用户名: 密码: 验证码:
颈椎关节突关节矢状位角不对称的影像学研究及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景
     颈椎病(Cervical Spondylosis)及颈椎间盘突出症(Cervical Intervertebral Disk Herniation)是常见的退行性颈椎疾病。颈椎间盘置换术(Cervical Disc Arthroplasty,CDA)是颈椎病和颈椎间盘突出症的手术治疗方法之一,但假体的松动、滑脱也是颈椎间盘置换术最严重的手术并发症之一,而椎体失稳(Vertebral Instability)是引起这个并发症的原因之一,也是颈椎间盘置换术的主要禁忌症之一。椎体旋转Vertebral Rotation)是椎体失稳最常见的表现,目前尚无可以有效量化的诊断方法。脊柱退行性变是椎体失稳的原因之一,关节突关节和椎间盘被认为是与椎体稳定的息息相关的二个结构,它们之中哪一个损伤都会破坏椎体的稳定,甚至危及整段脊柱,但二者之间哪个是引起椎体退行性变的主因,哪个是引起椎体退行性变的次因,目前还没有统一的意见,而颈椎关节突关节矢状位角的不对称性和关节突关节的退变(骨性关节炎),椎间盘的退变之间的关系争议更大。另外,CT (Computed Tomography)和MRI (Magnetic Resonance Imaging)是脊柱外科常用的诊断方法,但近几年CT在颈椎疾病诊断中的应用却相对减少,原因可能有二个:1是认识问题,许多脊柱外科医生认为,颈椎MRI在诊断退行性颈椎疾病方面优于CT,完全可以代替CT;2是为了给患者节省医疗费用,希望MRI能“一次性地解决问题”,所以选择行MRI检查。因此,很多脊柱外科医生颈椎手术前只是常规地获得颈椎正、侧位片和MRI,而不再另外行颈椎CT扫描。虽然关节突关节的退变程度(骨性关节炎程度)在CT和MRI上的表现差异有很多的研究,并且大多数的研究者认为,CT诊断关节突关节的退变程度的可靠性要比MRI高,但关节突关节矢状位角的不对称性在CT和MRI上的诊断比较国内外却鲜有报道。因此,本研究回顾性地从2005年1月~2011年12月在南方医科大学附属南方医院住院并需要手术治疗的颈椎疾病患者中选择了椎体失稳表现最严重的椎体滑脱病人60多例作为研究对象,通过MRI和/或CT的影像学观测试图揭示关节突关节矢状位角的不对称性和关节突关节的退变,椎间盘的退变之间的关系以及关节突关节矢状位角的不对称性在CT和MRI上的表现差异。同时,为避免回顾性研究的天然缺陷和验证我们的假设,我们又用5具新鲜的颈椎标本和自制的“椎体旋转角度测量仪”(图4-1)通过CT扫描颈椎标本关节突关节矢状位角在椎体不同旋转角度中的变化来探讨关节突关节矢状位角的不对称性和椎体旋转之间的关系。如果我们的假设能成立,下一步就能确立关节突关节矢状位角的不对称致椎体失稳的域值,从而为脊柱外科医生对颈椎病和颈椎间盘突出症患者的术式和人工颈椎间盘置换术患者的选择提供可供参考的选择标准和选择方法,也为椎动脉型颈椎病、神经根型颈椎病及交感神经型颈椎病的诊治提供另一种思路,此外,本研究还可为传统的“搬法”等手法治疗颈椎疾病提供数据参考,以确定其适应征和禁忌症。本研究是一个从影像到实体,从实体又回归影像的研究,也是一种影像与实体相互借鉴,基础与临床相互交融的研究模式。
     2.目的
     (1)探讨颈椎退行性滑脱(Degenerative Spondylolisthesis, DS)颈椎关节突关节矢状位角的不对称性与颈椎滑脱程度,关节突关节退变程度的关系,以及颈椎关节突关节矢状位不对称角度和椎体轴向旋转角度的关系及临床意义。
     (2)确定MRI评估颈椎关节突关节矢状位角不对称性的可靠性。
     3.方法
     第一章:从2005年1月~2011年12月在南方医科大学附属南方医院住院并需要手术治疗的颈椎退行性滑脱行MRI和CT检查以及颈椎正侧位、过伸过屈位(Flexion-extension,FE)、左右斜位X线片的366名患者中选取只有1个节段滑脱的患者64例,从医学影像图像与传输系统(the Picture Archiving and Communication System, PACS)中测量滑脱节段及与其相邻的上下节段在CT轴向位骨窗条件下的关节突关节矢状位角度和关节突关节退变程度(骨性关节炎程度)以及在MRI的正中矢状位和轴向位T2加权像上测评椎间盘的退变程度。按照改良Noren等和和Berlemann等(图1-2)的方法测量小关节面与椎体正中矢状面的夹角(即关节突关节的矢状位角度),计算左右二侧小关节角的差值,即为关节突关节矢状位角不对称角度,并按照Boden等的方法将其分为4度:Ⅰ(正常,Normal):≤6.00°;Ⅱ(轻度不对称,Mild):6.01°~10.00°; Ⅲ(中度不对称,Moderate):10.01°~16.00°;Ⅳ(重度不对称,Severe):>16.00°。按照Pathriaa等(图1-3)的标准将关节突关节骨性关节炎(Facet Joint Osteoarthritis,FJO)分为4级:Ⅰ(正常,Normal):正常的关节突关节:(关节间隙为2-4mm); Ⅱ(轻度退变,Mild):关节突关节的关节间隙轻度狭窄(<2mmm)和/或轻度的骨赘和/或关节突关节的轻度肥大;Ⅲ(中度退变,Moderate):关节突关节的关节间隙中度狭窄和/或中度的骨赘和/或关节突关节的中度肥大和/或关节下软骨的轻度侵蚀;Ⅳ(重度退变,Severe):关节突关节的关节间隙重度狭窄和/或大的骨赘和/或关节突关节的重度肥大和/或关节下软骨的重度侵蚀和/或关节下囊肿。在MRI的正中矢状位T2加权像上根据修改后的Pearce等(图1-4)的标准将颈椎间盘(]Lntervertebral Disc, IVD)的退变程度分为4级:Ⅰ(正常,Normal):椎间盘的结构均匀,具有一个白色明亮的高信号的信号强度和一个正常的椎间盘或椎间盘的结构不均匀,具有高信号的白色信号。髓核和纤维环的区别是清晰的,椎间盘高度正常,伴或不伴一条水平的灰色带;Ⅱ(轻度退变,Mild):椎间盘的结构不均匀,具有中间的灰色信号强度。髓核和纤维环的区别不清晰,椎间盘高度正常或有轻度的狭窄;III(中度退变,Moderate):椎间盘的结构不均匀,具有低信号的暗灰色信号强度。髓核和纤维环的区别已丢失,椎间盘高度正常或有中度的狭窄;Ⅳ(重度退变,Severe):椎间盘的结构不均匀,具有低信号的黑色信号强度。髓核和纤维环的区别已丢失,椎间盘已坍塌。将结果进行相关的统计分析;
     第二章:随机从2005年1月~2011年12月在南方医科大学附属南方医院住院并需要手术治疗的颈椎退行性滑脱行MRI和CT检查以及颈椎正侧位、左右斜位X线片的患者中选取60例患者,应用Boden等的4度退变分级方法,3个测评者在MRI的轴向T2加权像以及与此相对应的轴向位CT扫描上对76个颈椎关节突关节矢状位角的不对称程度进行独立的和随机的单盲测评,结果用Kappa系数进行一致性的统计分析;
     第三章:从2005年1月-2011年12月在南方医科大学附属南方医院住院并需要手术治疗的颈椎退行性滑脱行MRI检查以及颈椎正侧位、过伸过屈位和左右斜位X线片的患者中选取只有C4/5椎体滑脱的患者60例作为观察组,再从2000年1月~2010年12月到南方医院体检的826例(457位男性和369位女性)人群中选取与观察组年龄、性别相匹配的60例没有颈椎滑脱的正常体检者作为对照组。2组中在MRI轴向位上的C3/4-C5/6关节突关节的矢状位角度以及观察组在中立位颈椎的侧位X线上C4/5的滑脱度数被测量和计算,其结果进行相关的统计分析;
     第四章:来源于南方医科大学解剖教研室的5具新鲜全颈椎尸体标本(C1-C7),每例标本都去除寰椎,仔细剔除椎体上的肌肉组织,完整保留前纵韧带,后纵韧带,关节突关节,关节囊,椎间盘,横突及棘突结构。将标本解冻后,在前屈中立位下用MRI扫描C2/3~C6/C7的椎间盘和用CT扫描C2/3~C6/C7的关节突关节的关节面。把扫描结果导入医学影像图像与传输系统,测评C2/3~C6/C7椎间盘的退变程度以及C2/3~C6/C7关节突关节的退变程度和测量C2/3-C6/C7左右关节突关节矢状位角,然后计算它们的不对称角度,找出大于6°的关节进行观察和分析。再将5具新鲜颈椎标本依次放入自制的“椎体旋转测量仪”中,在正常的前屈中立位下,上端夹具牢固夹住C4椎体,下端夹具牢固夹住C5椎体,对齐椎体的横突为0°位,在CT上扫描关节突关节面,然后在沿着顺时针及逆时针方向各旋转6°,12°时进行扫描,在医学影像图像与传输系统上测得其顺时针和逆时针方向旋转时关节突关节的矢状位角度。经统计分析后,便得到与椎体旋转角度相对应的C4/5关节突关节矢状位不对称角度。
     4.结果
     第一章:滑脱节段与其相邻的上、下节段在关节突关节矢状位角的不对称程度,关节突关节的退变程度以及椎间盘的退变程度中均无显著性差异(分别是:x2=2.672,P=0.263,x2=0.722,P=0.697;x2=1.114,P=0.573,P>0.05)。但在异常的关节突关节矢状位角的不对称程度上(II-IV级)滑脱节段与其相邻的上、下节段有显著性差异(x2=6.763,P=0.034;P<0.05;滑脱节段vs.其上一节段:z=-2.343,P=0.019,P<0.05;滑脱节段vs.其下一节段:z=-2.059,P=0.039,P<0.05),而滑脱节段的上、下节段无显著性差异(z=-0.472,P=0.637,P>0.05)。同样,退行性滑脱颈椎的关节突关节不对称程度,关节突关节退变程度和椎间盘退变程度在中度和重度滑脱患者中无显著性差异(分别为:z=-0.481,P=0.088;z=-1.791,P=0.073;z=-.122,P=0.903),但异常的关节突关节退变程度(grade II-IV)在中度滑脱患者中要明显高于重度滑脱患者,差异有统计学意义(z=-2.336,P=0.019,P<0.05)。此外,关节突关节的不对称程度,小关节的退变程度和椎间盘的退变程度三者间在滑脱节段及与其相邻的上下节段均无显著的相关性(关节突关节的不对称程度vs.关节突关节的退变程度,滑脱节段:r=0.165,P=0.126,滑脱节段的上一节段:r=0.070,P=0.519,滑脱节段的下一节段:r=0.052,P=0.633;关节突关节的不对称程度vs.椎间盘的退变程度,滑脱节段:r=-.055,P=0.620,滑脱节段的上一节段:r=0.054,P=0.627,滑脱节段的下一节段:r=0.007,P=0.947;关节突关节的退变程度vs.椎间盘的退变程度,滑脱节段:r=-.054,P=0.632,滑脱节段的上一节段:r=-.056,P=0.614,滑脱节段的下一节段:r=-.002,P=0.990)。
     第二章:当评估颈椎关节突关节矢状位角的不对称性时,CT和MRI的一致性为0.76(加权K值,weighted k),P<0.001,它们之间的一致率为82%(62vs.76),可认为二种方法间有比较好的一致性(Substantial Intermethod Concordance))。MRI和CT二种方法间最好的一致性是在第1级的关节突关节矢状位的不对称角度(小于或等于6°的不对称角度):18vs.76,最差的一致性是在第Ⅱ级和第Ⅲ级的关节突关节(轻度不对称和中度不对称):分别为14vs.76。三个测评者在MRI和CT中的测评者间的信度分别为0.61-0.74和0.65-0.8(k值的范围,range k),可认为三个测评者间用MRI测评关节突关节矢状位角的不对称程度上的信度比较可靠(substantial inter-rater reliability),而用CT进行测评则有比较可靠到非常可靠的信度(substantial to very good inter-rater reliability)。测评者内的信度无论是MRI还是CT都要比测评者间的信度高,MRI的测评者内的信度为比较可靠(第一个测评者:0.83,第二个测评者:0.81;第三个测评者:0.79),CT的测评者内的信度为比较可靠到非常可靠(第一个测评者:0.86,第二个测评者:0.84;第三个测评者:0.83)。
     第三章:实验组和对照组分别有32位男性和28位女性。在实验组中,C3/4-C5/6节段的关节突关节矢状位角度存在显著性差异(F=17.941,P<0.001),C4/5节段关节突关节矢状位角度要显著地大于C3/4和C5/6节段(C4/5vs.C3/4,17.28±14.19vs.9.67±6.94,P=0.001;C4/5vs.C5/6,17.28±14.19vs.7.71±4.43,P<0.001),差异有统计学意义。而在C3/4和C5/6节段却没有发现有显著的统计学差异(P=0.191)。在对照组中,C3/4-C5/6节段的关节突关节矢状位角度未发现有显著的统计学差异(F=0.011,P=0.989)。2组中3个节段的分别比较为:C3/4,9.67±6.94vs.6.59±4.56,P=0.014;C4/5,17.28±14.19vs.6.52±5.78,P<0.001;C5/6,7.71±4.43vs.6.45±4.57,P=0.250。
     在异常的关节突关节矢状位角度比较中(II-IV级),实验组同样存在统计学差异(F=9.785,P<0.001;C4/5vs.C3/4,20.17±14.16vs.12.86±6.61,P=0.006;C4/5vs.C5/6,20.17±14.16vs.11.03±3.55,P<0.001:C3/4vs.C5/6,12.86±6.61vs.11.03±3.55,P=0.371),而对照组则无显著的统计学差异(F=2.829,P=0.065)。
     在实验组中,颈椎中度滑脱的患者关节突关节矢状位角的度数要大于重度滑脱的患者,差异有统计学意义(关节突关节矢状位角的度数:t=-2.963,P=0.005)。然而,它们在关节突关节矢状位角不对称程度的比较中却没有显著的统计学差异(z=-I.799,P=0.072),关节突关节矢状位角的不对称程度不会随着颈椎滑脱程度的改变而改变(r=-0.178,P=0.175)。从而也证实了关节突关节矢状位角的不对称程度和滑脱程度没有相关性。
     第四章:在中立位时C4/5节段不存在关节突关节矢状位角不对称性(≤6°)的颈椎标本,其椎体沿顺时针方向和逆时针方向旋转6°时,C4/5节段左右关节突关节矢状位角度差≤6°,但旋转到12°时则表现有轻度差异:第3具标本和第4具标本的C4/5节段左右关节突关节矢状位角度差仍然≤6°,而第1具标本在沿顺时针方向旋转到12°时C4/5节段左右关节突关节矢状位角度差为14.82±1.11°。中立位时C4/5节段的关节突关节矢状位角存在不对称性(>6°)的颈椎标本中,2具标本的椎体沿顺时针方向旋转6°,12°时,C4/5节段左右关节突关节矢状位角度差都要比原来的不对称度数增加(第2具标本的不对称角度由8.82±1.14°分别增加到9.41+1.03°,9.02±2.96°,第5具标本的不对称角度由6.49±1.83°分别增加到16.33±0.42°,19.95±1.02°),但在椎体向逆时针方向旋转60和120时2具标本的左右关节突关节矢状位角度差比中立位时表现各有不同(第2具标本的不对称角度在椎体向逆时针方向旋转6°时由8.82±1.14°减少到1.01±1.57°,继续旋转椎体至12°时则又增加到20.62±4.24°;第5具标本的不对称角度在椎体逆时针方向旋转6°时由6.49±1.83°减少到2.93±1.78°,继续旋转椎体至120时则增加到5.42±1.44°)。
     另外,我们发现,在5具标本中都遵循这样的原则:C4/5椎体沿顺时针方向旋转时,右侧关节突关节的矢状位角度要大于左侧,沿逆时针方向旋转到6°时则相反。如果椎体的旋转超出了关节的正常活动范围,一侧或二侧的左右关节突关节矢状位角度则明显变小。
     5.结论
     (1)颈椎退行滑脱的关节突关节不对称程度,关节突关节的退变程度和椎间盘退变程度跟颈椎滑脱程度都没有显著的相关性,且关节突关节矢状角不对称程度,关节突关节退变程度和椎间盘退变程度三者之间也无显著的相关性,关节突关节矢状角不对称性和关节突关节退变程度,椎间盘退变程度以及颈椎滑脱程度的关系需要更多的纵向研究来解决。
     (2)MRI和CT在评估关节突关节矢状位角的不对称性时无论是二种方法间的一致性还是组间或组内的信度,都有较好的一致性。这表明MRI用于测评关节突关节矢状位角度的不对称性是比较可靠的,因此,用MRI测评关节突关节矢状位角度的不对称性时没有必要增加额外的CT扫描。
     (3)关节突关节矢状位角的不对称性普遍存在于C3/4-C5/6节段,而最严重的关节突关节矢状位角不对称性存在于滑脱节段,然而,关节突关节矢状位角不对称程度和滑脱的程度没有显著的相关性。退变的关节突关节和退变的椎间盘相互影响,相互作用,导致关节突关节矢状位角的不对称性程度增加,这可能是引起颈椎滑脱的一个扳机。
     (4)在5具颈椎标本中,在C4/5椎体的正常运动范围内,中立位上不存在关节突关节矢状位角不对称性的关节突关节在椎体沿顺时针或逆时针方向旋转6°和120后关节矢状位角的不对称性不会发生改变(≤6°),中立位上存在关节突关节矢状位角不对称性的C4/5关节突关节,椎体如果沿着关节矢状位角度较大关节方向旋转6°和12°后,其不对称角度继续增大,椎体如果沿着关节矢状位角度较小关节方向旋转6°后,其不对称角度减小,但当旋转到12°后其不对称角度又较前增大。在C4-5关节突关节的正常运动范围内,无论是中立位上存在矢状位角不对称性的关节突关节还是不存在矢状位角不对称性的关节突关节,其左右关节的角度在椎体沿顺时针或逆时针方向旋转到6°时都会发生改变,即,椎体沿顺时针方向旋转时,右侧关节突关节的矢状位角度要大于左侧,逆时针方向旋转时则相反。如果超出了关节的正常活动范围,一侧或二侧的关节矢状位角度较前则明显变小。
     6.临床意义
     本研究证明了颈椎关节突关节矢状位角的不对称性和椎间盘的退变程度、关节突关节的退变程度没有直接的相关性。关节突关节矢状位角的不对称性可能存在先天性不对称和椎体退行性改变之后的不对称,椎体退行性改变之后的不对称性可能由于椎体的轴向旋转引起。我们认为在人工颈椎间盘置换术患者作术前评估时也应该将颈椎矢状位角的不对称性,尤其是中、重度不对称性的因素考虑在内,另外,用“搬法”等手法治疗颈椎疾病时,对存在中、重度颈椎矢状位角不对称的患者要慎重,以免加重病情或引起意外。
1. Background
     Cervical spondylosis and cervical Intervertebral disk herniation is a common degenerative cervical disease. Cervical disc arthroplasty (CDA) is one of the methods of surgical treatment, but loosening and slipping of the prosthesis is the most serious complications of cervical disc arthroplasty, cervical vertebral instability is one of the reasons that lead to this complication, is also one of the major contraindications of cervical intervertebral disc replacement.The vertebral rotation is most common manifestation of the vertebral instability, but up to date, there is no effective quantitative diagnostic method. The vertebral instability is often caused by spinal degeneration, facet joints and intervertebral disc are considered to be closely related to the two structures of vertebral stability, which of them can destroy the stability of the vertebral body and even endanger the entire spine, but there is not a unanimous opinion about which is the main cause of the vertebral degeneration. However, there are more controversial about relationship between cervical facet tropism and facet joint degeneration, intervertebral disc degeneration. In addition, CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) is a common diagnostic method to be used in the spine surgery, but in recent years, application of CT in the diagnosis of spinal disorders is relatively reduced, There are two possible reasons: One is the understanding problem, many spine surgeons believe that cervical MRI in the diagnosis of degenerative spinal disorders can replace CT completely. Another is in order to save medical costs to patients, only underwent MRI scan. Therefore, many surgeons just routinely obtained cervical vertebra anteroposterior and lateral radiograph and MRI rather than another cervical CT scan before cervical spinaloperations. Although there are many studies on differences of imaging manifestation in the severity of the facet joints degeneration (osteoarthritis) between CT and MRI, and most researchers believe that the reliability of CT in diagnosis of the severity of the facet joints degeneration is higher than MRI, but comparison of in the diagnosis of facet tropism between CT and MRI is rarely reported at home and abroad. Therefore, this study retrospectively selected over60patients with degenerative cervical spondylolisthesis, which is the most severe manifestations of vertebral instability, and treated in the Nanfang Hospital of Southern Medical University hospital need for surgery from January2005to December2011, as our study object.Meanwhile, to avoid the natural limitations of retrospective study and test our hypothesis, using five fresh cervical specimens and homemade vertebral rotation angles measuring instrument to investigate the relationship between the vertebral rotation and facet tropism on CT and MRI scans. If our hypothesis is established, the next step will be able to establish the threshold whichis vertebral instability caused by facet tropism, thus for spine surgeons provide reliable selection criteria and selection methods to choose surgical method in patients with cervical disc herniation surgery and cervical spondylosis and selection of patients with cervical intervertebral disc replacement, and provide another diagnostic method for patients with cervical vertebral artery disease,cervical spondylotic radiculopathy and sympathetic type of cervical spondylosis, in addition, this study also can provide digital evidence to determine the indications and contraindications for traditional "Overbanding" and so on treatment of cervical diseases with manipulative therapy. This is a study from the image to the entity and from the entity return to the image, and it's a research mode is image and entity learning from each other and basic and clinical intermingling with each other.
     2. Objective
     (1).To investigate the correlation between facet tropism and degree of cervical spondylolisthesis, the severity of facet joint degeneration in degenerative cervical spondylolisthesis,and the clinical significance and the relationship between sagittal facet asymmetry angles and vertebral axial rotation angles.
     (2).To determine the reliability of MRI in the assessment of facet tropism in degenerative cervical spondylolisthesis.
     3. Methods
     Part Ⅰ:From January2005to December2011, from366patients selected64patients with only one level cervical degenerative spondylolisthesis who need for surgical treatment in affiliated Nanfang Hospital of Southern Medical University and underwent anteroposterior and lateral radiographs, flexion-extension (FE) radiographs, left and right oblique X-ray, MRI and CT scan. To evaluate the sagittal facet angles of spondylolisthesis level and superior level and inferior level on axial CT with bone window, and in the evaluation of the severity of disc degeneration on midsagittal and axial MRI T2-weighted images from the picture archiving and communication system (PACS). According to the method described by Noren et al. whereby a facet line was drawn between the anteromedial and posterolateral points of each facet. A midsagittal line through the disc was considered the sagittal line. The angle formed by the left (and right) facet line and the sagittal line was measured and recorded in degrees (Figure1-2.). Calculating the differences between the left and right angles and using the criterion described by Boden et al., the measured values were divided into four grades:Ⅰ (None)≤6.00°, Ⅱ (Mild)6.01°-10.00°, Ⅲ (Moderate)10.01°-16.00°, IV (Sev-ere)>16°. The values of two angles (left and right) were the absolute differences and were used to define the facet tropism of the facet joints. According to the criterion described by Pathria et al. the severity of facet joints osteoarthritis (FJO) were divided into four grades:I (Normal) Normal facet joint space (2-4mm width); II (Mild) Narrowing of the facet joint space (<2mm) and/or small osteophytes and/or mild hypertrophy of the articular process; III (Moderate) Narrowing of the facet joint space and/or moderate osteophytes and/or moderate hypertrophy of the articular process and/or mild subarticular bone erosions; IV (Severe) Narrowing of the facet joint space and/or large osteophytes and/or severe hypertrophy of the articular process and and/or severe subarticular bone erosions and/or subchondral cysts.According to the modified Pearce criterion (Figure3.), the severity of intervertebral disc (IVD) degeneration were divided into four grades on midsagittal MRI T2-weighted images: Grade Ⅰ:The structure of the disc is homogeneous, with a bright hyperintense white signal intensity and a normal disc height. Or the structure of the disc is inhomogeneous, with a hyperintense white signal. The distinction between nucleus and anulus is clear, and the disc height is normal, with or without horizontal gray bands. Grade Ⅱ:The structure of the disc is inhomogeneous, with an intermediate gray signal intensity. The distinction between nucleus and anulus is unclear, and the disc height is normal or slightly decreased.Grade Ⅲ:The structure of the disc is inhomogeneous, with an hypointense dark gray signal intensity. The distinction between nucleus and anulus is lost, and the disc height is normal or moderately decreased. Grade IV:The structure of the disc is inhomogeneous, with a hypointense black signal intensity. The distinction between nucleus and anulus is lost, and the disc space is collapsed. Grading is performed on T2-weighted midsagittal (repetition time5000msec/echo time130msec) fast spin-echo images. The results were statistically relativity analyzed.
     Part Ⅱ:From January2005to December2011, random select60patients with cervical degenerative spondylolisthesis who need for surgical treatment in affiliated Nanfang Hospital of Southern Medical University and underwent anteroposterior and lateral radiograph, left and right oblique X-ray, MRI and CT scan. Using the4-point scale described by et al.,3reviewers blindly and independently graded the severity of facet tropism of76cervical facet joints on axial T2-weighted turbo spin echo images and separately on the corresponding axial CT scans. All results were subjected to the kappa coefficient statistic for strength of agreement.
     Part Ⅲ:From January2005to December2011, select60patientswith only C4/5level cervical degenerative spondylolisthesis as the experimental group, who need for surgical treatment in affiliated Nanfang Hospital of Southern Medical University and underwent anteroposterior and lateral radiograph, flexion-extension (FE) radiographs, left and right oblique X-ray, MRI scan. For the control group,60age-and sex-matched patients without evident spinal disease were selected from a group of826(457of males and369of females) patients that presented for physical examination from January2000to January2012. The facet angles of C3/4-C5/6from axial MRI of the two groups and the slippage degree (categorized into moderate and severe spondylolisthesis grades) at C4/5from neutral lateral radiographs of the experimental group were measured and calculated. Relativity analysis of the obtained parameters was performed.
     Part Ⅳ:Five fresh cadaveric full cervical (C1-C7) were offered by the department of anatomy of basic medical sciences of Southern Medical University, all specimens were removal the atlas, carefully removed the muscle tissue in the vertebral body and retained intactly anterior longitudinal ligament, posterior longitudinal ligament, articular facet joint, joint capsule, intervertebral discs, transverse process and spinous process structure. After five specimens thawed, using a MRI scans the intervertebral disc from C2/3to C6/7and using a CT scans the facet joints from C2/3to C6/7in a neutral position and kept a lordotic curve of cervical spine. Then the scan resultswere imported into PACS to evaluate the severity of intervertebral disc degeneration on axial and sagittal T2-weighted images and the severity of facet joint degeneration on axial CT, the left and right sagittal facet angles were also measured and calculatedon axial CT, facet joints with the absolute differences than6°were observed and analyzed. Five fresh cervical specimens were put inside the homemade vertebral rotation measuring instrument sequentially, the upper end of the fixture firmly clamped C4vertebral body and the lower end of the fixture firmly grip C5vertebral body, aligned vertebral transverse processes of C4/5as0°position, using CT scan facet joint in0°position and in the clockwise and counterclockwise direction6°,12°position, measured sagittal facet angles from PACS. After statistical analysis, we will get the sagittal facet angles of C4/5corresponding to the vertebral rotation angles.
     4. Results
     Part Ⅰ:There were no significant differences in the severity of facet tropism, the severity of facet joint osteoarthritis and the severity of intervertebral disc degeneration between the spondylolisthesis levels and adjacent levels (x2=2.672, P=0.263, x2=0.722, P=0.697; x2=1.114, P=0.573, P>0.05),but there were significant differences in the abnormal facet tropism (grade Ⅱ-Ⅳ) between the spondylolisthesis levels and adjacent levels (x2=6.763, P=0.034; P<0.05; spondylolisthesis levels vs. superior adjacent levels:z=-2.343, P=0.019, P<0.05; spondylolisthesis levels vs. inferior adjacent levels:z=-2.059, P=0.039, P<0.05).However, There were no significant differences in the abnormal facet tropism (grade II-IV) between adjacent levels (z=-0.472, P=0.637, P>0.05). Likewise, results of comparisons between moderate and severe cervical spondylolisthesis showed no significant difference in the severity of facet tropism, the severity of facet joint osteoarthritis and the severity of intervertebral disc degeneration (z=-.481, P=0.088; z=-1.791, P=0.073; z=-0.122, P=0.903, respectively; P>0.05), but the abnormal facet joint osteoarthritis (grade Ⅱ-Ⅳ) in moderate cervical spondylolisthesis was significantly higher than that in severe cervical spondylolisthesis (z=-2.336, P=0.019. P<0.05). In addition, there was no significant correlation between the severity of facet tropism, facet joint osteoarthritis and the severity of intervertebral disc degeneration in the spondylolisthesis levels and adjacent levels(facet tropism vs. FJO, spondylolisthesis levels:r=0.207, P=0.136, superior adjacent levels:r=0.070, P=0.519; inferior adjacent levels:r=0.052, P=0.633; facet tropism vs. IVD degeneration, spondylolisthesis levels:r=-.046, P=0.677, superior adjacent levels:r=0.054, P=0.627, inferior adjacent levels:r=0.007, P=0.947; FJO vs. IVD degeneration, spondylolisthesis levels:r=-0.037, P=0.746, superior adjacent levels:r=-0.056, P=0.614, inferior adjacent levels:r=-0.002, P=0.990. P>0.05)
     Part Ⅱ:The weighted kappa coefficients for agreement between MRI and CT grading were0.76(P<0.001) for the severity of facet tropism, MRI grading of facet tropism was identical to the CT grading in62of76joints (82%), with substantial intermethod concordance. There was perfect agreement in grade Ⅰ (18of76joints) and poor agreement in grade Ⅱ and Ⅲ (14of76joints, respectively). The inter-rater reliability of three reviewer in MRI and CT were0.61-0.74and0.65-0.8(range k), respectively. CT performed better, with substantial to very good inter-rater reliabilitythan MRI, which had substantial inter-rater reliability. Intra-rater reliability was higher than inter-rater reliability for both CT and MRI. intra-rater agreement was substantial for MRI (k=0.83for the first reader, k=0.81for the second reader, and k=0.79for the third reader) and substantial to very good for CT (k=0.86for the first reader, k=0.84for the second reader, and k=0.83for the third reader).
     Part Ⅲ:There were32males and28females in the experimental group and control group, respectively.There were significant differences of facet tropism among the C3/4-C5/6levels (F=17.941, P<0.001) and facet tropism at C4/5was significantly greater than C3/4and C5/6in the experimental group (C4/5vs. C3/4, P=0.001; C4/5vs. C5/6, P<0.001), but there was no significant difference between C3/4and C5/6(P=0.191); There were no significant differences among the respective levels in the control group (F=0.011, P=0.989).The facet tropism was significantly different at the C3/4levels versus the C4/5levels, but no significant difference was found at the C5/6level when comparing the two groups (C3/4, P=0.014; C4/5, P<0.001; C5/6, P=0.250).
     Comparison of the abnormal facet angles (grade Ⅱ-Ⅳ), there were also significant differences in the experimental group (F=9.785, P<0.001; C4/5vs. C3/4, P=0.006; C4-/5vs. C5/6, P<0.001; C3/4vs. C5/6, P=0.371), but there was no significant difference in the control group (F=2.829, P=0.065).
     Facet tropism at C4/5in moderate spondylolisthesis patients was significantly greater than in severe spondylolisthesis patients(t=-2.963, P=0.005), but there is no significant difference in the severity of facet tropism between them(r=-0.178, P=0.175) and the severity of facet tropism did not vary with the spondylolisthesis degree in the experimental group (r=-0.178, P=0.175). Thus this also confirmed that there was no correlation between the severity of facet tropism and the severity of cervical spondylolisthesis.
     Part Ⅳ:In a neutral position, the cervical specimens without facet tropism (The facet angle differences were≤6°) at the C4/5level, when the vertebral body was turned to6°along clockwise or counterclockwise directions, the facet angle differences were less than6°, but there were slight differences when the vertebral body turn to12°:The facet angle differences at the C4/5level of the No.3and4cervical specimens were still≤6°. However, the facet angle differences at the C4/5level of the No.1cervical specimens were14.82±1.11°when the vertebral body was turned to12°along clockwise direction. In a neutral position, two cervical specimens with facet tropism (The facet angle differenceswere>6°) at the C4/5level, when the vertebral body was turned to6°,12°along clockwise direction, the facet angle differences at the C4/5level were more than before (the facet angle differences at the C4-5level of the No.2cervical specimens were increased from8.82°1.14°to9.41±1.03°,9.02±2.96°, respectively, and the facet angle differences of the No.5cervical specimens were increased from6.49±1.83°to16.33±0.42°,19.95±1.02°, respectively), but when the vertebral body was turned to6°,12°long counterclockwise direction, the facet angle were slight differences than the vertebral body in a neutral position (The facet angle differences of the No.2cervical specimens were decreased from8.82±1.14°to1.01±1.57°, continue to turn the vertebral body to12°, the facet angle differences were increasedto20.62°4.24°. The facet angle differences of the No.5cervical specimens were decreased from6.49±1.83°to2.93±1.78°, continue to turn the vertebral body to12°, the facet angle differences were increased to5.42±1.44°).
     In addition, we found that the five specimens were followed this principle:when the vertebral body was turned along clockwise direction, the right facet angles were bigger than the left and when turned along counterclockwise directionto6°, on the contrary. However, if the vertebral was turned beyond the normalmotion range of facet joints, the left and/or right facet angle was decreased obviously.
     5. Conclusion:
     (1).There was no significant correlation between the severity of cervical spondylolisthesis and the severity of facet tropism, facet joints osteoarthritis and intervertebral disc degeneration;there were also no significant correlation among the severity of facet tropism, facet joints osteoarthritis and intervertebral disc degenerati-on in degenerative cervical spondylolisthesis.The relationship of facet tropism, facet joints osteoarthritis, intervertebral disc and degenerative cervical spondylolisthesis are needed more longitudinal studies to resolve.
     (2).When using MRI and CT to assess facet tropism, they all performed excellent, with substantial to very good agreement for both intermethod agreement and inter-rater reliability or intra-rater reliability. This indicates that MRI can reliably determine the presence or degree of facet tropism. Therefore, for comprehensive assessment of facet tropism, an MR scan should not be performed in addition to a CT.
     (3). The current study found that facet tropism is universally present at the C3/4-C5/6levels and the most serious facet tropism exists in spondylolisthesis-affected level in degenerativecervical spondylolisthesis, the interplaybetween degenerative facet joints and degenerative intervertebral disc contributes to sagittal orientation aggravation of the facet jointsresulting in the severity of facet tropism increased, which may be one of the triggers for degenerativecervical spondyloli-sthesis.
     (4).In five cervical specimens, within the normal motion range of C4/5segment, the facet angle differences of facet joints without facet tropism (The facet angle differences were≤6°) in a neutral position, were less than6°when the vertebral body was turned along clockwise or counterclockwise directions to6°and12°and they will not to be change; the facet angle differences of facet joints with facet tropism (The facet angle differences were>6°) in a neutral position were increased if the vertebral body was turned along the bigger facet angles direction to6°and12°, and the facet angle differences were decreased when the vertebral body was turned along the smaller facet angles direction to6°and were increased when the vertebral body was continue to turn the vertebral body to12°. Within the normal motion range of C4/5segment, the facet joints whether with or withoutfacet tropism in a neutral position, left and right sagittal facet angles were changed when the vertebral body was turned along clockwise or counterclockwise directions to6°:right facet angles were bigger than the left when the vertebral body was turned along clockwise directions and left facet angles were bigger than the right when the vertebral body was turned along counterclockwise directions, but if the vertebral was turned beyond the normal motion range of facet joints, the left and/or right facet angles was decreased obviously than the previous.
     6. Clinical Significances
     This study proved that there is no direct correlation between the facet tropism and the severity of intervertebral disc degeneration, facet joint degeneration. Asymmetric sagittal angle may be congenital facet tropism and degenerative facet tropism, and degenerative facet tropismmay be due tocervical vertebral rotation. We consider that in assessment of patients with cervical disc arthroplasty preoperative should be considered facet tropism, especially with moderate or severe facet tropism. In addition, using "Overbanding" and so on treatment of cervical diseases with manipulative therapy, patients with moderate or severe facet tropism should be careful, so as to avoid aggravate disease or result in accident.
引文
[1]邱贵兴主编.骨科高级教程[M].北京:人民军医出版社,2010,435-436.
    [2]Pope MH Panjabi MM.Biomechanical definition of spinal instability[J]. Spine, 1985,70(3):255-256.
    [3]Frymoyer JW. The role of spine fusion[J]. Spine,1987,6:284-286.
    [4]Farfan HF, Gracovetsky S. The nature of instability [J].Spine,1984,9(7):714-719.
    [5]Yong-Hing K, kirkaldy-Willilis WH. The pathophysiology of degenerative disease of the lumber spine[J].Orthop Clin North Am,1983,14(3):491-504.
    [6]Witwer BP, Trost GR. Cercical spondylosis:ventral or dorsal surgery [J]. Neurosurgery,2007,60(1supp11)s:130-s136.
    [7]丁自海,王增涛,杜心如,等.脊柱外科临床解剖学[M].第一版.山东:山东科学技术出版社,2008:100-101.
    [8]余情,李泽兵.颈椎旋转对颈椎间孔形态的影响[J].中华物理医学与康复杂志,2003,25(12)719-722.
    [9]Vaccaro AR, Lim MR, Lee JY. Indications for surgery and stabilization techniquesofthe occipito-cervical junction[J]. Injury,2005,36(Suppl2):B44-B53.
    [10]Kopacz KJ, Connolly PJ. The prevalence of cervical spondylolisthesis[J]. Orthop-aedics,1999,22:677-679.
    [11]戴力扬.颈椎椎间盘退行性改变与颈椎不稳[J].中华外科杂志,1999,37(3):180-182.
    [12]赵旭波,乔凤楠,黄越,等.颈椎旋转的影像学诊断[J].辽宁医学院学报,2008,29(3):329-345.
    [13]Jiang SD, JiangLS, Dai LY. Degenerative cervical spondylolisthesis:asystematic review[J]. International Orthopaedics,2011,35:869-875.
    [14]Boulos AS, Lovely TJ. Degenerative cervical spodylolisthesis:Diagnosis and management in five cases[J]. Spinal Disorders,2006,9(3):241-245.
    [15]Hayashi H, Okada K, Hamada M, et al. Etiologic factors of myelopathy. A radiographic evaluation of the aging changes in the cervical spine[J]. Clin Orthop, 1987,214:200-201.
    [16]Nabil A, Ebraheim,Vishwas Patil, Jiayong Liu. Morphometric analyses of the cervical superior facets and implications for facet dislocation[J]. International Orthopaedics,2008,32:97-101.
    [17]Brailsford JF. Deformities of the lumbosacral region of the spine[J]. Br J Surg, 1928,16:526-627.
    [18]Fujiwara A, Tamai K, An HS, et al. Orientation and osteoarthritis of the lumbar facet joint[J]. Clin Orthop Relat Res,2001,385:88-94.
    [19]Cyron BM, Hutton WC:Articular tropism and stabilityof the lumbar spine[J]. Spine,1980,5:168-172.
    [20]Arnold H. Menezes, Volker K. H. Sonntag, Edward C. Benzel (1996) Principles of spinal surgery. McGraw-Hill Book Companies, Singapore
    [21]Kalichman Leonid, Suri Pradeep, Guermazi Ali, et al. Facet orientation and tropism:Associations with facet joint osteoarthritis and degenerative[J]. Spine,2009, 34(16):E579-585.
    [22]Berlemann U, Jeszenszky DJ, Buhler DW, et al. Facet joint remodeling in degenerative spondylolosthesis:an investigation of joint orientation and tropism[J]. Eur Spine J,1998,7(5):376-380.
    [23]Vanharanta Heikki, Floyd Timothy, Ohnmeiss Donna, et al. The relationship of facet tropism to degenerative disc disease[J]. Spine,1993,18(8):1000-1005.
    [24]Noren R, Trafimow J, Andersson GB, et al. The role of facet joint tropism and facet angle in disc degeneration[J]. Spine,1991,16(5):530-532.
    [25]Sato K, Wakamatsu E, Yoshizumi A et al. The configuration of the laminas and facet joints in degenerative spondylolithesis.A clinicoradiologic study[J]. Spine,1989, 14(11):1265-1271.
    [26]Adams MA, Bogduk N, Burton K, et al. (2006) The biomechanics of neck pain (2nd). Elsevier Ltd,. Philadelphia
    [27]dunlop RB, Admas MA, Hutton WC. Disc space narrowing and the lumber facet joints[J]. J Bone Joint Surg Br,1984,66(5):706-710.
    [28]Sohn HM, You JW, Lee JY. The relationship between disc degeneration and morphologic changes in the intervertebral foramen of the cervical spine:a cadaveric MRI and CT study[J]. J Korean Med Sci,2004,19(1):101-106.
    [29]Jixing Wang, Xianyu Yang. Age-related changes in the orientation of lumbar facet joints[J]. Spine,2009,34(17):E596-E598.
    [30]张继业,朱青安,姜欢畅,等.腰椎小关节不对称与小关节退变程度的关系及临床意义[J].中国临床解剖学杂志,2010,28(6):629-633.
    [31]杨召,方睿才,杨华.腰椎小关节突不对称与椎间盘突出症[J].临床骨科杂志,1999,2(3):178-180.
    [32]段文,张建湘,刘金锐,薄冉,等.腰椎小关节不对称与椎间盘及小关节退变的关系[J].中国组织工程研究与临床康复,2011,15(18):9044-9047.
    [33]张光铂,绳厚福,史振才.腰椎小关节不对称与椎间盘变性.中国脊柱脊髓杂志[J].1997,7(5):199-201.
    [34]于红,侯树勋,吴闻文,周宝康.下腰椎小关节的方向性与椎间盘突出和侧隐窝狭窄的关系[J].中华外科杂志,1998,36(3):176-178.
    [35]孙锡和,徐德永,曹来宾,等.颈椎关节突关节形态和水平倾角的CT研究[J].中华放射学杂志,1996,30(5):341-343.
    [36]曾辉,邹德威,吴继功,等.下颈椎关节突关节的影像学观测及其临床意义[J].中国脊柱脊髓杂志,2012,22(1):59-64.
    [37]王怀云,何海龙,李华,等.颈椎关节突关节面倾角测量特点及临床意义[J].脊柱外科杂志,2011,9(6):357-359。
    [38]黄袁迟,邹德威,吴继功,等.颈椎小关节三维螺旋CT测量在数字骨科中 的应用[J].中国矫形外科杂志,2012,20(15):1405-1408.
    [39]Neil Duggle. Cervical disc arthroplasty:a practical overview[J]. Current Orthop-aedics Practice,2009,20(3):216-221.
    [40]Deburge A, Mazda K, Guigui P. Unstable degenerative spondylolisthesis of the cervical spine[J]. J Bone Joint Surg Br,1995; 77:122-125.
    [41]Goffin J, Casey A, Kehr P, et al. Preliminary clinical experience with the Bryan cervical disc prosthesis[J].Neurosurg,2002,51(3):840-847.
    [42]Goffin J, Johan VL, Frank VC. Cervical arthroplasty with the Bryan Disc:4-year results[J]. Spine J,2006,6(Suppl 5):62-63.
    [43]Goffin J, Johan VL, Frank VC. A clinical analysis of 4-and 6-year follow-up results after cervical disc replacement surgery using the Bryan cervical disc prosthesis[J]. J Neurosurg Spine,2010,12(3):261-269.
    [44]Moatz B, Tortolani PJ. Cervical disc arthroplasty:Pros and cons[J]. Surg Neurol Int,2012; 3(Suppl 3):S216-24.
    [45]King AL, Prasad P, Ewing CL. Mechanism of spinal injury due to audocephalad acceleration[J]. Clin Orthop North Am,2005,6:19-22.
    [46]Holnes A, Wang C, Han ZH. The Range and nature of Flexion-extension motion in the cervical spine.[J]. Spine,2009,19(22):2505-2510.
    [47]Onan OA, Heggeness MH, Hipp JA. Motion analysis of the cervical facet joint[J]. spine,2008,23(4):430-439.
    [48]Kopacz KJ, Connolly PJ. The prevalence of cervical spondylolisthesis[J]. Ortho-paedics,1999,22:677-9.
    [49]邵宜,许竟武.实用颈腰背痛学[M].北京:人民军医出版社1992.68-76
    [50]Thomas W, Lawhorne III, Federico P. Treatment of degenerative spondylolisthes-is:potential of dynamic stabilization based on imaging analysis impact[J]. Eur Spine J,2009,18:815-822.
    [51]Deburge A, Mazda K, Guigui P. Unstable degenerative spondylolisthesis of the cervical spine[J]. J Bone Joint Surg Br,1995,77:122-125.
    [52]Christian Woiciechowsky, Ulrich-Wilhelm Thomale, Stefan-Nikolaus Kroppens-tedt. Degenerative spondylolisthesis of the cervical spine—symptoms and surgical strategies depending on disease progress[J]. Eur Spine J,2004,13:680-684.
    [53]Jiayong Liu, Nabil A, Steven P, et al. How the increase of the cervical disc space height affects the facet joint:an anatomy study[J]. Spine,2006,12(31):350-354.
    [54]Taillard W. Spondylolisthesis in children and adolescents[J]. Acta Orthop Scand, 1954,24(2):115-144.
    [55]White AA III, Johnson RM, Panjabi MM, et al. Biomechanical analysis of clinical stability in the cervical spine[J]. Clin Orthop,1975,109:85-96.
    [56]Boden SD, Riew KD, Yamaguchi K, et al. Orientation of the lumbar facet joints:association with degenerative disc disease[J]. J Bone Joint Surg Am,1996, 78(3):403-411.
    [57]Pathria M, Sartoris DJ, Resnick D. Osteoarthritis of the facet joints:accuracy of oblique radiographic assessment[J]. Radiology,1987,164:227-230.
    [58]Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26:1873-1878.
    [59]Fujiwara A, Tamai K, Yamato M, et al. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine:an MRI study [J]. Eur Spine J, 1999,8:396-401.
    [60]Butler D, Trafimow JH, Andersson GB, et al. Discs degenerate before facets[J]. Spine,1990,15:111-113.
    [61]Bartlett RJ, Hill CR, Gardiner E. A comparison of T2 and gadolinium enhanced MRI with CT myelography in cervical radiculopathy [J]. Br J Radiol,1998,71 (841): 11-19.
    [62]Breidahl WH, Low V, Khangure MS. Imaging the cervical spine:A comparison of MR with myelography and CT myelography [J]. Australas Radiol,1991,35(4): 306-314.
    [63]Dorenbeck U, Schreyer AG, Schlaier J. Degenerative diseases of the cervical spine:comparison of a multiecho data image combination sequence with a magnetization transfer saturation pulse and cervical myelography and CT[J]. Neuroradiology,2004,46(4):306-309.
    [64]Giuseppe S, Giussppe S, Sandra P. Myelopathy and radiculopathy due to cervical spondylosis:Myelographic-CT correlations[J]. Am J Neuroradiol,1983,4(3): 601-603.
    [65]Yu WD, Williams SL. (2006) Spinal imaging:Radiographs, Computed tomography, and Magnetic resonance imaging. In:Spivak JM, Connolly PJ (eds) Orthopaedic Knowledge Update. Spine.3AAOS 6:57-67.
    [66]Brown BM, Schwartz RH, Frank E, Blank NKet. Preoperative evaluation of cervical radiculopathy and myelopathy by surface-coil MR imaging [J]. Am J Roentgenol,1988,151(6):1205-1212.
    [67]Anderson PA, Sasso RC, Riew KD. Update on cervical artificial disk replaceme-nt[J]. Instr Course Lect,2007,56:237-45.
    [68]Acosta FL Jr, Ames CP. Cervical disc arthroplasty:general introduction[J]. Neurosurg Clin N Am,2005,16:603-7, vi.
    [69]Landis JR, Koch GG. The measurement of observer agreement for categorical data[J]. Biometrics,1977,33(1):159-174.
    [70]Deburge A, Mazda K, Guigui P.Unstable degenerative spondylolisthesis of the cervical spine[J]. J Bone Joint Surg(Br),1995; 77:122-125.
    [71]Boulos AS, Lovely TJ. Degenerative cervical spodylolisthesis:diagnosis and management in five cases[J]. J Spinal Disorders,1996,9(3):241-247.
    [72]Hayashi H, Okada K, Hamada M, et al. Etiologic factors of myelopathy.a radiographic evaluation of the aging changes in the cervical spine [J]. Clin Orthop, 1987,214:200-206.
    [73]Lehman RA Jr, Helgeson MD, Keeler KA, et al. Comparison of magnetic resonance imaging and computed tomography in predicting facet arthrosis in the cervical spine[J]. Spine,2009,34 (1):65-68.
    [74]Weishaupt D, Zanetti M, Boos N, Hodler J. MR imaging and CT in osteoarthritis of the lumbar facet joints[J]. Skeletal Radiol,1999,28(4):215-219.
    [75]徐建春,徐德福,马雪鹏.影像学诊断脊柱骨折相互意义的研究[J].现代医用影像学,2009,18(5):275-277.
    [76]Gunzburg R, Sandhu A, Fraser RD. The value of computerized tomography in determining lumbar facet joint orientation. J Spinal Disord,1989,2(3):170-175.
    [77]Gore DR. Roentgenographic findings in the cervical spine in asymptomatic persons:a ten-year follow-up[J]. Spine,2001,26:2463-2466.
    [78]Hayashi H, Okada K, Hamada M, et al.Etiologic factors of myelopathy:a radiographic evaluation of the aging changes in the cervical spine[J]. Clin Orthop Relat Res,1997,214:200-209.
    [79]Herzog RJ, Weins JJ, Dillingham MF, et al. Normal cervical spine morphometry and cervical spine stenosis in asymptomatic professional football players[J]. Spine, 1991,16:178-186.
    [80]Kuwazawa Y, Bashir W, Pope MH, et al. Biomechanical aspects of the cervical cord:effects of postural changes in healthy volunteers using positional magnetic resonance imaging[J]. J Spinal Disord Tech,2006,19:348-352.
    [81]Kuwazawa Y, Pope MH, Bashir W, et al. The length of the cervical cord:effects of positional changes in healthy volunteers using positional magnetic resonance imaging[J]. Spine,2006,31:579-583.
    [82]Lee MJ, Cassinelli EH, Riew KD. Prevalence of cervical spine stenosis:anatomic study in cadavers[J]. J Bone Joint Surg Am,2007,89:376-380.
    [83]Okada Y, Ikata T, Katoh S, et al. Morphologic analysis of the cervical spinal cord, dura tube, and spinal canal by magnetic resonance imaging in normal adults and patients with cervical spondylotic myelopathy[J]. Spine,1994; 19.2331-2335.
    [84]Prasad SS, O'Malley M, Caplan M, et al. MRI measurements of the cervical spine and their correlation to Pavlov's ratio[J]. Spine,2003,28:1263-1268.
    [85]Torg JS, Naranja RJ Jr, Pavlov H, et al. The relationship of developmental narrowing of the cervical spinal canal to reversible and irreversible injury of the cervical spinal cord in football players[J]. J Bone Joint Surg Am,1996,78: 1308-1314.
    [86]Yuichiro Morishita, Masatoshi Naito, Henry Hymanson, et al. The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine[J]. Eur Spine J,2009,18:877-883.
    [87]Epstein BS, Epstein JA, Jones MD. Degenerative spondylolisthesis with an intact neural arch[J]. Radiol Clin North Am,1977,15:275-287.
    [88]Fitzgerald JA, Newman PH. Degenerative spondylolisthesis [J]. J Bone Joint Surg Br,1976,58:184-192.
    [89]Tomoaki Koakust, Junko Nakajo, Naoki Morozumi. Cervical myelopathy due to degenerative spondylolisthesis[J]. Upsala Journal of Medical Sciences,2011,116: 129-132.
    [90]Kopacz KJ, Connolly PJ. The prevalence of cervical spondylolisthesis[J]. Orthopaedics,1999,22:677-679.
    [91]Panja bi MM. Atechnique for measurement and description of three-dimensional six degree of freedom motion a body joint with and application to the human[J]. Spine,1981,14:477-460.
    [92]Dai LY. Orientation and tropism of lumbar facet joints in degenerative spondylolisthesis[J]. Int Ortho,2001; 25(1):40-42.
    [93]Ahmed AM, Duncan NA, Burke DL. The effect of facet geometry on the axial torque-rotation response of lumbar motion segments[J]. Spine,1990,15:391-401.
    [94]Love TW, Fagan AB, Fraser RD. Degenerative spondylolisthesis. Developmental or acquired? J Bone Joint Surg Br 1999,81(4):670-674.
    [95]Hayashi H, Okada K, Hamada M, et al. Etiologic factors of myelopathy.A radiologic evaluation of the aging changes in the cervical spine[J]. Clin Orthop,1987, 214:200-209.
    [96]Lee C, Woodring JH, Rogers LF, et al. The radiographic distinction of degenerative slippage (spondylolisthesis and retrolisthesis) from traumatic slippage of the cervical spine[J]. Skeletal Radiol,1986,15:439-443.
    [97]Tani T, Kawasaki M, Taniguchi S, et al. Functional importance of degenerateive spondylolisthesis in cervical spondylotic myelopathy in the elderly[J]. Spine,2003, 28:1128-1134.
    [98]Lee RY, McGregor AH, Bull AM, et al. Dynamic response of the cervical spine to posteroanterior mobilization[J]. Clin Biomech (Bristol, Avon),2005,20(2): 228-231.
    [99]Deins. F. Spinal instability as defined by the three column spine concept in acute spinal trauma[J]. Clinical Orthopaedics and Reiated Research,1984,10:189-191.
    [100]Decker, R.C. Surgical treatment and outcomes of cervical radiculopathy[J]. Phys Med Rehabil Clin N Am,2011,22(1):179-91.
    [101]吴强,李康华.下颈椎关节突关节解剖及生物力学研究进展[J].中国脊柱脊髓杂志,2006,16(9):715-718.
    [102]Crawford NR, Duggal N, Chamberlain RH, et al. Unilateral cervical facet dislocation:injury mechanism and biomechanical consequences [J]. Spine,2002, 27(17):1858-1864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700