0.05。
     心肌缺氧/复氧后,内质网应激标志蛋白GRP78mRNA升高,在使用NF-κb抑制剂SN50组,GRP78mRNA下降。RT-PCR实验发现,在空白对照组(Control组)内质网应激蛋白GRP78mRNA为0.28±0.06,衣霉素组(Tm组)为12.91±2.08,缺氧/复氧组(H/R组)6.91±0.81,衣霉素+SN50组(Tm+SN50组)为4.66±0.38,缺氧/复氧+SN50组(H/R+SN50组)为1.95±0.86。Tm组最高,H/R组次之,加用SN50后均显著降低。其余各组与对照组相比,p<0.01;衣霉素±SN50组与衣霉素相比,p<0.05;缺氧/复氧+SN50组与缺氧/复氧组相比,p<0.05。
     心肌缺氧/复氧后,炎症因子TNF-α有升高,在使用NF-κb抑制剂SN50组,TNF-α下降。在空白对照组(Control组)TNF-a为2.10±0.54,衣霉素组(Tm组)为10.50±0.54pg/ml,缺氧/复氧组(H/R组)11.70±1.31pg/ml,缺氧/复氧+SN50组(H/R+SN50组)为8.10±1.12pg/ml。其余各组与对照组相比,p<0.01;缺氧/复氧+SN50组与缺氧/复氧组相比,p<0.05。
     心肌缺氧/复氧对心肌损害程度的评估及SN50的作用。我们采用二个指标评估心肌损害的程度,即测定CCK-8及心率计数。CCK-8测定及心率计数发现,心肌缺氧/复氧后存在心肌损害,SN50使用后可减轻心肌损害。在空白对照组(Control组),CCK8为1.61±0.03,衣霉素组(Tm组)为0.74±0.08,缺氧/复氧组(H/R组)为0.81±0.06,衣霉素+SN50组(Tm+SN50组)为0.95±0.06,缺氧/复氧+SN50组(H/R+SN50组)为1.21±0.05。其余各组与对照组相比,p<0.01;衣霉素+SN50组与衣霉素相比,p<0.05;缺氧/复氧+SN50组与缺氧/复氧组相比,p<0.01。CCK-8研究发现,心肌缺氧/复氧后存在心肌损害,SN50使用后心肌损害减轻。在空白对照组(Control组)心率(HR,次/分)为125.3±2.5,衣霉素组(Tm组)为32.7±2.5,缺氧/复氧组(H/R组)58.7±5.5,衣霉素+SN50组(Tm+SN50组)为65.7±10.0,缺氧/复氧+SN50组(H/R+SN50组)为97.3±1.2。其余各组与对照组相比,p<0.01;衣霉素+SN50组与衣霉素相比,p<0.01;缺氧/复氧+SN50组与缺氧/复氧组相比,p<0.01。
     病理研究发现,心肌缺氧/复氧后存在心肌损害,SN50使用后可减轻心肌损害。在空白对照组(Control组)病理损伤评分为3.67±0.58,衣霉素组(Tm组)为1.67±0.58,缺氧/复氧组为(H/R组)1.33±0.58,衣霉素+SN50组(Tm+SN50组)为3.33±0.58,缺氧/复氧+SN50组(H/R+SN50组)为1.66±0.58。其余各组与对照组相比,p<0.01;衣霉素+SN50组与衣霉素相比,p<0.05;缺氧/复氧+SN50组与缺氧/复氧组相比,p<0.01。
     结论:
     心肌缺氧/复氧后,产生内质网应激-炎症反应,在此过程中NF-κb起着重要的桥梁作用,我们的这一结果有助于对心肌缺血/再灌注损伤发病机制的理解。
Part1:The mechanism of cyclophosphamide protects myocardial ischemia-reperfusion injury
     Object:
     Cyclophosphamide has been used in the treatment of autoimmune disorders, including Systemic Lupus Erythematosus (SLE), Chronic Glomerulonephritis, Rheumatoid Arthritis, et al. There is inflammation in myocardial ischemia-reperfusion injury similar to that in autoimmune disorders. We hypothesized that myocardial ischemia-reperfusion injury could be partially ameliorated with cyclophosphamide treatment.
     Methods:
     Open chest rats were submitted to30min of ischemia followed by3h,12h or24h of reperfusion. Rats were divided into sham group, I/R group and cyclophosphamide group, and each group included3time-point subgroups (3h,12h and24h; n=8for each subgroup).750mg/m2cyclophosphamide or saline was intraperitoneally administrated in cyclophosphamide group or I/R group. A polyethylene tube was inserted into the left ventricular cavity to detect left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP) and±dp/dt max. At the end of experiment, hearts were harvested for histopathological assessment and infarct size determination and blood was collected for hs-CRP and TNF-adetection. Serum TNF-a was measured by cytometric bead array (CBA) and immunohistochemistry was used to detect TNF-a in myocardium.
     Results:
     Compared with I/R group, rats treated with low dose cyclophosphamide showed a significant recovery in myocardial function with improved left ventricular systolic pressure (LVSP)(88.3±3.8vs.68.6±3.8mmHg of3h reperfusion;92.0±3.8vs.63.7±4.9mmHg of12h;90.4±4.0vs.64.2±4.9mmHg of24h; P<0.01respectively). The left ventricular end diastolic pressure (LVEDP) and±dp/dt max also had the similar trends.(for LVEDP,14.57±0.94vs14.45±0.48mmHg of3h reperfusion, P>0.05;13.00±0.88vs15.13±0.88mmHg of12h, P<0.05;13.24±0.79vs15.50±0.81mmHg of24h, P<0.05). The myocardial infarct size was reduced after low dose cyclophosphamide treatment compared with I/R group (26.1±0.4%vs40.4±0.4%of3h reperfusion;21.6±0.4%vs49.9±0.4%of12h;21.6±0.4%vs40.0±0.4%of24h, P<0.01respectively.); Histopathological damage score was attenuated (1.83±0.14vs.2.17±0.14of3h reperfusion;2.33±0.14vs.3.17±0.14of12h;2.83±0.14vs.3.83±0.14of24h; P<0.01respectively); Polymorph nuclear leukocytes (PMNs) infiltration in myocardium also decreased after low dose cyclophosphamide treatment (6.9±2.7vs20.4±1.5/HPF of3h reperfusion;18.6±2.8vs37.5±3.6/HPF of12h;16.8±2.5vs58.8±5.0/HPF of24h, P<0.01respectively.).High sensitive C-reactive protein (hs-CRP) was elevated pronouncedly in I/R group at3h,12h and24h after reperfusion. The increase of hs-CRP was prevented after cyclophosphamide administration at three time-points (29.3±0.5vs32.3±0.5ng/ml of3h reperfusion;29.1±0.5vs31.8±0.5ng/ml of12h;28.6±0.5vs31.9±0.5ng/ml of24h, P<0.01respectively). Compared with I/R group, rats treated with cyclophosphamide showed a significant difference with decreased serum TNF-α (13.3±2.6vs14.1±6.0pg/mL at3h reperfusion,10.1±2.7vs12.5±5.0pg/mL at12h,10.4±5.6vs13.0±3.6pg/mL at24h reperfusion, P<0.05respectively). And also the immunostaining was less intense with cyclophosphamide injection at each reperfusion time. The score of the intensity of myocardial TNF-α staining was down regulated with cyclophosphamide injection in each time-point between cyclophosphamide and I/R group (2.42±0.38vs3.33±0.36at3h reperfusion,3.75±0.52vs5.08±0.58at12h reperfusion,6.50±0.45vs8.08±0.8at24h reperfusion, P<0.01respectively).
     Conclusions:
     Low dose cyclophosphamide might improve cardiac function and alleviate histopathological damage in myocardial ischemia-reperfusion rats. Cyclophosphamide was a feasible strategy for anti-inflammation to protect myocardial ischemia-reperfusion injury.
     Part2:The study of endoplasmic reticulum stress-inflammation response of myocardial ischemia/reperfusion injury
     Object:
     Myocardial ischemia/reperfusion activates endoplasmic reticulum stress and inflammatory responses. The stress-response pathways, however, are still unclear. Studies in other areas have suggested that endoplasmic reticulum stress induced by a variety of appropriate stimulations, mediated by two signaling molecule NF-Kb and JNK, cause the expression of inflammatory transcription factors and a variety of inflammatory cytokines, start the inflammatory response, thereby increase cell damage. We speculate that NF-Kb plays an important role in the process of endoplasmic reticulum stress-inflammation responses induced by myocardial ischemia/reperfusion.
     Methods:
     Primary cultured neonatal rat cardiomyocytes were exposed to hypoxia for12hours and subsequently reoxygenation for12hours. Five groups were studied,(1) Control group;(2) Tunicamycin group (Tm group, containing tunicamycin lmg/L) was the positive control of this study;(3) hypoxia/reoxygenation group (H/R group,12h hypoxia followed by12h reoxygenation);(4) tunicamycin+SN50group (Tm+SN50group, containing tunicamycin1mg/L and SN5050μg/ml);(5) hypoxia/reoxygenation+SN50group (H/R+SN50group, containing SN5050μg/ml). Western blot and RT-PCR were applied to monitor the expression of GRP78(glucose regulated protein78) and GRP78mRNA. TNF-a was measured by cytometric bead array (CBA). The cell viability of primary cultured neonatal rat cardiomyocytes was explored by CCK-8(Cell Counting Kit-8) assay. Myocardial activity was observed by inverted phase contrast microscope. Hematoxylin-eosin (HE) staining was appiled to observe myocardial cell morphology and pulsation.
     Results:
     Compared with the control group, the hypoxia/reoxygenation group significantly increase the expression of GRP78and GRP78mRNA. The concentration of TNF-a is increased significantly, too. CCK-8and HR are decreased. Histopathological damage score shows myocardial injury is more serious. SN50, however, significantly decrease the changes which induced by Hypoxia/reoxygenation. Compared with the H/R group, the H/R+SN50group significantly decrease the expression of GRP78(indicated by GRP78/GAPDH,1.16±0.12vs1.44±0.02) and GRP78mRNA(1.95±0.86vs6.91±0.81), the concentration of TNF-a is decreased (8.10±1.12vs11.70±1.31pg/ml), too. CCK-8(1.21±0.05vs0.81±0.06) and HR (97.3±1.2vs58.7±5.5) is also increased. And histopathological damage score is decreased (1.66±0.58vs1.33±0.58).
     Conclusions:
     These findings suggest that hypoxia/reoxygenation can induce endoplasmic reticulum stress and inflammation. And more importently, our results show NF-κb plays an important role in ERS-imfammation pathway.
引文
[1]Hearse DJ, Humphrey SM, Nayler WG, Slade A, Border D. Ultrastructural damage associated with reoxygenation of the anoxic myocardium. J Mol Cell Cardiol,1975;7:315-24.
    [2]Becker LC, Ambrosio G. Myocardial consequences of reperfusion. Prog Cardiovasc Dis,1987 Jul-Aug; 30(1):23-44.
    [3]Kloner RA. Does reperfusion injury exist in humans? J Am Coll Cardiol, 1993;21(2):537-45.
    [4]Herskowitz A, Choi S, Ansari AA, Wesselingh S:Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol,1995; 146(2):419-28.
    [5]Ma XL, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation,1992;86(3):419-28.
    [6]Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophilis in myocardial ischemia-reperfusion injury. Cardiovasc Res,1999;43(4):860-78.
    [7]Gabay C, Kushner I. Acute phase proteins and other systemic responses to inflammation. N Engl J Med,1999;340:448-54.
    [8]Binotto G, Trentin L, Semenzato G. Ifosfamide and cyclophosphamide:effects on immunosurveillance. Oncology,2003;65(Suppl.2):17-20.
    [9]Tsuji C, Minhaz MU, Shioya S, Fukahori M, Tanigaki T, Nakazawa H. The importance of polymorphonuclear leukocytes in lipopolysaccharide-induced superoxide anion production and lun injury:ex vivo observation in rat lungs. Lung,1998;176(1):1-13.
    [10]Martin-Suarez I, D'Cruz D, Mansoor M, Fernandes AP, Khamashta MA, Hughes GR. Immunosuppressive treatment in severe connective tissue diseases:effects of low dose intravenous cyclophosphamide. Ann Rheum Dis,1997;56:481-7.
    [11]Naranjo A, Sokka T, Descalzo MA, Calvo-Alen J, H(?)rslev-Petersen K, Luukkainen RK, et al. Cardiovascular disease in patients with rheumatoid arthritis:results from the QUEST-RA study. Arthritis Research & Therapy,2008; 10:R30.
    [12]Fauci AS, Katz P, Haynes BF, Wolff SM. Cyclophosphamide therapy of severe systemic necrotizing vasculitis. N Engl J Med,1979;301:235-238.
    [13]Hollander D, Manning RT. The use of alkylating agents in the treatment of Wegener's granulomatosis. Ann Intern Med,1967;67:393-398.
    [14]Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation, 1989;80:1816-27.
    [15]Parker CW. Lipid mediators produced through the lipoxygenase pathways. Annu Rev Immunol,1987;5:65-84.
    [16]Pislaru SV, Barrios L, Stassen T, Jun L, Pislaru C, Van deWerf F. Infarct size, myocardial hemorrhage, and recovery of function after mechanical versus pharmacological reperfusion effects of lytic state and occlusion time. Circulation, 1997;96(2):659-66.
    [17]JenningsRB, Reimer KA. Factors involvedinsalvaging ischemicmyocardium: effects of reperfusion of arterial blood. Circulation,1983;68(Suppl. I):I-25-36.
    [18]Bolli R, Marba'n E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev,1999;79(2):609-34.
    [19]Marklund SL. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem J,1984; 222:649.
    [20]Kraemer R, Mullane KM. Neutrophils delay functional recovery of the post-hypoxic heart of the rabbit. J Pharmacol Exp Ther,1989;251(2):620-6.
    [21]Opal SM, Cross AS, Sadoff JC, Collins HH, Kelly NM, Victor GH, Palardy JE, Bobmer MW. Efficacy of antilipopolysaccharide and anti-tumor necrosis factor monoclonal antibodies in a neutropenic rat model of Pseudomonas sepsis. J Clin Invest,1991,88(3):885-890.
    [22]Litt MR, Jeremy RW, Weisman HF, et al. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia.Evidence for neutrophil-mediated referfusion injury. Criculation,1989,80(6):1816-1827.
    [23]Werns SW, Shea MJ, Lucchesi BR. Free radicals in ischemic myocardial injury. Free Radic Biol MED,1985(1):103-110.
    [24]Zimmerman BJ, Granger DN. Reperfusion-induced leukocyte infiltration:role of elastase. Am J Physiol,1990(59):H390-H394.
    [25]Park CW. Lipid mediators produced through the lipoxygenase pathways.Annu Rev Immunol,1987(5):65-84.
    [26]Pislaru SV, Barrios L, Stassen T, Jun L, Pislaru C, Van de Werf F. Infarct Size,Myocardial Hemorrhage,and Recovery of funtion after mechanical versus pharmcological reperfusion effects of lytic state and occlusion time. Circulation, 1997(96):659-666.
    [27]Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effects of reperfusion of arterial blood. Circulation,68(suppl I)1983:I-25-I-36.
    [28]Bolli R.Mechanism of myocardial'stunning'. Circulation,1990(82):723-728.
    [29]Marklund SL.Extracelluar superoxide dismutase and other superoxide dismustase isoenzymes in tissues from nine mammalian species. Biochem J,1984(222):649.
    [30]Kraemer R, Mullane KM. Neutrophils delay functional recovery of the post-hypoxic heart of the rabbit. J Pharmacol Exp Ther,1989(251):620-626.
    [31]Shak PK. Circulating markers of inflammation for vascular risk prediction:are they ready for prime time? Circulation,2000(101):1758-1759..
    [32]Pasceri V,Willerson JT,Yeh ET.Direct proinflammatory effect of C-reactive protein on human endothelial cells.Circulation,2000(102):2165-2168.
    [33]Hack CE,Wolbink GJ,Schalkwijk C,Speijer H,Hermens WT,Van den Bosch H.A role for secretory phospholipase A2 and C-reactive protein in the removal of injured cells.Immunol Today,1997(18):1834-1835.
    [34]Berank JT.C-reactive protein and complement in myocardial infarcion and postinfarction heart failure.Eur Heart J,1997(18):1834-1835.
    [35]Arnaud C, Burger C, Steffens S, Veillard NR, Nguyen TH, Trono D, Mach F.Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes. Arteriosclerosis, Thrombosis and Vascular Biology.2005(25):1231.
    [36]Ikonomidis I,Andreotti F,Economou E,et al.Increased proinflammatory cytokines in pations with chronic stable angina and their reduction by aspirin. Circulation, 1999(100):793-798.
    [37]Mann DL, Feuerstein GZ, Libby P. Inflammation and Cardiac Diseases. Progress in Inflammation Research. Boston, Birkhauser,2003; P 416.
    [38]Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res.2004; 62:74-85.
    [39]Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radicals generated following reperfusion of ischemic myocardium. Proc Natl Acad Sci. 1987; 84:1404-07.
    [40]Opal SM,Cross AS,Sadoff JC,et al.Efficacy of antilipopolysaccharide and anti-tumor necrosis factor monoclonal antibodies in a neutropenic rat model of pesudomonas sepsis.J Clin Invest,1991(88):885-890.
    [41]Litt MR, Jeremy RW, Weisman HF, et al. Neutrophil depletion limited to reperfusion redudes myocardial infarct size after 90 minutes of ischemia, Evidence for neutrophil-mediated reperfusion injury. Circulation,1989(80):1816-1827.
    [42]Itescu S, Burke E, Lietz K, et al. Intravenous pulse administration of cyclophosphamide is an effective and safe treatment for sensitezed cardiac allograft recipients. Circulation,2002(105):1214-1219.
    [43]Gurevitch J, Frolkis I, Yuhas Y, Lifschitz-Mercer B, Berger E, Paz Y, Matsa M, Kramer A, Mohr R. Anti-Tumor Necrosis Factor-Alpha Improves Myocardial Recovery After Ischemia and Reperfusion. J Am Coll Cardiol.1997 Nov 15; 30(6):1554-61.
    [44]陈灏珠,林果为,主编.实用内科学.第13版.北京:人民卫生出版社,2009:1509-1522.
    [45]Vinten-Johansen, Jakob; Lynetta J, et al. Inflammation, Proinflammatory Mediators and Myocardial Ischemia-reperfusion Injury. Hematola Oncol Clin N Am.2007;21(1):123-145.
    [46]Ke zhong Zhang. Randal J. Kaufman. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454,455-462.
    [47]Christopher C. Glembotski. Endoplasmic Reticulum Stress in the Heart. Circ. Res. 2007; 101; 975-984.
    [48]Donna J. Thuerauf, Marie Marcinko, Natalie Gude, Marta Rubio, Mark A. Sussman, Christopher C. Glembotski. Activation of the Unfolded Protein Response in Infarcted Mouse Heart and Hypoxic Cultured Cardiac Myocytes. Circulation Research.2006; 99:275.
    [49]Harpster MH, Bandyopadhyay S, Thomas DP, Ivanov PS, Keele JA,Pineguina N, Gao B, Amarendran V, Gomelsky M, McCormick RJ,Stayton MM. Earliest changes in the left ventricular transcriptome postmyocardial infarction. Mamm Genome.2006; 17:701-715.
    [50]马青变,高炜,郭艳红,赵春玉,薛林,唐朝枢.缺氧复氧诱导大鼠心肌细胞内质网应激反应.北京大学学报(医学版).2005,37(4):386-388.
    [51]Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology,2000,10:524-530.
    [52]Lee AS. The glucose regulated protein:stress induction and clinical applications [J]. Trends in Biochemical Science,2001,26:504-601.
    [53]David Ron. Peter Walter. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol.2007; 8; 519-529.
    [54]Hu, P., Han, Z., Exton, J. H. et al. Autocrine tumor necrosis factor-alinks endoplasmic reticulumstress to the membrane death receptor pathway through IRE1-α mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol.2006; 26,3071-84.13.
    [55]Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell.2000; 103,239-252.
    [56]Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circulation research.1982; 50:101-116.
    [57]Zingarelli B, Salzman AL, Szabo C. Genetic disruption of poly (adp-ribose) synthetase inhibits the expression of p-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circulation research.1998; 83:85-94.
    [1]Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med,1999;340(2): 115-126.
    [2]Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis:from pathophysiology to practice. J Am Coll Cardiol. Dec 1,2009;54(23):2129-2138.
    [3]Maseri A, Fuster V. Is there a vulnerable plaque? Circulation,2003;107(16): 2068-2071.
    [4]Verheugt FW. How hot is inflammation in acute coronary syndrome? Eur Heart J, 2000;21(24):1990-1992.
    [5]Shantsila E, Lip GY. Monocytes in acute coronary syndromes. Arterioscler Thromb Vasc Biol,2009;29(10):1433-1438.
    [6]Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol,2006;47(8 Suppl):C13-18.
    [7]Kolodgie FD, Narula J, Yuan C, Burke AP, Finn AV, Virmani R. Elimination of neoangiogenesis for plaque stabilization:is there a role for local drug therapy? J Am Coll Cardiol,2007;49(21):2093-2101.
    [8]Nighoghossian N, Derex L, Douek P. The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke,2005;36(12):2764-2772.
    [9]Mauriello A, Sangiorgi G, Fratoni S, et al. Diffuse and active inflammation occurs in both vulnerable and stable plaques of the entire coronary tree:a histopathologic study of patients dying of acute myocardial infarction. J Am Coll Cardiol, 2005;45(10):1585-1593.
    [10]Wyss CA, Neidhart M, Altwegg L, et al. Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes. Eur Heart J,2010;31(12): 1457-1469.
    [11]Satoh M, Ishikawa Y, Itoh T, Minami Y, Takahashi Y, Nakamura M. The expression of TNF-alpha converting enzyme at the site of ruptured plaques in patients with acute myocardial infarction. Eur J Clin Invest,2008;38(2):97-105.
    [12]Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol,2007;14(1):55-61.
    [13]Abbate A, Bussani R, Liuzzo G, et al. Sudden coronary death, fatal acute myocardial infarction and widespread coronary and myocardial inflammation. Heart,2008;94(6):737-742.
    [14]Falk E. Widespread targets for friendly fire in acute coronary syndromes. Circulation,2004;110(1):4-6.
    [15]Libby P. Inflammation in atherosclerosis. Nature,2002;420(6917):868-874.
    [16]Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation,2003;107(3):363-369.
    [17]Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes. J Am Coll Cardiol,2003;41(4 Suppl S):37S-42S.
    [18]Trepels T, Zeiher AM, Fichtlscherer S. [Acute coronary syndrome and inflammation. Biomarkers for diagnostics and risk stratification]. Herz,2004; 29(8):769-776.
    [19]Paroli M, Mariani P, Accapezzato D, et al. Modulation of tachykinin and cytokine release in patients with coronary disease undergoing percutaneous revascularization. Clin Immunol,2004;112(1):78-84.
    [20]Malarstig A, Eriksson P, Hamsten A, Lindahl B, Wallentin L, Siegbahn A. Raised interleukin-10 is an indicator of poor outcome and enhanced systemic inflammation in patients with acute coronary syndrome. Heart,2008;94(6):724-729.
    [21]Schonbeck U, Mach F, Sukhova GK, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes:a role for CD40 signaling in plaque rupture? Circ Res,1997;81(3):448-454.
    [22]Thompson MM, Squire IB. Matrix metalloproteinase-9 expression after myocardial infarction:physiological or pathological? Cardiovasc Res,2002;54(3): 495-498.
    [23]Inoue T, Kato T, Takayanagi K, et al. Circulating matrix metalloproteinase-1 and-3 in patients with an acute coronary syndrome. Am J Cardiol,2003;92(12): 1461-1464.
    [24]Lu HH, Sheng ZQ, Wang Y, Zhang L. Levels of soluble adhesion molecules in patients with various clinical presentations of coronary atherosclerosis. Chin Med J (Engl),2010;123(21):3123-3126.
    [25]Guray U, Erbay AR, Guray Y, et al. Levels of soluble adhesion molecules in various clinical presentations of coronary atherosclerosis. Int J Cardiol,2004; 96(2):235-240.
    [26]Apple FS, Wu AH, Mair J, et al. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem,2005;51(5):810-824.
    [27]Kinlay S, Schwartz GG, Olsson AG, et al. Effect of atorvastatin on risk of recurrent cardiovascular events after an acute coronary syndrome associated with high soluble CD40 ligand in the Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study. Circulation,2004; 110(4):386-391.
    [28]Boekholdt SM, de Winter RJ, Kastelein JJ. Inhibition of lipoprotein-associated phospholipase activity by darapladib:shifting gears in cardiovascular drug development:are antiinflammatory drugs the next frontier? Circulation,2008; 118(11):1120-1122.
    [29]Monroe VS, Kerensky RA, Rivera E, Smith KM, Pepine CJ. Pharmacologic plaque passivation for the reduction of recurrent cardiac events in acute coronary syndromes. J Am Coll Cardiol,2003;41(4 Suppl S):23S-30S.
    [30]Ordulu E, Erdogan O. Early effects of low versus high dose atorvastatin treatment on coagulation and inflammation parameters in patients with acute coronary syndromes. Int J Cardiol,2008;128(2):282-284.
    [31]Kinlay S, Schwartz GG, Olsson AG, et al. High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation,2003;108(13):1560-1566.
    [32]Aikawa M, Sugiyama S, Hill CC, et al. Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation,2002;106(11): 1390-1396.
    [33]Morishige K, Kacher DF, Libby P, et al. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation,2010;122(17):1707-1715.
    [34]Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes:the MIRACL study:a randomized controlled trial. JAMA,2001;285(13):1711-1718.
    [35]Ray KK, Cannon CP. Pathological changes in acute coronary syndromes:the role of statin therapy in the modulation of inflammation, endothelial function and coagulation. J Thromb Thrombolysis,2004;18(2):89-101.
    [36]Patti G, Pasceri V, Colonna G, et al. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention:results of the ARMYDA-ACS randomized trial. J Am Coll Cardiol,2007;49(12):1272-1278.
    [37]Lefer DJ. Statins as potent antiinflammatory drugs. Circulation,2002; 106(16): 2041-2042.
    [38]Sanguigni V, Pignatelli P, Lenti L, et al. Short-term treatment with atorvastatin reduces platelet CD40 ligand and thrombin generation in hypercholesterolemic patients. Circulation,2005;111(4):412-419.
    [39]Nissen SE. Effect of intensive lipid lowering on progression of coronary atherosclerosis:evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am J Cardiol,2005; 96(5A):61F-68F.
    [40]Birnbaum Y, Ye Y, Rosanio S, et al. Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia-reperfusion injury. Cardiovasc Res,2005; 65(2):345-355.
    [41]Nakamura K, Sasaki T, Cheng XW, Iguchi A, Sato K, Kuzuya M. Statin prevents plaque disruption in apoE-knockout mouse model through pleiotropic effect on acute inflammation. Atherosclerosis,2009;206(2):355-361.
    [42]Efthymiou CA, Mocanu MM, Yellon DM. Atorvastatin and myocardial reperfusion injury:new pleiotropic effect implicating multiple prosurvival signaling. J Cardiovasc Pharmacol,2005;45(3):247-252.
    [43]Wolfrum S, Grimm M, Heidbreder M, et al. Acute reduction of myocardial infarct size by a hydroxymethyl glutaryl coenzyme A reductase inhibitor is mediated by endothelial nitric oxide synthase. J Cardiovasc Pharmacol,2003;41(3):474-480.
    [44]Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med,1997;336(14):973-979.
    [45]Chew DP, Bhatt DL, Robbins MA, et al. Effect of clopidogrel added to aspirin before percutaneous coronary intervention on the risk associated with C-reactive protein. Am J Cardiol,2001;88(6):672-674.
    [46]Fox KA, Mehta SR, Peters R, et al. Benefits and risks of the combination of clopidogrel and aspirin in patients undergoing surgical revascularization for non-ST-elevation acute coronary syndrome:the Clopidogrel in Unstable angina to prevent Recurrent ischemic Events (CURE) Trial. Circulation,2004;110(10): 1202-1208.
    [47]Chen YG, Xu F, Zhang Y, et al. Effect of aspirin plus clopidogrel on inflammatory markers in patients with non-ST-segment elevation acute coronary syndrome. Chin Med J (Engl),2006;119(1):32-36.
    [48]Hoshida S, Kato J, Nishino M, et al. Increased angiotensin-converting enzyme activity in coronary artery specimens from patients with acute coronary syndrome. Circulation,2001; 103(5):630-633.
    [49]Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med,2000;342(3):145-153.
    [50]Pitt B, Byington RP, Furberg CD, et al.Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events[J].Circulation,2000; 102: 1503-1510
    [51]Nissen SE, Tuzcu EM, Libby P, et al.Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure:the CAMELOT study:a randomized controlled trial[J]. JAMA,2004; 292(18):2217-2226
    [52]Stone AF, Mendall MA, Kaski JC, et al. Effect of treatment for Chlamydia pneumoniae and Helicobacter pylori on markers of inflammation and cardiac events in patients with acute coronary syndromes:South Thames Trial of Antibiotics in Myocardial Infarction and Unstable Angina (STAMINA). Circulation,2002;106(10):1219-1223.
    [53]Epstein SE, Zhu J, Najafi AH, Burnett MS. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation,2009;119(24):3133-3141.
    [54]Spanbroek R, Grabner R, Lotzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci U S A.,2003;100(3):1238-1243.
    [55]Brara PS, Moussavian M, Grise MA, et al.Pilot trial of oral rapamycin for recalcitrant restenosis[J]. Circulation,2003,107:1722-1724.
    [56]Brito FS Jr, Rosa WC, Arruda JA, Tedesco H, Pestana JO, Lima VC. Efficacy and safety of oral sirolimus to inhibit in-stent intimal hyperplasia. Catheter Cardiovasc Interv,2005;64(4):413-8.
    [57]徐卫亭,霍勇,陈明,洪涛,李拥军,高炜.雷帕霉素和甲氨蝶呤涂层支架预防支架内再狭窄的实验研究.中国介入心脏病学杂志,2004,12(2):99-102.
    [58]龚开政,张振刚,李爱华,孙晓宁,严俊峰,骆秋平,高阳,张昕,凤以良.氨甲喋呤对充血性心力衰竭患者的非特异抗用.临床心血管病杂志,2005,21(2):93-96.
    [59]Pawlik A, Baskiewicz-Masiuk M, Machalinski B, Safranow K, Gawronska-Szklarz B. Involvement of P-glycoprotein in the release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dexamethasone. J Pharm Pharmacol,2005,57(11):1421-5.
    [60]Lorenz HM, Kalden JR. New therapy developments in rheumatoid arthritis. Z Rheumatol,2001,60(5):326-32.
    [61]Seitz M, Zwicker M, Wider B. Enhanced in vitro induced production of interleukin 10 by peripheral blood mononuclear cells in rheumatoid arthritis is associated with clinical response to methotrexate treatment. J Rheumatol,2001, 28(3):496-501.
    [62]杨新春,邹阳春,王乐丰,主编.急性冠脉综合征基础与临床.第1版.北京:人民军医出版社.2002.27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700