用户名: 密码: 验证码:
麻黄—石膏药对配伍的化学成分、药效及代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     药对又称“对药”、“对子药”、“姐妹药”,由两味药成对,个别由三味以上药组成,是临床上常用的相对固定的配伍形式。药对的配伍是中药复方配伍的最简单、最基本和最常见的形式,其以一定证候特点及采用相应治法为前提,根据药物的性味归经、升降浮沉,选择性地将两味中药进行配对,其配伍蕴涵着丰富的客观规律。
     本课题为麻黄类药对组成规律的基础研究(国家自然基金重点项目)的部分研究内容。麻黄-石膏药对是中医临床常用的药对之一,在很多经典方剂中都有运用,例如麻杏石甘汤、越婢汤等,现代常用于感冒、支气管肺炎、支气管哮喘等属表邪未尽,热邪壅肺等证。本课题选择经方麻杏石甘汤及其“主药对”麻黄-石膏药对为研究对象,以2味药的配比量为切入点,将麻黄-石膏药对的配伍研究分解为1)药对配伍前后的体外化学成分变化研究;2)主要药理效应(毒性)比较研究;3)药对配伍对对代谢组生物信息的干预研究;4)综合分析麻黄-石膏药对配伍、化学成分变化与药理效应改变三者间的相互关系。
     研究目的
     本研究以经典的寒热配伍药对麻黄-石膏为研究对象,运用现代技术手段,从化学成分变化、量效关系、药理效应改变、体内代谢途径与机制等方面对麻黄-石膏药对进行较为全面和系统的研究,通过分析麻黄-石膏药对不同比例配伍中指标性成分的含量、药效作用及代谢组学等方面的差异,可以寻求其发挥作用的最佳配伍比例,找出其量效、时效以及毒效间的关系,从而有利于更好地发挥药物的疗效,并可进一步验证、深化麻黄-石膏药对“相使”的配伍关系,据此为麻黄-石膏药对配伍的制剂研究及其临床应用,提供工作基础和实验依据。
     研究方法
     《伤寒论》中麻杏石甘汤组成为:“麻黄四两(去节);杏仁五十个,去皮尖;甘草二两,炙;石膏半斤。本实验选取麻杏石甘汤中的药对麻黄—石膏(1:2)为研究对象,依据药对文献报道的配比上下成倍浮动,设计成三个配比1:1、1:2、1:4三个配伍组。
     1.麻黄-石膏药对不同配伍配比的体外化学成分研究
     建立测定麻黄-石膏水煎液中麻黄类生物碱的HPLC方法并进行了精密度、稳定性、加样回收率等方法学考察;采用HPLC测定麻黄、麻黄石膏药对1:1、1:2、1:4三个配伍配比水煎液中麻黄类生物碱(去甲基麻黄碱、去甲基伪麻黄碱、麻黄碱、伪麻黄碱和伪麻黄碱)的含量并比较麻黄-石膏不同比例配伍前后水煎液中5种生物碱含量的变化。
     利用钙离子试剂盒测定各组水煎液中的钙离子并比较了麻黄-石膏不同比例配伍对Ca2+溶出的影响。
     采用反相高效液相色谱法,选用Cosmosil C18柱(250mm×4.6mm,5μm),流动相为乙腈-0.1%磷酸水溶液(含0.1%三乙胺)进行梯度洗脱,分析并确定了麻黄-石膏不同比例配伍水煎液的“共有峰”,并研究了不同比例配伍对“共有峰”的影响。
     2.麻黄石膏药对不同比例配伍的主要药理效应研究
     急性毒性研究昆明小鼠,雌雄各半,分为麻黄、麻黄-石膏(1:1)、麻黄-石膏(1:2)、麻黄-石膏(1:4)5个给药组,每组分别设5个剂量组(n=10),根据预实验确定的Dn、Dm,定出相邻两组剂量比,组间比值为1:0.8。实验时将依据“低比稀释法”配制不同浓度的药液灌胃给予相应的小鼠。灌胃前禁食不禁水12小时,灌胃后观察饲养7d,观察小鼠的精神、活动、饮食、大小便、死亡等情况。记录各组动物中毒症状及死亡情况。记录实验结果,并用Bliss软件计算LD5o值和95%置信区间。
     解热作用研究采用干酵母混悬液诱导雄性SD大鼠发热模型,选取体温合格大鼠,随机分为随机分为19组,即空白对照组、模型对照组、阿司匹林组、麻黄高中低剂量组、石膏高中低组、麻杏石甘汤组、麻黄石膏(1:1)高中低低剂量组、麻黄石膏(1:2)高中低剂量组、麻黄石膏(1:4)高中低组,每组6只,灌胃给药(正常对照组和模型对照组均给予等容积蒸馏水),给药后每小时测量肛温一次,连续测量三次。计算各给药组8h对大鼠体温升高抑制率(%)。利用Calcusyn统计软件(Biosoft, USA)分析麻黄-石膏两者的相互作用。
     平喘作用研究采用卵蛋白诱导的哮喘大鼠模型,将60只SD大鼠随机分为正常对照组、模型组、地塞米松组、麻石1:2(高、中、低)剂量组、麻黄-石膏(1:1)组和麻黄-石膏(1:4,单味麻黄组、石膏组共10组,每组6只。观察麻黄、石膏配伍前后对大鼠引喘潜伏期、肺干湿重、EOS、WBC计数影响。
     3.麻黄石膏药对不同配伍干预干酵母诱导热病症候的代谢组学研究
     “发热”大鼠模型的建立及其代谢组学研究将12只雄性Wistar大鼠随机分为2组(n=6),空白对照组和模型组(背部皮下注射20%酵母混悬液10mL·kg-造模),将大鼠(正常对照组,模型组)置于代谢笼中收集6h尿液,尿液直接衍生化。采用G C-MS联用技术测定各组大鼠尿液代谢物谱。运用XCMS工具箱对代谢物谱进行峰识别、峰对齐和去噪等处理,得到由保留时间、样品号及信号强度组成的三维矩阵,将矩阵导入模式识别软件Simca-P12.0(瑞典,Umetrics AB, Umea)进行主成分分析(PCA)、偏最小二乘法判别分析(PLS-DA)。PLS-DA的结果中列出各变量的变量重要性值VIP (Variable Importance in the Projection),根据VIP大小排列,其中VIP值大于1的变量被认为是变化明显且对区分贡献较大,作为标记物分析,通过与气质工作站的数据库、对照品及查询网站进行对比分析,选择匹配度较高的内源性生物标志物作为鉴定结果。
     麻黄-石膏对“发热”大鼠的代谢组学研究将雄性Wistar大鼠随机分为5组,即空白对照组、模型组、麻黄组、麻黄石膏1:2组和石膏组,每组6只。除空白组外,大鼠背部皮下注射20%干酵母(10mL/kg大鼠体重)造模,各给药组分别在造模后6h灌胃给药一次,收集给药后6h尿液,对空白组、模型组、麻黄组、麻黄石膏1:2组和石膏组的尿液代谢轮廓进行主成分分析(PCA)(?)PLS-DA分析,对其特征抽提及模式识别。选择VIP值大于1的物质作为干酵母诱导发热模型的潜在特异性生物标志物,通过与气质工作站的数据库、对照品及查询网站进行对比分析,选择匹配度较高的内源性生物标志物作为鉴定结果。分析麻黄组、麻黄石膏1:2组和石膏组生物标志物的差异及水平变化,结合现有的生物化学知识阐释麻黄、石膏药对配伍前后的调节机制。
     实验结果
     1.麻黄石膏药对不同比例配伍的体外化学成分研究
     麻黄-石膏药对不同比例配伍对麻黄类生物碱含量的影响水煎液中5种生物碱(去甲基伪麻黄碱、去甲基麻黄碱、麻黄碱、伪麻黄碱和伪麻黄碱)含量的变化实验结果显示,除麻黄-石膏(1:4)配伍组中的去甲基麻黄碱含量比单味麻黄组降低(P<0.05),麻黄-石膏(1:1)和麻黄-石膏(1:2)配伍组各生物碱含量差异无统计学意义。麻黄-石膏(1:1)、麻黄-石膏(1:2)、麻黄-石膏(1:4)三个配伍组的水煎液中,麻黄-石膏(1:2)的总生物碱含量最高。
     麻黄-石膏药对不同比例配伍对钙离子含量的影响利用析因分析麻黄、石膏不同比例配伍对Ca2+溶出量的影响:麻黄-石膏(1:1)组之间交互作用显著(F=22.222,P=0.002),通过比较发现,配伍后Ca2+溶出量则低于麻黄和石膏单煎所得Ca2+总量的加和,二者的差异具有显著性意义,说明麻黄-石膏(1:1)配伍组会抑制Ca2+的溶出。可以认为麻黄-石膏(1:1)二者之间有拮抗作用。麻黄-石膏(1:2)组之间交互作用显著(F=21.144,P=0.002),通过含量比较发现,配伍后Ca2+溶出量则低于麻黄和石膏单煎所得Ca2+总量的加和,二者的差异具有显著性意义,说明麻黄-石膏(1:2)配伍组会抑制Ca2+的溶出。麻黄-石膏(1:4)组之间交互作用显著(F=95.617,P=0.000),通过含量比较发现,配伍后Ca2+溶出量则低于麻黄和石膏单煎所得Ca2+总量的加和,二者的差异具有显著性意义,说明麻黄-石膏(1:4)配伍组会抑制Ca2+的溶出。
     麻黄-石膏不同比例配伍对水煎液“共有峰”的影响不同比例麻黄-石膏的合煎液,其化学成分变化较为复杂,配伍比例不同,10个共有峰的情况变化也不相同。有的峰峰面积增大,有的降低,有的峰面积基本不保持不变。
     2.麻黄石膏药对不同比例配伍的主要药理效应研究
     急性毒性实验结果各比例配伍组中,在能够引起试验动物一半死亡的药物剂量下,麻黄所占的比例及其可信区间分别为单味麻黄131.67(108.23~166.81)g·kg-1,麻黄石膏(1:1)113.22(96.32~153.82)g·kg1,麻黄石膏(1:2)124.15(107.48~147.38)g.kg-1,麻黄石膏(1:4)106.05(89.14~134.02)g·kg-1。由表可知,麻黄的LDso值从大到小的顺序依次:麻黄≌麻黄石膏(1:2)>麻黄石膏(1:1)>麻黄石膏(1:4)。
     解热实验结果与模型组相比,麻黄组、麻黄石膏(1:1)组、麻黄石膏(1:2)组、麻黄石膏(1:4)组均具有解热作用,且呈一定的量-效关系。各给药组8h抑制率(%)从大到小排列为:麻石1:2高剂量组(62.7)、麻杏石甘汤全方组(59.7)、麻黄高剂量组(59.0)、麻石1:2中剂量组(53.6)、麻黄中剂量组(49.4)、麻石1:1高剂量组(47.7)、麻石1:4高剂量组(47.2)、麻石1:1中剂量组(43.1)、麻石1:4中剂量组(37.1)、石膏高剂量(33.0)、麻石1:1低剂量组(30.8)、麻石1:4低剂量组(28.4)、麻石1:2低剂量组(21.7)、麻黄低剂量组(21.6)、石膏中剂量(10.9)、石膏低剂量(4.6)。通过比较麻黄石膏药对3个配比解热的作用时间与作用强度,我们发现麻黄石膏(1:2)的解热作用最佳,解热持续时间最长。麻黄-石膏(1:2)在解热方面具有协同增效作用。
     平喘作用结果麻石1:2高、中剂量组均能延长引喘潜伏期(P<0.01),麻石1:2配伍组作用效果优于麻石1:1、麻石1:2组、单味麻黄、单味石膏组;麻石1:2高、中剂量组、单味麻黄组均能减少EOS数量(p<0.01);麻石1:2高剂量组和麻石1:4组组均能减少WBC数量(p<0.01);麻石1:2组高、中、低剂量、麻黄组、石膏组和麻石1:4组均能降低肺干湿重比值(p<0.01);通过引喘潜伏期、肺干湿重比值、EOS和WBC计数综合分析比较,我们发现麻黄石膏(1:2)的平喘作用最佳,麻黄-石膏(1:2)其合用的效果优于同等剂量下的单味麻黄或石膏。
     3.麻黄石膏药对不同比例配伍干预“发热”大鼠尿液代谢组学研究
     “发热”大鼠模型的建立及其代谢组学研究通过对模型组和空白组大鼠尿液代谢物组进行PCA分析,两组大鼠的尿液样本可以在PCA的得分图上较为明显的区分开来,提示干酵母诱导的“发热”模型成功,大鼠机体代谢网络发生了明显的变化。为进一步关注干酵母引起的尿液代谢差异,找到与干酵母诱导发热相关的代谢通道的变化,实验采用PLS-DA法对模型组大鼠和正常组大鼠样本重新建模,用以鉴别造成上述分离的差异变量。结果显示,模型组和正常组在PC1上明显分离,并且该模型有较高的解释率和预测率(R2Xcum=0.878, R2Ycum=0.993, Q2Ycum=0.969)。通过上述PLS-DA法对两组大鼠样本重新建模后,根据S-Plot图(图4-6A)中离子的置信度和VIP值可知离子对分类贡献的大小,找到VIP值大于1的与干酵母诱导发热高度相关的代谢物(图4-6B),运用气质工作站的数据库(WILEY275.L及NIST05.L),结合自建的对照品物质库及查询网站(http://www.hmdb.ca/和http://metlin.scripps.edu/metabo_search_alt2.php)查找差异变量。分析结果显示,模型组和对照组共有10个物质有显著性差异,分别是:柠檬酸、酮戊二酸、3-丙酸、苯乙酸、甘氨酸、正丁胺、碳酸、丙氨酸、苯丙酮酸、苯甲酸。
     麻黄、石膏及其合煎液对“发热”大鼠的代谢组学研究结果通过对空白组、模型组、麻黄组、麻黄桂枝组、石膏组大鼠尿液代谢物组进行PCA分析,5组大鼠的尿液样本可以在PCA的得分图上较为明显的区分开来,说明来大鼠给予不同处理后,其代谢物谱差异明显。不同处理组的样品之间的细微差异可以通过PLS-DA进行分析研究。
     麻黄组和模型组相比,麻黄组中丙二酸、苯甲酸、丁二酸、丙氨酸、甘氨酸、缬氨酸、脯檬酸、辛二酸、尿素、马尿酸、苯丙酸、苯丙氨酸、2-羟基喹啉-羧酸含量升高(P<0.05)。
     石膏处理组和模型组相比,石膏中苯甲酸、丁二酸、丙氨酸、3-丙酸、脯氨酸、辛二酸、L-谷氨酸含量升高(P<0.05)。
     麻黄-石膏组与模型组相比,麻黄-石膏组中丙二酸、苯甲酸、丁二酸、甘氨酸、3-丙酸、脯氨酸、辛二酸、尿素、马尿酸、苯丙酸、苯丙氨酸、半胱氨酸含量升高(P<0.05)。
     麻黄-石膏组与单味石膏相比,丙二酸、苯甲酸、甘氨酸、异亮氨酸、马尿酸、苯丙酸、1-脯氨酸含量升高(P<0.05)。
     石膏组与单味麻黄相比,麻黄组中丙二酸、苯甲酸、丁二酸、3-丙酸、琥珀酸、尿素、马尿酸、苯丙酸、1-脯氨酸含量升高(P<0.05)。
     对以上这些代谢物含量用单变量方差分析方法进行检验,其结果与PLS-DA的分析结果基本一致。
     结论:
     通过对麻黄-石膏“药对”进行化学成分、药效及代谢组学三方面的研究,确定麻黄与石膏配伍应用后,麻黄-石膏(1:2)配伍比例组在解热、平喘方面优于麻黄-石膏(1:1)、麻黄-石膏(1:4)配伍组,该最优比例与原方麻杏石甘汤中麻黄-石膏1:2相一致,从化学成分的角度,发现其增效的物质基础与增加其有效成分的含量(总生物碱以及Ca2+的溶出量)相关。推测麻黄-石膏不同配伍比例的药理作用不同,还与其通过抑制或促进某些成分的溶出,从而产生不同比例的物质群有关。代谢组学研究表明,麻黄、石膏、麻黄-石膏3个给药组均在一定程度上改善了干酵母诱导发热大鼠全身异常的代谢状态,其干预作用与调节机体的物质代谢、能量代谢相关,其中麻黄-石膏药对配伍后生物标志物的回调程度最大,表明麻黄-石膏合用比等剂量的单味麻黄或石膏效果好。从代谢组学的角度证实了麻黄-石膏配伍的合理性和优势。
Background
     Herb pairs, also called drug pairs, the unique combinations of two relatively fixed herbs in clinic, are the most fundamental and the simplest form of multi-herb therapy. Without altering the basic therapeutic features of multi-herb formulae, herb pairs as the basic composition units of Chinese herbal formulae are of special clinical significance in TCM. The composing principle and manner of Chinese herb pair are based on the nature, taste, meridian distribution of the herbs and effects, which contains a wealth of objective laws. Besides, certain syndrome characteristics and the use of the appropriate treatment method as a precondition,
     The meaning of our studying on the composition rules of Herb pairs:(1) Through the ways of modern technologies (for example, the material basis of the mechanism of action, and metabolic processes) to study medicine on the compatibility of Herb pairs, which play an important role in revealing the drug on the compatibility of the objective laws and scientific connotation.(2) To guide Clinical treatment, so it will benefit not only in using existing couplet medicines more efficiently, but also for creating new couplet medicines by the changes of spectrum of disease and symptom-comple.(3)The research of herb compatibility is one of the key points in revealing the compatibility law of complex prescriptions. By study of the compatibility law of Herb pairs, we will illuminate ompatibility laws of complex prescriptions. And it is also provide some basis for the reorganization of the quality and efficiency of the new prescriptions.(4) Herb pairs are vinculum of many complex prescriptions. Through the study the compatibility laws of Herb pairs, it can provide a reference for the other research containing the Herb pairs, and thus open up new avenues for compatibility rules of complex prescriptions.
     Objection
     Ephedra-Gypsum herb-pair are the most commonly used drug in the "cold and heat" compatibility of Traditional Chinese Medicine. The compatibility-relationship between them is classified to "xiangshi". By explore the changes in the chemical composition of ephedra-gypsum drug-pair, the dose-effect relationship, the change of the pharmacological effects and metabolic pathways and mechanisms in vivo, it will not only further to validate compatibility-relationship between ephedra and gypsum and also play a role in finding the best compatibility proportion. Furthermore, by finding out the relationship of dose-efficiency, time-efficiency and toxic-effects, thus will to bring into full play the effect of drugs, and it is also provide the basis for the clinical treament of traditional Chinese medicine, development of new drug-pairs and drugs.
     Contents
     To clarify the compatibility rules of Traditional Chinese herb-pair Herba Ephedrae and Gypsum with different compatibility ratio, we compared the changes in the content of active ingredients in water extracts, pharmacological effects and metabonomics. Mainly containing:
     1) To clarify the chemical compatibility rules of couplet medicines Ephedr-Gypsum with different compatibility ratio, we compared the content of active ingredients in water extracts before and after different compatibility ratio of Ephedra or Gypsum. We also investigation the fingerprint peaks changes of Ephedra-Gypsum with different compatibility ratio.
     2) To clarify the strength of pharmacological effects on the the target of Ephedr-Gypsum with different compatibility ratio, we compared the acute toxicity, antipyretic and anti-asthmatic effects.
     3) Establishment the yeast-induced-fever rat model, collecting the urine before and after administration to process the the metabolomics study, and exploring the metabolomics variation and mechanism of Ephedr-Gypsum with different compatibility ratio Methods and materials.
     Materials and Methods
     The composition of ma-xin-shi-gan decoction in Treatise on Cold Pathogenic Diseases is:"Herba Ephedrae four uncia (removed knots), armeniacae semen fifty piece(decorticate), Radix Glycyrrhizae two uncia, and Gypsum eight uncia." The couplet medicines Ephedra-Gypsum (1:2) in ma-xin-shi-gan decoction were taken as study object, the compatibility ratio of Ephedra-Gypsum was duplication floating up and down basing on the ratio of the couplet medicines reported in the literature.1) Researching on chemical composition in vitro of Ephedra-Gypsum with differe-ent compatibility ratios
     A high performance liquid chromatographic method (HPLC) was developed to determination the content of Norpseudoephedrine (NMP), Norephedrine (NME), Ephedrine (E), Pseudoephedrine (PE) and Methylephedrine (ME), which are the major active compounds of Herba Ephedrae.The HPLC method was validated with regard to specificity, linearity, precision, reproducibility. We compared the ephedra alkaloids content of Ephedra-Gypsum (1:1), Ephedra-Gypsum (1:2), and Ephedra-Gypsum (1:4). We also compared the contents of Ca2+in Ephedra-Gypsum (1:1), Ephedra-Gypsum (1:2), Ephedra-Gypsum (1:4), Ephedra and Gypsum water extract by calcium kit. Separations were carried out on an Cosmosil C18(250x4.6mmi.d.,5am) with a flow rate of0.7mLmin-1.The mobile phase was a mixture of H3PO4(containing0.1%triethylamine)-acetonitrile, gradient elution.
     2) Study on the major pharmacological effect (major syndrome) of couplet medicines Ephedra-Gypsum with different compatibility ratio.
     Acute Toxicity test:the KM mice were randomly divided into normal group, model group, Ephedra group, Ephedra-Gypsum (1:1), Ephedra-Gypsum (1:2), Ephedra-Gypsum (1:4) group, then each group was divided into five dosage group, each group had10mice, half male and half female. Dn, Dm were selected according to the preliminary experiment, the ratio between adjacent groups was1:0.8. The mice were intragastric (ig.) administrated with different dose of tested drugs, and the activities of the mice were observed the following7days, such as diet, urination and defecation, actions and even death etc. The death rates of each group were recorded. LD50and95%confidence interval were calculated with Bliss software.
     Antipyretic experiment:the male rats, which had qualified temperature, were randomly divided into normal group, model group, aspirin group, Ephedra (high, middle and low)group, Ephedra-Gypsum (1:1) high, middle and low group, Ephedra-Gypsum (1:2) high, middle and low group, Ephedra-Gypsum (1:4) high, middle and low group, Gypsum (high, middle and low) group, and ma-xin-shi-gan decoction group, each of had6rats. The rats were intragastric (ig.) administrated with different dose of tested drugs. Measuring rectal temperature once per hour after administration, and measured three times. Inhibition rate (%) of each administration group is calculated8h elevated body temperature of rats.
     Anti-asthmatic test Use ovalbumin-induced asthma rat model,60SD rats were randomly divided into normal control group, model group, dexamethasone group, Ephedra-Gypsum (1:2) high, middle and low group, ephedra group, Gypsum group, Ephedra-Gypsum (1:1) group and Ephedra-Gypsum (1:4) group, total10groups (n=6). The asthma incubation period, wet and dry weight of lung, EOS and WBC counts was observed.3. Metabonomics study on yeast-induced-fever rats after administration with with different compatibility ratio Ephedra-Gypsum extracts
     Metabonomics study on yeast-induced-fever rats:12Wistar rats were randomly divided into normal control group and model group.The fevered rats were prepared by subcutaneous injection of20%yeast. Then6h urine of rats in each group were collected. All the urine samples were derivatized directly. Subsequently, metabolites spectra of these samples were acquired using gas chromatography-mass spectrometry (GC-MS). Identification after proeessed, the data was subjected to SIMCA-P+12.0software(Umetrics AB, Umea Sweden) for principal component analysis(PCA) and principal least squares discriminant analysis (PLS-DA). The modeling and therapeutic effects were judged by PCA visually:distinguishing effect among groups were further inspected by PLS-DA, and the correlation with classification of metabolites were evaluated according to the "variable impotance in the projection (VIP)" value. When a certain metabolite's VIP>1, it would be taken as potential metabolic marker. The differences of potential biomarkers levels in different groups were conducted with univariate statistical analysis using software of SPSS13.0, and those with significant difference were chosen as final biomarkers.
     Metabonomics study on yeast-induced-fever rats after administration with with different compatibility ratio Ephedra-Gypsum extracts:30Wistar rats were randomly divided into normal control group, model group, Ephedra-Gypsum (1:2) group, Ephedra group and Gypsum group.The fevered rats were prepared by subcutaneous injection of20%yeast. Then6h urine of rats in each group were collected. All the urine samples were derivatized directly. Subsequently, metabolites spectra of these samples were acquired using gas chromatography-mass spectrometry (GC-MS). Identification after proeessed, the data was subjected to SIMCA-P+12.0software(Umetrics AB, Umea Sweden) for principal component analysis(PCA) and principal least squares discriminant analysis (PLS-DA). The modeling and therapeutic effects were judged by PCA visually:distinguishing effect among groups were further inspected by PLS-DA, and the correlation with classification of metabolites were evaluated according to the "variable impotance in the projection (VIP)" value. When a certain metabolite's VIP>1, it would be taken as potential metabolic marker. The differences of potential biomarkers levels in different groups were conducted with univariate statistical analysis using software of SPSS13.0, and those with significant difference were chosen as final biomarkers.
     Results:
     1Researching on chemical composition of different compatibility ratio of couplet medicines Ephedra-Gypsum
     When compared to Ephedra group, the content of Norpseudoephedrine (NMP), Norephedrine (NME), Ephedrine (E), Pseudoephedrine (PE), Methylephedrine (ME), in Ephedra-Gypsum (1:1) group, Ephedra-Gypsum (1:2) group and Ephedra-Gypsum (1:4) group almost have no significance different. Except the Norephedrine (NME) was lower in Ephedra-Gypsum (1:4) group (P<0.05), compared to Ephedra group.
     The results of the contents of Ca2+are as follows:The interaction of Ephedra-gypsum (1:1) was significant (F=22.222, P=0.002), the contents of Ca2+increased after compatibility, which showed Ephedra-gypsum (1:1) had synergistic effect; The interaction of ephedra-the gypsum (1:2) was significant (F=21.144, P=0.002), the contents of Ca2+increased after compatibility, which showed Ephedra-gypsum (1:2) had synergistic effect; The interaction of ephedra-the gypsum (1:2) was significant (F=95.617, P=0.000), the contents of Ca2+decreased after compatibility, which showed Ephedra-gypsum (1:4) had antagonistic action.
     2Study on the major pharmacological effect (major syndrome) of Ephedra-Gypsum herb-pair with different compatibility ratio
     Acute Toxicity test:the LD50of Ephedra, Ephedra-Gypsum (1:1), Ephedra-Gypsum(1:2), Ephedra-Gypsum(1:4) were131.67g·kg-1,226.43g·kg-1,372.36g·kg-1,530.25g·kg-1, respectively.95%confidence interval were108.23~166.81g·kg-1,192.64~307.64g·kg-1,322.46~442.14g·kg-1,445.68~670.11g·kg-1, respectively.
     Antipyretic effect and interaction experiment:Compared with model group, Ephedra, Ephedra-Gypsum (1:1), Ephedra-Gypsum (1:2), Ephedra-Gypsum (1:4) extracts had antipyretic effect. They also showed a good dose-effect relationship. Single Gypsum with large dose had antipyretic effect, but lower doses even cause the raise of body temperature in rats.8h inhibition rate (%) were sorted: Ephedra-Gypsum1:2high-dose group (62.7), Ma-Xing-Shi-Gan Tang (59.7), Ephedra high-dose group (59.0), Ephedra-Gypsum1:2middle-dose group (53.6), Ephedra middle-dose group (49.4), Ephedra-Gypsum1:1high-dose group (47.7), Ephedra-Gypsum1:4high-dose group (47.2), Ephedra-Gypsum1:1middle-dose group (43.1), Ephedra-Gypsum1:4middle-dose group (37.1), gypsum high-dose (33.0), Ephedra-Gypsum1:1low-dose group (30.8), Ephedra-Gypsum1:4low-dose group (28.4), Ephedra-Gypsum1:2low-dose group (21.7), Ephedra low-dose group (21.6), Gypsum middle-dose group (-7.8), gypsum low-dose group (-18.3). Based on the median-effect principle, the interaction of antipyretic effect was analyzed with Calcusyn software.
     Anti-asthmatic test:Ephedra-Gypsum1:2high and middle dose group could prolong the latent period of asthma (P<001), Ephedra-Gypsum (1:2) group effect was significantly better than Ephedra-Gypsum (1:1), Ephedra-Gypsum (1:4) of single ephedra, single gypsum group; Ephedra-Gypsum (1:2) high and middle dose group, single ephedra group could significantly reduce the the EOS counts in blood (p <0.01); Ephedra-Gypsum (1:2) high-dose group and Ephedra-Gypsum (1:4) group could significantly reduce the WBC counts (p<0.01); Ephedra-Gypsum (1:2) high, middle and low groups, Ephedra group, gypsum group and Ephedra-Gypsum (1:4) group can significantly reduce lung wet and dry weight ratio (p<0.01); Through analysis and comparison of the latent period of asthma, lung wet and dry weight ratio, EOS and WBC counts, we found that the antiasthmatic effects of Ephedra-Gypsum (1:2) group show better than a single herb ephedra or gypsum in equal doses.
     3Metabonomics study on yeast-induced-fever rats after administration with with different compatibility ratio Ephedra-Gypsum extracts
     Through the PCA analysis of the model group and blank group, results showed that the model groups and blank group distinguished well, which showed the yeast-induced-fever model success, urinary metabolites changed significantly. To further attention to the urine metabolic differences caused by the dry yeast, to find changes induced fever associated with dry yeast metabolic pathways, experimental re-modeling of the PLS-DA model rats and normal rats samples, used to identify the causethe difference variable for the above separation. The results show that the model group and the normal group on PCl clearly separated, and the model has a high interpretation rate and the predicted rate at (R2Xcum=0.878R2Ycum=0.993, Q2Ycum=0.969).By the PLS-DA method after the re-modeling of the two groups of rats sample, according to the S-Plot in confidence and VIP value that the ion size, find the classification contribution VIP value greater than1were yeast-induced-fever highly related metabolites, the use of temperament workstation database (WILEY275.L NIST05.L), combined with self-built reference standard material library and inquiries Web site(http://www.hmdb. ca/http://metlin.scripps.edu/metabo_search_al t2.php) find the difference variable.The analysis results show that compared with the model group:blank control group the contents of propylamine, glycine, malonic acid phenethyl uric acid, benzeneAcetic acid, hippuric acid significantly increased; the contents of glycine, malonic acid phenethyl uric acid, benzene, acetic acid, hippuric acid significantly decreased.
     3.2Metabonomics study on yeast-induced-fever rats after administration with with normal group, model group,hedra-Gypsum(1:2) group, Ephedr group, and Gypsum group
     Through the PCA analysis of the model group and blank group, results showed that the model groups, blank group, Ephedra-Gypsum(1:2) group, Ephedr group, and Gypsum group distinguished well. The subtle differences among the treatment groups will further analysis by PLS-DA.3.4Biomakers, which were obtained by PLS-DA analysis of normal group, model group, Ephedrae group, Gypsum group, Ephedra-Gypsum(1:2) group together, including organic acids, fatty acids, amino acids, amines and so on.
     Model group compared to blank group, the content of Citric acid, ketoglutaric acid,3-propionic acid, phenylacetic acid, glycine, n-butylamine, carbonic acid, alanine, phenyl pyruvic acid, benzoic acid decreased (P<0.05); The results by univariate analysis are basically consistent with the results of PLS-DA analysis.
     Ephedra group compared with the model group, the contents of in Ephedra group Malonic acid, benzoic acid, succinic acid, alanine, glycine, valine, proline citric acid, suberic acid, urea, hippuric acid, benzenepropanoic acid, phenylalanine,2-hydroxy-quinoline-carboxylicacid content significantly increased The results of these metabolites content by univariate analysis are basically consistent with the results of PLS-DA analysis.
     Gypsum compared to model group, Alanine,3-propionic acid, proline, suberic acid, benzoic acid, succinic acid, L-glutamic acid decreased (P<0.05). The results by univariate analysis are basically consistent with the results of PLS-DA analysis.
     Ephedra-Gypsum group compared with model group, Malonic acid, benzoic acid, succinic acid, glycine,3-propionic acid, proline acid, suberic acid, urea, hippuric acid, benzenepropanoic acid, phenylalanine, cysteine decreased (P<0.05). The results by univariate analysis are basically consistent with the results of PLS-DA analysis.
     Ephedra-Gypsum group compared with Gypsum group, Malonic acid, benzoic acid, glycine, isoleucine, leucine, hippuric acid, phenylpropionic acid,1-proline increased (P<0.05) in Ephedra-gypsum group. The results by univariate analysis are basically consistent with the results of PLS-DA analysis.
     Ephedra group compared with Gypsum group, Malonic acid, benzoic acid, succinic acid, propionic acid, succinic acid, urea, hippuric acid,3-benzenepropanoic acid,,1-prolineincreased (P<0.05) in Ephedra group. The results by univariate analysis are basically consistent with the results of PLS-DA analysis.
     Conclusion:1) Results of chemical composition analysis experiment showed that Ephedra-gypsum (1:4) group significant decrease the content of methyl-ephedrine and Ca2+(P<0.05), but the other two compatibility groups has no significant change. The total contents of alkaloids and Ca2+in Ephedra-gypsum (1:2) group were higher than Ephedra-gypsum (1:1) group, which is conducive to the dissolution of the active ingredient. In the original prescription, Ma-xin-shi-gan Tang, which Ephedra:Gypsum (1:2) compatibility, the foundings provide some basis for the advantages and reasonable of this compatibility proportion(1:2), but the mechanism has yet to be studied further.2Compatibility rules of herb pairs should consider safety and efficacy.
     The LD50f Ephedra-Gypsum (1:1) group, Ephedra-Gypsum (1:2) group and Ephedra-Gypsum (1:4) group were greater than the single Ephedra, that is to say, when Ephedra combined with Gypsum, the safety improved. Ephedra-Gypsum (1:1) group, Ephedra-Gypsum (1:2) group and Ephedra-Gypsum (1:4) group have a synergistic effect in antipyretic activity. Ephedra-Gypsum (1:2) is the best compatibility ratio among three. Antiasthma test results showed, among Ephedra-Gypsum (1:1) group, Ephedra-Gypsum (1:2) group and Ephedra-Gypsum (1:4) grou, Ephedra-Gypsum (1:2) group is optimal ratio.
     3The metabolomics success applied for yeast-induced-fever rat model, which laid the foundation for further research on antipyretic effect of Traditional Chinese Medicines. Yeast-induced-fever will caused the Krebs cycle disorders, increased anaerobic glycolysis, amino acids excessive consumption and fatty acid metabolism disorders. Ephedra-Gypsum (1:2) group, Ephedra group and Gypsum group were taken PCA analysis together, the results showed that compared with Ephedra group and Gypsum group, the metabolic state of Ephedra-Gypsum (1:2) group was closer to the normal group, which proved that Ephedra-Gypsum (1:2) had a better intervention effect on the yeast-induced fever symptoms. PLS-DA analysis results showed that, the biomarker intervention yeast-induced fever symptoms of Ephedra-Gypsum (1:2) group were similar to normal group, which proved that Ephedra-Gypsum (1:2) group has better antipyretic effect than Ephedra or Gypsum group.
引文
[1]胥庆华,刘丽云,赵瑞华,等.中药药对大全[M].北京:中国中医药出版社,1997.1
    [2]中华人民共和国卫生部药典委员会中华人民共和国药典(一部)[M]北京:化化学工业出版社,2000:262.
    [3]陈晓城.麻黄的药理作用研究进展[J].实用中医药杂志,2005,21(1):58-59.
    [4]朱明无,赵乃才.麻黄碱对兔肺动脉条的作用机理[J].中国药理学与毒理学杂志,1987,1(4):254-257.
    [5]魏凤环,罗佳波,沈群,等.麻黄汤及单味麻黄中麻黄碱与伪麻黄碱在小鼠组织中的药动学研究[J].中草药,2004,35(7):781-784.
    [6]聂树禄,赵兵,姚黎.麻黄碱雾化吸入治疗毛细支气管炎101例[J].现代中西医结合杂志,2002,11(18).
    [7]赵志宏,李月娜.麻黄附子细辛汤治疗急性扁桃体炎[J].吉林中医药,2005,25(2):37.
    [8]OkawaM, Kinjo J, NoharaT, et a.l DPPH (1, 1-dipheny-12-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants [J]. Biol Pharm Bull 2001,24(10):1202.
    [9]徐永忠.石板大青汤治疗外感高热137例临床观察[J].湖南中医杂志2009(2):24-25
    [10]宋玉田.漫谈生石膏[J].甘肃中医,2007,20(5):66-67.
    [11]田代华.实用中药辞典[M].北京:人民卫生出版社,2002.879.
    [12]周大勇,张宗铭,韩宁林,等.热毒清口服液治疗外感高热(风热证)临床研究[J].中国中医急症,2008,17(7):913-914.
    [13]吴依娜.论药对的组配方式和祛痰法中药对的临床应用[J].时珍国医国药,2009,20(3):724-725
    [14]顾奎兴,杨桂云等.相反相畏药对在肿瘤临床的应用举隅[J].江苏中医,1998,19(3):36-37.
    [15]Chong Yong Ung, Hu Li, Zhi Wei Cao, et al. Are herb-pairs of traditional Chinese medicine distinguishable from others? Pattern analysis and artificial intelligence classification study of traditionally defined herbal properties[J]. Journal of Ethnopharmacology,2007,111(2):371-377
    [16]滕佳琳.药对沿革及理论研究概要[J].北京中医药大学学报,1995,188(3):33-35.
    [17]程昭寰,王永炎.方剂气味配伍理论探析[J].上海中医药杂志,2004,38(2):7.
    [18]吴镝,温翔鹰.药对的配伍特点及意义[J].中国社区医师,2007,23(9):221.
    [19]王付.经方药对研究与应用的思路和方法[J].中医药通报,2005,4(3):24-26.
    [20]杨运高.《伤寒论》药对配伍选析.国医论坛,1998,13(3):6-8.
    [21]刘立萍,李然,梁茂新,任艳玲.《普济方》对《伤寒杂病论》核心药物及药对配伍的应用[A].第四届全国临床中药学学术研讨会论文摘要集[C]:2011年
    [22]高志海.浅谈寒热对药的临床应用[J].山西职工医学院报,2005,15(1):59.
    [23]易自刚.浅析伤寒论辛味药配伍运用与方剂举隅[J].新中医.2008,40(7):113.
    [24]徐玉芬.药对的临床应用概况[J].江西中医药,2009,40(11):75-77.
    [25]蒋永光,曹莉,陈颖,韩佩玉.中药药对的组配形式及临床应用[J].辽宁中医杂志,2005,32(11):1119-1120.
    [26]邓雅婷,廖琼峰,谢智勇,毕开顺,姚美村,姜晓飞.黄连-吴茱萸药对组分溶出规律的研究[J].中成药,2008,30(6):900-903.
    [27]李晓如,梁逸曾,郭方遒,等.气相色谱-质谱-化学计量学法分析测定药对桃仁-红花挥发油[J].分析化学,2007,35(4):532-536.
    [28]刘元发.9对“对药”和非“对药”间多分子体系紫外-可见光谱分析.中国中医基础医学杂志.2001,7(1):67-70.
    [29]雷燕,王军辉,陈可冀.黄芪、当归配伍后促鸡胚绒毛尿囊膜血管生成的药效比较研究[J].中国中药杂志,2003,28(9):876-877.
    [30]陈慧慧,张敏,等.柴胡和黄芩配伍解热抗炎作用研究[J].中成药,2011,33(9):1596-1598.
    [31]褚襄萍,徐朝晖,战光绪,等.药对麻黄地龙配比及平喘作用机制的研究[J].中 国中药杂志,2006,31(3):236-239.
    [32]胡大裕,朱景申,常明向.当归不同配伍药对当归-川芎与当归-芍药的药代动力学研究[J].同济医科大学学报,2004,30(4):384-806.
    [33]房敏峰,李云峰,张文娟,等.石菖蒲对远志药代动力学的影响[J].西北大学学报(自然科学版),2010,40(1):85-88.
    [34]曹兰秀,邓中甲,文跃强,等.细辛附子配伍的毒量药物动力学参数估测[J].陕西中医2009,30(7):85-88
    [35]罗佳波,谭晓梅,余林中,等,葛根芩连汤配伍规律的研究[J].中草药,2005,36(4):512-518.
    [36]李吉来,陈飞龙,刘传明,罗佳波.麻黄汤中麻黄碱与伪麻黄碱的GC-MS法测定及配伍因素对汤剂中该成分含量的影响[J].中草药,2002,33(4):307-309.
    [37]罗佳波,余林中,贺丰,等.麻黄汤组方原理的研究[J].世界科学技术-中医药现代化,2007;9(2):6-14
    [38]刘永刚,罗佳波,贺丰.麻黄汤拆方及抗炎作用研究[J].中药材,2008,28(5):413-414
    [39]张连茹,邹国林,杨天鸣.麻黄的化学研究进展.中南民族学院学报.2000,19(3):87-90.
    [40]Sahar A. M. Hussein, H.H.B. MahmoudA.M.Nawar and Gunter Willuhn, Flavonoids from Ephedra aphylla. Phytochemistry.1997,45(7):1529-1532.
    [41]陈克恢,R. C.Anderson, L. J. Freihage麻黄的药理作用[J]Chin. J. Physiol., 1935,9(1):17-20.
    [42]罗佳波,刘国清,莫志贤,等.麻黄汤对小鼠的发汗作用[J].中医药学刊,2005,23(11):1945-1946.
    [43]朱秋双.麻黄汤不同配伍对乙酰胆碱致豚鼠离体气管痉挛的抑制作用.黑龙江医药科学.2003.26(6):10-11.
    [44]王筠默.中药药理学[M].上海:上海科学技术出版社,1985:25-27.
    [45]孟翔宇,皮子凤,宋凤瑞,等.麻黄-甘草药对配伍前后主要药效成分及抗炎 活性的变化[J].应用化学,2009,26(7):801-806.
    [46]李姿娇,杨屹.麻黄非麻黄碱部分中黄酮、生物碱和有机酸的分析.分析实验室[J].2005,27(4):18-22.
    [47]魏友松,许芝银.麻黄,雷公藤,黄蜀葵花对自身免疫性甲状腺炎小鼠模型的影响[J].南京中医药大学学报,1996,12(4):25.
    [48]陈荣明,朱耕新,许银芝.麻黄中不同提取物对细胞免疫的影响[J].南京中医药大学学报,自然科学版,2001,17(4):234.
    [49]刘国均.麻黄.中国中医药出版社.2001:55-72.
    [50]钟凌云,祝婧,龚千锋,等.炮制对麻黄发汗、平喘药效影响研究[J].中药药理与临床,2008,4(6):53-56.
    [51]国家药典委员会.中华人民共和国药典:1部[S].北京:化学工业出版社,2005:63.
    [52]李轩贞,王锡霞.不同产地石膏中微量元素的含量测定[J].中药材,1990,13(4):35.
    [53]张思超,王晓君.石膏合理配伍治疗温病高热[J].山东中医药大学学报,1999,23(2):125-126.
    [54]梁强,范书铎.生石膏对发热兔解热作的实验观察[J].中国医科大学学报,1991,20(1):16-18.
    [55]孙妹.石膏的药理作用探究[J].中国中医药现代远程教育,2009,7(5):170.
    [56]胡景新,孟凡会,苏畅,等.中药石膏对烧伤鼠血浆、脾组织、腹腔巨噬细胞中环核苷酸及血浆PEG2含量的影响[J].中国病理生理杂志,1991,7(1):12-15.
    [57]徐伟辉,龚高伯.《伤寒论杂病论》中麻黄与石膏配伍规律探讨[J].国医论坛,2001,16(2):2-3.
    [58]何伦.实用处方纲目.西安:陕西科学技术出版社[M].1991.35.
    [59]王小荣,赵永山.从麻黄与石膏的运用看伤寒论的动态辨证[J].国医论坛,2002,17(2):2.
    [60]李晨光,贾波,张建伟.基于现代医案探讨麻黄与石膏的配伍特点[J].江西中医药,2010,41(332):20-21.
    [61]张保伟.《伤寒论杂病论》中麻黄与石膏用量比与其作用关系探讨[J].河南中医,2003,23(1):7-8.
    [62]Yuan, D., Sunouchi, H., Sakurai, T., Saito, K., Kano, Y,2002. Pharmacological properties of traditional medicines (XXVII). Interaction between Ephedra Herb and Gypsum under hyperthermal conditions in rats. Biol Pharm Bull 25, 872-874.
    [63]马强,李晓晶,丁海东,等.不同配伍条件下麻杏石甘汤中钙离子的溶出规律[J].中国实验方剂学杂志,2011,17(8):67-70.
    [64]满玲,石登红,黄燕.应用BP神经网络模型研究麻杏石甘方中其它药材对麻黄碱含量的影响[J].时珍国医国药,2011,22(7):1661-1663.
    [65]Oliver S G, Winson M K, et al. Systemmatic functional analysis of the yeast genome[J]. Trends Biotechol,1998,16:373-378
    [66]贾伟,蒋健,刘平,等.代谢组学在中医药复杂理论体系研究中的应用[J].中国中药杂志,2006,31(8):621-624.
    [67]Allwood J W, Ellis D I, Goodacre R. Metabonomic technologies and their application to the study of plants and plant-host interactions.Physiologia Plantarum,2008,132:117-135
    [68]Govil G. Metabonomics:a new frontier of nuclear magnetic res-onance (NMR) [J]. Natl Acad Sci Lett India,2004,27 (9-10):289-299.
    [69]Ohkama-Ohtsu N, Zhao P, Xiang C, et al. A(gamma)-Glutamyl Transpeptidase-Independent Pathway of Glutathione Catabolism to Glutamate via 5-Oxoproline in Arabidopsis. Plant Physiol,2008,148:1603-1613
    [70]周能,梁逸曾,王平,等.转换移动窗口因子分析法用于中药组合前后成分变化分析[J].分析科学学报,2007,23(6):631-636.
    [71]李燕,梁汉东,韦妙,等.离子阱质谱计的研究现状及其进展[J].质谱学报,2006,27(4):249-256.
    [72]Jonsson P,Stenlund H, et al. A strategy for medeling dynamic responses in metabolic samples characterized by GC/MS[J]. Metabolomics,2006,2 (3): 135-143.
    [73]潘瑞花,陈建华,张建峰.HPLC-NMR在化学品检测中的应用前景[J].化学分析计量,2007,16(6):71-73.
    [74]郭宾,戴仁科.代谢组学及其研究策略和分析方法进展[J].中国卫生检验杂志,2007,17(3):554-563
    [75]李晶,吴晓健,刘昌孝,等.代谢组学研究中数据处理新方法的应用[J].药学学报,2006,41(1):47-53.
    [76]Fiehn O.Combining genomic, metabolome analysis and biochemical modeling to understand metabolic networks [J].Comparative and Functional Genomics, 2001,2 (3):155-168
    [77]王广基,查伟斌,郝海平,等.代谢组学技术在中医药关键科学问题研究中的应用前景分析[J].中国天然药物,2008,6(2):89-97.
    [1]HUANG Tai—Kangi(黄泰康),Ed. The Comnmn Traditional Medicine Composition and Pharmacological Manual(常用药成份与药理手册)[M].Beijing(北京):Chinese Medicine Science and Technology Press[中国医药科技出版社),1994:162.
    [2]马勇,徐敦海,徐海燕,等.麻黄研究进展[J].吉林中医药,2008,28(10):777-779.
    [3]Chen, Y., et al., Simultaneous Determination of Ephedra Alkaloids in Traditional Chinese Medicines by High-Performance Liquid Chromatography [J]. ACTA CHROMATO GRAPHICA,2012.24(3):p.475-487.
    [4]周玉新.中药指纹图谱研究技术[M].北京:化学工业出版社,2002,1
    [5]Yi-Zeng Liang,Peishan Xie, Kelvin Chan. Quanlity control of herbal medicines[J] Journal of ChromatographyB,2004(812):53-70
    [6]粱逸曾,浅议中药色谱指纹图谱的意义作用及可操作性[J].中药新药与临床药理,2001,12(3):196-200
    [7]聂晶,田颂九,王国荣,中约指纹图谱的研究现状[J].中草药,2000,31(12):881
    [8]王浴铭,张君增,朱风云,等.黄连配伍吴茱萸对黄连中主要化学成分的影响[J].中国中药杂志,1994,19(2):115
    [9]崔景朝,赵自明.中药配方颗粒研究进展(Ⅱ)——中药单煎与合煎对比研究概况[J].中国实验方剂学杂志,2011,17(4):240-245.
    [10]文乐兮,魏飞跃.方剂中药物量-效-毒关系的研究[J].中国实验方剂学杂志,2009,15(5):84-87.
    [11]王欢,唐于平,丁安伟,等.当归-川芎药对不同配比组方对家兔血小板聚集和凝血功能的影响[J].中国实验方剂学杂志,2010,16(2):73-77.
    [1]马勇,徐暾海,徐海燕,等.麻黄研究进展[J].吉林中医药,2008,28(10),777-778
    [2]Haller CA, Benowitz NL. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med,2000,343(25):1833-1838.
    [3]张秀明.麻杏石甘方药效毒两性成分存效减毒整合机制研究—中枢神经系统[D].广州:南方医科大学,2010:2.
    [4]李仪奎.中药药理实验方法学[M].第二版.上海:上海科学技术出版社,2006,1001-1007.
    [5]季旭明,姜静娴.交泰丸不同配伍比例镇静安神作用研究[J].山东中医药大学学报,2003,27(3):217-220
    [6]王秋.交泰丸不同配伍比例镇静催眠作用的药效学研究[J].中医药学刊,2002,20(1):85.
    [7]于川,樊巧玲.方剂配伍增效减毒之原理探究[J].中医药导报,2007,13(7):89-91.
    [8][8]张仲海,王胜春,王汝娟,等.麻杏石甘汤不同方法提取液对家兔发热模型及抗病毒作用的影响[J].第四军医大学学报,1997,18(6):522—-523
    [9]周文韬.麻杏石甘汤加味治疗感冒发热不退30例[J].包头医学,2012,36(1):41-42.
    [10]Werner, M.F., Souza, G.E., Zampronio, A.R.,2006. Nimesulide-induced antipyresis in rats involves both cyclooxygenase-dependent and independent mechanisms. European Journal of Pharmacology 543,181-189.
    [11]陈聪,马成.柴胡葛根配伍对干酵母发热大鼠模型的实验研究[J].新疆中医药,2011,29(1):1-3.
    [12]Panthong, A., Norkaew,P., Reutrakul,V., Anti-inflammatory, analgesic and anti-pyretic activities of the extract of gamboges from Garcinia hanburyi Hook f [J]. Journal of Ethnopharmacology,2008, (111):335-340.
    [13]Chou TC, Talalay P. Quantitative analysis of dose-effects relationships:the combined effect of multiple drugs on enzyme inhibitors[J].Adv Enzyme Regul,1984,22(1):27-55.
    [14][14]谈恒山,魏臻.药物相互作用的应用进展[J].药学与临床研究,2010,18(6):507-511.
    [15]陈魁.试验设计与分析[M].北京:清华大学出版社,1996:174-8.
    [16]DR.,V.S.F.Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes.Biochem Pharmacol.1999(58):807-810.
    [17]吕国平,崔德健.介绍一种建立大鼠哮喘模型的实验方法[J].中华结核和呼吸杂志,1995,43(6):377.
    [18]方泰惠,许惠琴,金胜娥,等.麝香定喘膏平喘作用实验研究.南京中医药大学学报,1995,11(2):72
    [19]Li, R., Meng, Z., Xie, J.,2007. Effects of sulfur dioxide on the expressions of MUC5AC and ICAM-1 in airway of asthmatic rats. Regul Toxicol Pharmacol 48,284-291.
    [20]赖克方,王长征,郭先健,等.哮喘豚鼠嗜酸性细胞浸润和凋亡的动态变化[J].第三军医大学学报,1998,20(3):198-201
    [21]Maa S H, Wang C H, Ifiu C Y et al, Endogenous nitric oxide downregulates the Bcl-2 ezcpression of eosinophils through mitogen-activated protein kinase in bronchial asthma[J]. J Allergy Clin Inununol,2003,112(4):761-767.
    [22]符州,戴谭.哮喘物模型的研究现状[J].中国实验动物学杂志.2001,11(3):167-172
    [23]阿不都许库尔·阿不力米提,秦纹,等,纳气平喘颗粒对大鼠哮喘肺组织病理变化影响探讨[J].新疆医科大学学报,2012,35(1):27-31
    [24]赖克方。王长征,郭先健,等.哮喘豚鼠嚼酸性细胞浸润和凋亡的动态变化[J].第三军医大学学报,1998,20(3):198-200.
    [25]Johnson,P.R.and J.K.Burgess.Airway smooth muscle and fibroblasts in the pathogenesis of asthma.Curr Allergy Asthma Rep.2004,4(2):102-8.
    [1]严兴海,巴吐尔·买买提明,李春燕,等.基于核磁共振的肾虚痰瘀型哮喘患者血浆的代谢组学研究[J].新疆医科大学学报,2010,33(3):228-233.
    [2]Jet LL, Miller RH. Amino acid metabolism during exercise in trained rats:the potential role of camitine in the metabolism of branched chain amino acid[J]. Metabolism,1987,36(8):748-752.
    [3]刘建文,季光,魏东芝.药理实验方法学-新技术与新方法[M].1版.北京:化学工业出版社,2003:
    [4]徐文杰.麻黄类药对组成规律的基础研究-麻黄桂枝药对[D].南方医科大学,2012:69.
    [5]彭树灵,刘晓伟,张真瑞,等.维胃方治疗大鼠实验性胃溃疡的尿液代谢组学研究[J].时珍国医国药,2011,22(5):1054-1056.
    [6]Trygg J, Holmes E, Lundstedt T.Chemometrics in metabonomics [J]. J Proteome Res,2007,6(2):469-479.
    [7]Nouna Kettaneha, Anders Berglundb, Svante Woldb. PCA and PLS with very large data sets [J]. Computational Statistics & Data Analysis,2005, 48(1):69-85.
    [8]Nelson, P.R.C., Taylor, P.A., MacGregor, J.,1996. Missing data methods in PCA and PLS; score calculations with incomplete observations. Chemometr. Intell. Lab. Systems 35,45-65.
    [9]R Eannar, S., Geladi, P., Lindgren, F., Wold, S.,1995. A PLS Kernel algorithm for data sets with many variables and less objects. Part 2. Cross-validation, missing data, and examples. J. Chemometr.9,459-470.
    [10]吴梧桐.生物化学[M].北京:人民卫生出版社,2000
    [11]Murray R K, Granner D K, Mayes P A, et al.宋惠萍(译).哈珀生物化学[M].北京:科学出版社,2002
    [12]OWENS MJ, NEMEROFF CB. Theroleofzerotonininthe PathoPhysiology of depresion:Focus ontheser otonintrans Porter[J]. Clin Chem,1994,40(2): 288-295.
    [13]王广基,查伟斌,郝海平,等.代谢组学技术在中医药关键科学问题研究中的应用前景分析[J].中国天然药物,2008,6(2):89.
    [14]卢芳,董培良,陈平平,等.三种热病证候模型的最佳造模方法的探索和评价[J].山东中医杂志,2009;28(2):114-116
    [15]许国旺,路鑫,杨胜利.代谢组学研究进展.中国医学科学院学报,2007,29(6):701-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700