用户名: 密码: 验证码:
禽舍环境智能控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽舍养殖是我国农业发展战略的重要组成部分,规模化、集约化是我国现代化禽类养殖未来的发展方向。我国是畜禽养殖大国,禽蛋产量位居世界第一,然而我国目前的禽蛋产品在食品安全和卫生质量方面却处于劣势。随着禽流感等疾病的不断增加,尤其是H5N1型高致病性禽流感的出现,让人们清醒地意识到,家禽养殖已不再是单纯地涉及经济利益,而且也关系着人类自身的健康及生命安全。因此,给禽舍环境提出了更高的要求。由于鸡在家禽养殖中所占比重最大,也最具代表性,因此,本文以鸡舍为研究对象,探询禽舍养殖的一般规律。禽舍环境控制是利用一系列的工程设施,来保证家禽生长繁育的环境更合理,是禽业集约化和现代化的重要条件,但由于禽舍环境复杂、系统庞大,存在高度的非线性、时变和多变量耦合等特性,使得许多常规的检测手段和控制方法不能满足要求。因此,研究一套具有智能检测功能的禽舍环境测控系统,以及禽舍环境参数的智能控制方法具有重要的理论意义和应用价值。
     本文在分析禽舍环境内温湿度和空气质量测控机理的基础上,研究了基于无线传感网络平台的禽舍环境智能测控关键技术。给出了基于ZigBee协议的禽舍环境参数测量的无线传感网络结构及实现方法;提出了禽舍环境参数模糊数据融合检测方法;根据禽类饲养要求和禽类生存特性,分析了禽舍环境内,温湿度和禽类群居特性之间的变化规律,建立了禽舍环境参数变化与测控技术要求之间的关系,构建了一类基于ZigBee协议的禽舍环境测控系统,并对无线传感网络平台的实现进行了详细的分析和介绍,包括硬件选型和电路设计。
     提出了基于模糊理论的,禽舍环境参数多传感器数据融合的检测方法。针对多传感器数据融合过程中,传感器的可靠度估计值很难计算的问题,以禽舍温度为采集对象,分别提出了基于统计方法和时空融合方法的多传感器模糊贴近度计算方法,进行了实验分析,结果表明基于模糊贴近度统计方法具有较好的检测精度,算法简单,实时性好。
     针对实际禽舍温湿度系统的非线性、变参数等特性,在神经网络模型研究的基础上,深入研究了变结构温湿度控制系统的设计方法,基于Lyapunov稳定性理论分析了系统的稳定性,并针对不确定性满足匹配条件与非匹配条件,分别设计了两类控制系统,并就其等效系统给出了不确定系统稳定以及滑模的到达条件;同时,为了降低系统设计的保守性,将设计的控制器与神经网络控制技术相结合,给出一类智能变结构的温湿度控制过程系统设计方法。
     将禽舍温湿度调整过程看作为复杂系统,并针对一类具有系统参数摄动、关联不确定函数和外界干扰的禽舍温湿度调节复杂系统,基于Lyapunov稳定性理论和相应的合理假设,进而提出了一类分散变结构禽舍温湿度控制方案。此外,考虑到实际禽舍温湿度过程中系统对象不能确切已知,引入神经网络在线学习的方法对系统不确定性、扰动及系统关联函数进行在线估计,同时保证了闭环系统的渐近稳定性及各个子系统滑动模态的存在性和可达性。此外,为了消除控制的抖动,给出了基于边界层的改进分散滑模变结构控制的设计方法。
     为验证本文提出的基于无线传感器网络的禽舍环境测控系统的可行性,搭建了试验平台,通过无线节点对温度、湿度进行测试,并给出风机的继电器输出形式。开发了基于MCGS组态的禽舍环境监控系统,通过实际运行结果显示,监控系统运行正常,数据实时性高,控制曲线符合实际要求,具有广泛的推广应用价值。
Poultry house breeding is an important part of our country agricultural development, and its strategy and scale are the future direction of development of modern poultry farming. Meanwhile, with the increasing of the avian flu and other diseases, especially H5N1highly pathogenic avian influenza, people are clearly aware poultry breeding is no longer simply involve economic interests, and also the human relations to their health and life safety. Therefore, it is necessary to put forward a higher demand to the poultry house environment. Poultry house environmental control is a series of projects and facilities, to ensure a reasonable environment for poultry growth and breeding, and also is an important condition for the poultry industry intensification and modernization; however, the poultry house environment is complex, large systems, highly nonlinear, time variable and multivariable coupling such that many of the conventional means of detection and control methods can not meet the requirements. Study the poultry house environment with intelligent detection monitoring system and the poultry house environment parameters of the intelligent control method has important theoretical significance and application value.
     In this paper, the analysis of the temperature and humidity in the poultry house environment and air quality monitoring and control mechanism on the basis of the poultry house environment based on wireless sensor network platform for intelligent monitoring and control of key technologies. Measurement of poultry house environmental parameters based on the Zigbee protocol wireless sensor network structure and implementation; the poultry house environment parameters of fuzzy data fusion detection; poultry breeding requirements and poultry survival characteristics within the poultry house environment, the variation of temperature and humidity, and poultry between the social characteristics of the relationship between the poultry house environment parameters change with the measurement and control technology requirements, build a the poultry house environment monitoring and control systems based on Zigbee protocol, and wireless sensor network platform, the class carried out a detailed analysis and presentation, including hardware selection and circuit design.
     The poultry house environment parameters based on fuzzy theory multi-sensor data fusion detection for multi-sensor data fusion, sensor reliability estimated value difficult to calculate, the poultry house temperature for a collection of objects, respectively, based on statistical The methods and spatial and temporal multi-sensor fusion methods fuzzy closeness method of calculation and experimental results verify the validity and accuracy of the proposed method.
     The controlling course of poultry house environment was a process of controlling the temperature and humidity of the medium in poultry house to make the moisture content to a certain expected value. The objective of poultry house control is to decrease the consumption of energy and to increase the quality of lumber at a minimum time. Conventional controller is widely applied in current poultry house, but it is based on the schedules developed by using empirical testing with the aim of providing reasonable throughout with acceptable levels of defects. This cannot adequately follow the different performance indexes, such as the minimum time and/or the energy of poultry house, etc. According to the characteristic of real poultry house environment, we examined the utilization of variable structure control and intelligent variable structure control in poultry house control system based on Neural Network model and the closed-loop stability was proved by using Lyapunov method. Moreover, for matched and mismatched uncertainties, two different control systems are developed for the poultry house system. And also for the boundedness of the uncertainties, the different kind of stable conditions are discussed.
     In addition, for the poultry house process, it is considered as a complicated system and the decentralized variable structure control system is presented and the sliding condition is also analyzed such that the stable condition of the closed-loop is given. More specifically, the dynamics characteristics of the poultry house environment were represented by two interconnected subsystems:heat-temperature process subsystem and temperature-moisture process subsystem. And then based on variable structure control theory, a robust poultry house control system is developed for this nonlinear interconnected poultry house environment such that the moisture content of poultry house will reach and be stabilized at the desired set point. Moreover, in order to reduce the control chattering, the modified decentralized variable structure controller is also developed by using a boundary value.
     To verify the feasibility of the proposed poultry house environment measurement and control system based on wireless sensor networks, set up a test platform through the wireless node to test the temperature, humidity, and gives the fan relay output in the form. Developed MCGS configuration of the poultry house environment monitoring system, through actual operating results to show the monitoring system is running properly, real-time data, the control curve in line with the actual requirements, with a wide range of application value.
引文
[1]林又米.美国家禽生产的挑战及展望.中国家禽.2006,28:52-54
    [2]刘刚,罗宇锋.规模化养鸡场禽舍环境控制技术研究.畜牧与饲料科学.2010,31:59-60
    [3]陈国双,欧世响.禽舍环境条件的控制措施.畜禽饲养.2009
    [4]戴春霞,赵德安.基于模糊控制的畜禽舍环境温湿度监控系统.农机化研究.2008,2:169-171
    [5]赵娟.鸡舍环境参数检测及管理系统的研究.河北农业大学硕士论文.2011
    [6]吴胜香,陈芳,吴胜峰.规模禽场禽流感的综合防控措施.国外禽牧学--猪与禽.2010,30:77-79
    [7]Sarah Menzel Aaron N. Wiegand, Rob King, Neil Tindale Modelling the aeolian transport of ammonia emitted from poultry farms and its deposition to a coastal waterbody. atmospheric environment.2011,45:5732-5741
    [8]J Chirico, Mul, M,van Niekerk, T,Maurer, V,Kilpinen, O,Sparagano, O,Thind, B,Zoons, J,Moore, D,Bell, B,Gjevre, AQChauve, C. Control methods for Dermanyssus gallinae in systems for laying hens:results of an international seminar WORLDS POULTRY SCIENCE JOURNAL 2009,65:589-599
    [9]崔和瑞,李曼,高峰.基于模糊控制的畜禽舍环境监控系统的研究.计算机工程.2006,32:224-228
    [10]黄官平.生物发酵式猪舍缓解热应激小气候智能化调控系统的研究.福建农林大学硕士学位论文.2010
    [11]黄伟锋.CAN总线在禽舍环境监控领域的应用研究.应用奇葩.2010,29:89-91
    [12]黄勇.供暖育雏舍与育雏箱祸合系统热特性与节能技术研究.重庆大学.2005
    [13]李俊.育好雏鸡的关键是控制环境.瓜果蔬菜报.农业信息周刊.2007,4
    [14]钱东平,王建新,隋美丽,张瑞青.畜禽舍环境温度监控系统模糊控制算法的实现.农业机械学报.2005,36:95-98
    [15]邵燕华.中国南方地区夏季猪舍降温效果的实验研究.浙江大学硕士学位论文.2002
    [16]王丽丽,朱瑞祥,随顺涛,吴南.基于PC机和单片机的分布式禽舍环境监控系统.农机化研究.2009,2:74-76
    [17]王顺喜,张光杰.畜禽舍温度控制系统设计.农机与食品机械.1995,2:14-15
    [18]Mustafa Cesmeci Erdal Karadurmus, Mehmet Yuceer, Ridvan Berber. An artificial neural network model for the effects of chicken manure on ground
    [19]water. Applied Soft Computing.2012,12:494-497
    [20]Naiqing Zhang Fangwu Dong,. Wireless Sensor Networks Applied on Environmental Monitoring in Fowl Farm IFIP International Federation for Information Processing 2010:479-486
    [21]Shaike Gilad Gregory Yom Din, Zinaida Zugman. A model for estimating how variability of biological parameters affects economic factors in an integrated turkey farm. Computers and Electronics in Agriculture.2011,75:100-106
    [22]DWJ Harrington, George, DR,Guy, JH,Sparagano, OAE. Opportunities for integrated pest management to control the poultry red mite, Dermanyssus gallinae WORLDS POULTRY SCIENCE JOURNAL 2011,67:83-93
    [23]In-bok Lee I1-hwan Seo, Oun-kyeong Moon, Se-woon Hong, Hyun-seob Hwang,Jessie P. Bitog, Kyeong-seok Kwon, Zhangying Ye, Jong-won Lee Modelling of internal environmental conditions in a full-scale commercial pig house containing animals, biosystems engineering 2010,3:91-106
    [24]S.X. Yang L. Pan, J. DeBruyn. Factor Analysis of Downwind Odours from Livestock Farms. Biosystems Engineering.2007,96:387-397
    [25]RW Melse, Ogink, NWM. Air scrubbing techniques for ammonia and odor reduction at livestock operations:Review of on-farm research in the Netherlands TRANSACTIONS OF THE ASAE 2005,48:2303-2313
    [26]ZH Miao, Glatz, PC,Ru, YJ. Free-range poultry production-A review ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES.2005,18:113-132
    [27]Hironao Okada, Suzuki, Koutarou, Kenji, Tsukamoto, Itoh, Toshihiro. Avian influenza surveillance system in poultry farms using wireless sensor network. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP 2010.2010:253-258
    [28]J. H.M.Metz P.W. G. Groot Koerkamp, G. H. Uenk, V. R. Phillips,M. R. Holden, R.W. Sneath,J. L. Short,R. P. White, J. Hartung, J. Seedorf, M. Schro der, K. H. Linkert, S. Pedersen, H. Takai,J. O. Johnsen,C.M.Wathes2. Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. J. agric. Engng Res.1998,70:79-95
    [29]CW Ritz, Fairchild, BD, Lacy, MP Implications of ammonia production and emissions from commercial poultry facilities:A review JOURNAL OF APPLIED POULTRY RESEARCH.2004,13:684-692
    [30]E.R. Benson S. Jaiswal, J.C. Bernard, G.L. Van Wicklen,. Neural Network Modelling and Sensitivity Analysis of a Mechanical Poultry
    [31]Catching System. Biosystems Engineering.2005,92:59-68
    [32]S.W. Lee S. Zhu Co-combustion performance of poultry wastes and natural gas in the advanced Swirling Fluidized Bed Combustor (SFBC). S. Zhu, S.W. Lee/Waste Management 2005,25:511-518
    [33]H.S.(?)stergard S.G. Sommer, P. L(?)fstr(?)m, H.V. Andersen, L.S. Jensen Validation of model calculation of ammonia deposition in the neighbourhood of a poultry farm using measured NH3 concentrations and N deposition. Atmospheric Environment 2009,43:915-920
    [34]Leilei Pan · SimonX.Yang. A new intelligent electronic nose system for measuring and analysing livestock and poultry farm odours. Environ Monit Assess 2007,135:399-408
    [35]AN Wiegand, Menzel, S,King, R,Tindale, N. Modelling the aeolian transport of ammonia emitted from poultry farms and its deposition to a coastal waterbody ATMOSPHERIC ENVIRONMENT.2011,45:5732-5741
    [36]杨军,乔晓军,王成.基于专家系统的禽舍环境监控系统设计.农机化研究.2007,6:163-169
    [37]张玉峰.基于CAN总线的猪舍环境现场层监控系统的研究.江苏大学硕士学位论文.2009
    [38]董海涛,屈玉贵,赵保华.Zigbee无线传感器网络平台的设计与实现.电子技术应用.2007,354(12):124-126
    [39]房好帅,李楠,王慧娟.基于ARM与ZigBee的嵌入式无线传感器网络网关的设计.北华航天工业学院学报.2010,69(03):23-26
    [40]胡仕萍,李思敏.浅谈基于Zigbee技术的无线传感器网络的应用.中国科技信息.2008,44(03):84-85+87
    [41]黄双华,赵志宏,郭志,谭浩.Zigbee无线传感器网络路由研究与实现.电子测量技术.2007,54(02):59-61+64
    [42]黄晓亮,徐晓辉,宋军华,宋涛,温阳.智能家居系统中无线传感器网络的设计.电子设计工程.2011,10(04):35-37
    [43]纪金水.ZigBee无线传感器网络技术在工业自动化监测中的应用.工业仪表与自动化装置.2007,5(03):71-76
    [44]李小珉,赵志宏,郭志.Zigbee无线传感器网络组网实验.电子测量技术.2007,57(05):147-149+195
    [45]李小珉,赵志宏,郭志,谭浩Zigbee无线传感器网络的研究与实验.电子测量技术.2007,8(06):133-136
    [46]彭燕.基于ZigBee的无线传感器网络研究.现代电子技术.2011,34(05):49-51
    [47]孙静,于洋.ZigBee无线传感器网络树状路由协议研究.通化师范学院学报.2011,32(06):25-27
    [48]王家兵.基于EM250的Zigbee无线传感器网络解决方案.电子技术.2007,4(Z3):150-152
    [49]魏书芳,孙同景,孙波,郭源生.ZigBee无线传感器网络在煤矿中的应用.微计算机信息.2007,9(32):65-67
    [50]魏作辉,艾惠明.基于ZigBee无线传感器网络的煤矿监测系统设计.工矿自动化. 2008,、150(03):41-43
    [51]俞仁来,谭明皓.基于ZigBee的无线传感器网络路由分析.通信技术.2011,44(01):129-131
    [52]张双斌ZigBee无线传感器网络在煤矿安全监测中的应用.中国新通信.2009,11(15):15-18
    [53]郑毅.基于ZigBee技术构建无线传感器网络.襄樊学院学报.2010,31(08):35-37
    [54]Orhan Akar, Tayfun Akin, Khalil Najafi. A wireless batch sealed absolute capacitive pressure sensor. Sensors and Actuators A:Physical.2001,95(1):29-38
    [55]Giuseppe Anastasi, Marco Conti, Mario Di Francesco, Andrea Passarella. Energy conservation in wireless sensor networks:A survey. Ad Hoc Networks.2009,7(3):537-568
    [56]Wen-Wei Chang, Tung-Jung Sung, Heng-Wei Huang, Wei-Chih Hsu, Chi-Wei Kuo, Jhe-Jhao Chang, Yi-Ting Hou, Yi-Chung Lan, Wen-Cheng Kuo, Yu-Yen Lin, Yao-Joe Yang. A smart medication system using wireless sensor network technologies. Sensors and Actuators A:Physical.2011,172(1):315-321
    [57]Murthy Chavali, Tzu-Hsuan Lin, Ren-Jang Wu, Hsiang-Ning Luk, Shih-Lin Hung. Active 433 MHz-W UHF RF-powered chip integrated with a nanocomposite m-MWCNT/polypyrrole sensor for wireless monitoring of volatile anesthetic agent sevoflurane. Sensors and Actuators A:Physical.2008,141(1):109-119
    [58]Jung Hwan Cho, Young Woung Kim, Kyung Jin Na, Gi Joon Jeon. Wireless electronic nose system for real-time quantitative analysis of gas mixtures using micro-gas sensor array and neuro-fuzzy network. Sensors and Actuators B:Chemical.2008,134(1):104-111
    [59]Karl Crowley, June Frisby, Seamus Murphy, Mark Roantree, Dermot Diamond. Web-based real-time temperature monitoring of shellfish catches using a wireless sensor network. Sensors and Actuators A:Physical.2005,122(2):222-230
    [60]Fei Ding, Guangming Song, Kaijian Yin, Jianqing Li, Aiguo Song. A GPS-enabled wireless sensor network for monitoring radioactive materials. Sensors and Actuators A: Physical.2009,155(1):210-215
    [61]Qiuyun Fu, Jianling Wang, Dongxiang Zhou, Wei Luo. Passive wireless SAWR sensor system model including the effects of antenna distances. Sensors and Actuators A:Physical. 2009,150(1):151-155
    [62]Jesus Garcia-Canton, Angel Merlos, Antonio Baldi. A wireless LC chemical sensor based on a high quality factor EIS capacitor. Sensors and Actuators B:Chemical.2007, 126(2):648-654
    [63]Amr Ibrahim, D. R. S. Cumming. Passive single chip wireless microwave pressure sensor. Sensors and Actuators A:Physical.2011,165(2):200-206
    [64]Ping Li, Yumei Wen, Pangang Liu, Xinshen Li, Chaobo Jia. A magnetoelectric energy harvester and management circuit for wireless sensor network. Sensors and Actuators A: Physical.2010,157(1):100-106
    [65]Geoff V. Merrett, Nick R. Harris, Bashir M. Al-Hashimi, Neil M. White. Energy managed reporting for wireless sensor networks. Sensors and Actuators A:Physical.2008, 142(1):379-389
    [66]Roderick Shepherd, Stephen Beirne, King Tong Lau, Brian Corcoran, Dermot Diamond. Monitoring chemical plumes in an environmental sensing chamber with a wireless chemical sensor network. Sensors and Actuators B:Chemical.2007,121(1):142-149
    [67]Andrey Somov, Alexander Baranov, Alexey Savkin, Denis Spirjakin, Andrey Spirjakin, Roberto Passerone. Development of wireless sensor network for combustible gas monitoring. Sensors and Actuators A:Physical.2011,171(2):398-405
    [68]Eloi Bosse George Gigli, George A. Lampropoulos. An optimized architecture for classification combining data fusion and data-mining Information Fusion.2007,8(4):366-37
    [69]A. Mpimpoudis E. Zervas, C. Anagnostopoulos, O. Sekkas, S. Hadjiefthymiades. Multisensor data fusion for fire detection. Information Fusion.2011,12(3):150-159
    [70]Bo-Suk Yang Gang Niu. Intelligent condition monitoring and prognostics system based on data-fusion strategy. Expert Systems with Applications.2010,37(12):8831-8840
    [71]Eyke Hullermeier. Fuzzy sets in machine learning and data mining. Applied Soft Computing.2011, 11(2):1493-1505
    [72]Dov Ingman Karin More. Quality approach for multi-parametric data fusion. NDT & E International.2008,41(3):155-162
    [73]Gilles Mauris Lionel Valet, Philippe Bolon, Naamen Keskes. A fuzzy rule-based interactive fusion system for seismic data analysis. Information Fusion.2003,4(2):123-133
    [74]M. Pilar Callao Pablo M. Ramos, Itziar Ruisanchez. Data fusion in the wavelet domain by means of fuzzy aggregation connectives. Analytica Chimica Acta.2007,584(2):360-369
    [75]Tuan D. Pham. Fuzzy posterior-probabilistic fusion. Pattern Recognition.2011, 44(5):1023-1030
    [76]Chun-Ming Zhang Shao-Fei Jiang, Shuai Zhang. Two-stage structural damage detection using fuzzy neural networks and data fusion techniques. Expert Systems with Applications. 2011,38(1):511-519
    [77]A. Lasaruk T. Harming, T. Tatschke. Calibration and low-level data fusion algorithms for a parallel 2D/3D-camera. Information Fusion.2011,12(1):37-47
    [78]Lin Ma Xiaofeng Liu, Joseph Mathew. Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques. Mechanical Systems and Signal Processing. 2009,23(3):690-700
    [79]H.C. Huang Y.M. Chen. Fuzzy logic approach to multisensor data association. Mathematics and Computers in Simulation.2000,52(5):399-412
    [80]K. KAVSEK-BIASIZZO D. MATKO, J. KOCIJAN. Neuro-fuzzy Model-based Control. Journal of Intelligent and Robotic Systems.1998,23:249-265
    [81]Arpita Sinha B. M. Mohan The simplest fuzzy PID controllers:mathematical models and stability analysis. Soft Comput.2006,10:961-975
    [82]SONER VARDARBASI ERCUMENT KARAKAS. Speed control of SR motor by self-tuning fuzzy PI controller with artificial neural network. Sadhana.2007,32:587-596
    [83]M. SAAD G. M. KHOURY, H. Y. KANAAN and C. ASMAR. Fuzzy PID Control of a Five DOF Robot Arm. Journal of Intelligent and Robotic Systems.2004,40:299-320
    [84]SAMY A. MESBAH GRANTHAM K. H. PANG. Design of Bang-bang Controller Based on a Fuzzy-Neuro Approach:Application to a Heating System. Journal of Intelligent and Robotic Systems.1998,22:51-85
    [85]Shiuh-Jer Huang Hung-Yi Chen,. Adaptive neural network controller for the molten steel level control of strip casting processes. H.-Y. Chen and S.-J. Huang/Journal of Mechanical Science and Technology.2010,24 (3):755-760
    [86]Jose Luis Ocana Jose Antonio Perez, Carlos Molpeceres, Miguel Morales, Manuel Blasco. Adaptive neural network control system for laser surface heat treatments. Int J Adv Manuf Technol 2009,41:513-518
    [87]YWH-JENG LIN LIH-CHANG LIN. Fuzzy-enhanced Adaptive Control for Flexible Drive System with Friction Using Genetic Algorithms. Journal of Intelligent and Robotic Systems.1998,23:379-405
    [88]Ali Volkan Akkaya Saban Cetin Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system. Nonlinear Dyn 2010,61:465-476
    [89]Jundi Xiong Tai fu Li, Rui Zhang, Qifu Tan,Ruizheng Xu. Hardware implementation of fuzzy PID controllers. Fuzzy Optim Decis Making 2006,5:113-122
    [90]Xiang Chen Tiebao Yang, Henry Hu,Yeou-Li Chu, Patrick Cheng. A fuzzy PID thermal control system for casting dies. J Intell Manuf 2008,19:375-382
    [91]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995:36~40
    [92]高为炳.变结构控制理论[M].北京:国防出版社,1990:130~135
    [93]田宏奇.滑模控制理论及其应用[M].武汉:武汉出版社,1995:207~219
    [94]C. Edwards and S. Spurgeon, Sliding Mode Control:Theory and Applications [M]. Taylor and Francis,1998.
    [95]K.D. Young, Variable Structure Systems, Sliding Mode and Nonlinear Control [M]. Springer,1999.
    [96]W. Perruquetti and J.P. Barbot, Sliding Mode Control in Engineering [M]. Marcel Dekker Hardcover,2002.
    [97]A. Sabanovic, L. Fridman and S. Spurgeon, Variable Structure Systems:From Principles to Implementation [M]. IET,2004.
    [98]C. Edwards, E. Fossas Colet and L. Fridman, Advances in Variable Structure and Sliding Mode Control [M]. Springer,2006.
    [99]G. Bartolini, L. Fridman, A. Pisano and E. Usai, Modern Sliding Mode Control Theory: New Perspectives and Applications [M]. Springer,2008.
    [100]阂剑青,徐梓斌.多元通风的室内温度场和空气品质的数值分析.流体机械.2006,34:29-32
    [101]蒋洁,王纪章,李萍萍.温室内温度的优化控制.农业装备技术.2005,31
    [102]赵双华李莹.基于ARM的室内温度控制系统的设计与实现.计算机系统应用.2010,19:245-251
    [103]Gregory P. Matthews 1 and Raymond A. DeCarlo, Decentralized variable structure control of interconnected multi-input/multi-output nonlinear system [J]. Circuits Systems Signal Process,1987,6(3):363-387.
    [104]Hu, Yun-an and Zhang, You-an, Robust Decentralized Control for A Class of Large-scale Systems with Mismatched Uncertainties [C]. Roceedings of the 4th World Congress on Intelligent Control and Automation, June 10-14, Shanghai. P.R.China,927-930.
    [105]庄开宇,变结构控制理论若干问题研究及其应用[D].浙江大学博士论文,2002:46-60.
    [106]Tian-Ping Zhang Chun-Bo Feng Zhen-Zhong Dou, Decentralized Adaptive Variable Structure Control Based on Fuzzy Logic [C]. IEEE International Conference on Intelligent Processing Systems, October 28-31,1997, Beijing, P.R.China,359-363.
    [107]Victor H. Benitez, Edgar N. Sanchez, Alexander G. Loukianov, Decentralized adaptive recurrent neural control structure [J]. Engineering Applications of Artificial Intelligence, 2007,20:1125-1132.
    [108]Jeffrey T. Spooner and Kevin M. Passino, Decentralized Adaptive Control of Nonlinear Systems Using Radial Basis Neural Networks [J]. IEEE TRANS. ON Automatic Control, 1999,44(11):2050-2057.
    [109]Naira Hovakimyan; Eugene Lavretsky; Anthony Calise; Ramachandra Sattigeri, Decentralized adaptive output feedback control via input/output inversion [J]. International Journal of Control,2006,79(12):1538-1551.
    [110]朱虹.基于模型的温室环境控制算法研究.东南大学硕士论文.2005
    [111]朱如春.基于模糊神经网络算法智能变频空调控制系统的研究.苏州大学硕士论文.2007
    [112]R. A. Aliev, B. G. Guirimov, Bijan Fazlollahi, R. R. Aliev. Evolutionary algorithm-based learning of fuzzy neural networks. Part 2:Recurrent fuzzy neural networks. Fuzzy Sets and Systems.2009,160(17):2553-2566
    [113]Lijie Guo, Jinji Gao, Jianfeng Yang, Jianxin Kang. Criticality evaluation of petrochemical equipment based on fuzzy comprehensive evaluation and a BP neural network. Journal of Loss Prevention in the Process Industries.2009,22(4):469-476
    [114]Chun-yu Jia, Xiu-ying Shan, Hong-min Liu, Zhao-ping Niu. Fuzzy Neural Model for Flatness Pattern Recognition. Journal of Iron and Steel Research, International.2008, 15(6):33-38
    [115]Sun Jian, Wang Lian-guo, Zhang Hua-lei, Shen Yi-feng. Application of fuzzy neural network in predicting the risk of rock burst. Procedia Earth and Planetary Science.2009, 1(1):536-543
    [116]M. Q. Li, X. Y. Zhang. Modeling of the microstructure variables in the isothermal compression of TC11 alloy using fuzzy neural networks. Materials Science and Engineering:A.2011,528(6):2265-2270
    [117]Meiling Liu, Xiangnan Liu, Menxin Wu, Lufeng Li, Lina Xiu. Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Computers & Geosciences.2011, 37(10):1642-1652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700